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Abstract
We could reconstruct the strain of gravitational wave signals from acquired
data in the time domain by using the infinite impulse response filter technique
in TAMA300. We would like to analyse the waveform in the time domain
for burst-like signal, merger phase waveform of binary neutron stars, and so
on. We established the way to make a continuous time-series gravitational
wave strain signal. We compared the time-domain reconstruction with the
Fourier-space reconstruction. Both coincided within 3% in the observation
range. We could also produce the voltage signal which would be recorded by
the data-acquisition system from a simulated gravitational wave. This is useful
for some analyses of simulations and signal injections. We could extract the
waveform of the hardware injection signal in an observational run in the time
domain. The extracted waveform was similar to the injection signal.

PACS number: 04.80.Nn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We have carried out nine observation runs in TAMA300. In the eighth observation run
(DT8), over 1100 h of data were taken and the duty cycle was 81%. Also, hardware signal
injection was achieved. Some simulated signals of gravitational waves were injected into the
interferometer. In the ninth observation run (DT9), 556 h of data were taken and the best
sensitivity of TAMA300 was recorded.
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Figure 1. Optical configuration and L− servo control of TAMA300. G(f ) is an open-loop transfer
function of L− servo. The feedback signal is acquired via a whitening filter, W(f ), by a computer.
The signal is converted by an analog-to-digital converter whose sampling rate is 20 kSPS.

Although most data analyses for gravitational wave detectors have been analysed in
Fourier space in TAMA300 [1], time-domain analyses are also important. Because acquired
data are not exactly the same waveforms of gravitational wave signals, the data need to be
reconstructed. It is easy to reconstruct them in Fourier space. GEO600 have reconstructed
their data in the time domain [2, 3]. There is a difference between GEO600 and TAMA300
concerning the way to acquire data. It is thus difficult to reconstruct data in the time domain.

In a laser interferometer gravitational wave detector, many feedback servo controls are
needed to keep the interferometer operating. In TAMA300, the most important is called the L−
feedback servo control, which is a differential length control of both 300 m Fabry–Perot arms
of the interferometer, and whose signal is sensitive to gravitational wave signals. The unity
gain of the L− servo control was around 1 kHz, though the observation band was from 100 Hz
to 2 kHz. For this reason, the interferometer signal was derived from the feedback signal to
the test mass displacement of the interferometer. The signal was acquired through a whitening
filter and an anti-aliasing filter by a computer with an analogue-to-digital converter. The
acquired signals were distorted by the servo control, the actuator response, the whitening filter
and the anti-aliasing filter. This ‘distortion’ should be corrected in order to obtain the strain of
the gravitational wave signal. In Fourier-space analysis, we can easily correct ‘distortion’ by
using transfer functions. For example, in the analysis of an inspiraling binary search with the
matched filtering technique, we reconstructed the strain of a gravitational wave, h̃(f ), from
the acquired voltage data, Ṽ (f ), by using the transfer function. We analysed the observation
data for gravitational wave searches in Fourier space. It is necessary for various analyses
to reconstruct them in the time domain. In the present work, we used the infinite impulse
response filters technique to reconstruct in the time domain.

2. Optical configuration and servo control for TAMA300

Figure 1 shows the optical configuration and the L− servo control of TAMA300. The light
source is an injection-locked Nd:YAG laser whose wavelength is 1.064 µm, and the output
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power is 10 W. The laser beam travels through a triangle optical mode cleaner whose cavity
length is about 10 m, and is then input into the main interferometer. The optical configuration
of the main interferometer is a power-recycled Fabry–Perot Michelson interferometer. Both
arm Fabry–Perot cavities are 300 m in length and their finesse is 500. As a result, they have
a cavity pole of 500 Hz. The power-recycling gain is about 4.5. In the L− servo control, an
optical output signal is detected and changed to an electric signal by a photo detector made
from a multi photo diode for a high power. The electric signal goes through electric servo
filters, and is then fed back to the input of a coil–magnet actuator driver for displacements
of mirrors that consist of Fabry–Perot cavities. The lengths of both Fabry–Perot cavities are
controlled anti-symmetrically. The mirrors are suspended by double pendulums. For each
mirror, four pairs of magnets on the mirror and coils on a cage of the pendulum consist of the
actuator.

3. Data acquisition and calibration

The feedback signal to the coil–magnet actuator driver was derived and acquired by a computer
with an analogue-to-digital converter. For real time calibration, we took the ‘single peak
calibration’ method [4]. In order to obtain a change of the open-loop gain of the L− servo
control, a calibration signal was injected just before the coil–magnet actuator driver with a
sum amplifier. The calibration signal was a sinusoidal wave of 625 Hz, which was generated
by dividing the sampling frequency of 20 kHz of the analogue-to-digital converter by 32.
The signals before and after the sum amplifier were acquired through whitening filters. We
extracted 625 Hz components from the acquired signals before and after the sum amplifier,
and then divided the before 625 Hz component by the after one. In this way, we could obtain
an open-loop gain of 625 Hz. We thought that there were two changeable parameters in the L−
feedback servo. One was a dc gain and the other was the cavity pole of the Fabry–Perot cavity.
We can know the change in the dc gain from the amplitude of the open-loop gain of 625 Hz,
and can know the change in the cavity pole from the phase of the open-loop gain of 625 Hz.
The dc gain is easily changed by changing the laser power, the alignment of the interferometer
and so on. In fact, the dc gain was changed by about 10% during long-term operation. We had
feared that the cavity pole would be changed by a deterioration of the mirror reflectance with
contaminations. However, the cavity pole did not change during the observation runs. The
amplitude and the phase of the open-loop gain in a part of DT8 are shown in figure 2.

4. Reconstruction of data in Fourier space

The acquired data by a computer are time-series data in the dimension of voltage. We need to
reconstruct the strain of the gravitational wave. In this section, we describe how to produce it
in Fourier space. We transform to a Fourier spectrum of the voltage data from the time-series
voltage data with FFT. A mirror displacement of the L− servo appears at the feedback signal
just before the coil–magnet actuator driver according to the following equation:

x̃(f ) = A(f )
1 + G(f )

G(f )
Ṽ feedback(f ), (1)

where x̃(f ) and Ṽ feedback(f ) are the Fourier spectrum of the mirror differential displacement
and the feedback signal, respectively. G(f ) is an open-loop transfer function of the L− servo
control. A(f ) is a transfer function from the input-voltage signal of the coil–magnet actuator
driver to the mirror displacement. This transfer function is basically formed by a second-order
low-pass filter, whose cutoff frequency is the same as the resonant frequency of the pendulum.
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Figure 2. Fluctuation of the open-loop transfer functions in DT8 which ran from 14 February
2003 to 15 April 2003. The upper graph is the absolute value of the gain and the lower graph is
the phase. The interferometer was unlocked when the absolute value of the gain was zero.

If |G(f )| � 1,
1+G(f )

G(f )
is almost unity and insensitive to a change of the open-loop transfer

function. On the other hand, in a frequency region above the unity gain frequency, 1+G(f )

G(f )
is

sensitive to that, and at close to the unity gain frequency, it is more sensitive. Since the unity
gain frequency of TAMA300 is in the observation range, the open-loop transfer function and
its fluctuation are particularly important.

The feedback signal is derived and goes through a whitening filter. The whitening filter
cuts off higher and lower frequency components of the feedback signal for a dynamic range of
the analogue-to-digital converter. The relationship between the acquired data and the feedback
signal is shown by the following equation:

Ṽ ADC(f ) = W(f )Ṽ feedback(f ), (2)

where Ṽ ADC(f ) is the Fourier spectrum of the acquired data and W(f ) is the transfer function
of the whitening filter.

Since the base-line length is 300 m, we obtain the strain of the gravitational wave by
dividing x̃(f ) by 300 m. We can thus reconstruct from the acquired data the strain of the
gravitational wave using the following equation:

h̃(f ) = 1

300m

1

W(f )
A(f )

1 + G(f )

G(f )
Ṽ ADC(f ), (3)

where h̃(f ) is the Fourier spectrum of the strain of a gravitational wave.

5. Reconstruction of data in the time domain

We used an infinite impulse response (IIR) filter to reconstruct in the time domain. In another
method, the combination of FFT and inverse FFT is used. In this method, the Fourier spectrum
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of h̃(f ), which is reconstructed as explained in the previous section, is transformed into h(t)

by the inverse FFT. Although this is a conventional way, there are some problems. On a
gravitational wave detector, continuous observation is necessary. We acquire very large data,
and have to analyse such data in order to search for gravitational wave signals. It is impossible
that such large data are transformed by using FFT in one block. Thus, in the case of the FFT
and inverse-FFT combination method, it is necessary to divide the data. By dividing the data,
there is large effect on the data especially close to the edge. In addition, the time window for
FFT and inverse FFT affects the gravitational wave signal as the distortion. If the signal is
placed on the edge of the continuous block, the waveform will be distorted due to the window
effect, or divided into two blocks. As we would like to obtain continuous time-series data, we
thus adopted an impulse response filter in a digital-filter technique.

5.1. Infinite impulse response (IIR) filter

There are two types of impulse response filters. One is the finite impulse response (FIR) filter,
and the other is the infinite impulse response (IIR) filter. When the input time-series discrete
data to the filter is In and the output one from the filter is On, where n is the time index, the
impulse response filter is defined as

On =
M∑

k=0

ckIn−k +
N∑

j=1

djOn−j , (4)

where ck and dj are coefficients and define the filter response. If N = 0, so that there is no
second term in equation (4), then it is FIR, else IIR. Since IIR is superior to FIR with same
number of coefficients, we used IIR for reconstruction. The servo filter and the whitening
filter were constructed from analogue filters. We thus need IIR filters with the same response
as the analogue filters. For example, in the case of a first-order low-pass filter with a cutoff
frequency of fc, the coefficients set of the IIR filter is

c0 = 1

1 + 2
2πfc�t

, c1 = 1

1 + 2
2πfc�t

, d1 =
1 − 2

2πfc�t

1 + 2
2πfc�t

, (5)

M = 1, N = 1, (6)

where �t is the sampling interval of the analogue-to-digital converter. IIR filters can emulate
analogue filters well, but not completely. There are differences between an IIR filter and an
analogue filter, especially in the higher frequency region, or in other words, near the sampling
frequency. We made special IIR filter coefficients sets, {ck, dj }, which have smaller differences
than the general coefficient sets in the observation range [5]. For example, although the general
coefficient set of a first-order low-pass filter is as equations (5) and (6), our coefficient set of
that is

c0 = 1

1 + 147
60

1
2πfc�t

, (7)

d1 =
6 1

2πfc�t

1 + 147
60

1
2πfc�t

, d2 = −
15
2

1
2πfc�t

1 + 147
60

1
2πfc�t

, d3 =
20
3

1
2πfc�t

1 + 147
60

1
2πfc�t

, (8)

d4 = −
15
4

1
2πfc�t

1 + 147
60

1
2πfc�t

, d5 =
6
5

1
2πfc�t

1 + 147
60

1
2πfc�t

, d6 = −
1
6

1
2πfc�t

1 + 147
60

1
2πfc�t

, (9)

M = 0, N = 6. (10)
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Figure 3. Transfer functions of the IIR filter and the analogue filter. The blue (grey) line is the total
transfer function to convert from the acquired voltage signal to the strain of a gravitational wave
in Fourier space. The red (black) line is the frequency response of the IIR filter. The difference
below 10 Hz is caused by the additional high-pass filter for the IIR.

In this way, our coefficient sets have more coefficients than the general coefficient sets do. In
addition, we produced a special function to calculate a closed-loop transfer function [5].

5.2. Difference between the frequency model and the time-domain model

In order to clear up the difference between reconstruction in the time domain and reconstruction
in Fourier space, we compared those transfer functions. We could calculate the transfer
function of our IIR filter to reconstruct from the time-series acquired voltage signal, VADC(t),
to the time-series strain of a gravitational wave, h(t). It is shown in figure 3 along with the
analogue filter transfer function. In the higher frequency region, there are differences because
even our IIR filter emulates the analogue filter incompletely. In the lower frequency region,
differences are caused by an additional high-pass filter. In the whitening filter, lower frequency
components are cut off with the high-pass filter. As the inverse-whitening filter is operated, the
lower frequency components and dc component became extremely big and infinite. For this
reason, the inverse whitening filter cannot be calculated by a computer. Therefore, we used the
additional filter in the inverse-whitening filter to fold down below 10 Hz. The amplitude ratio
and the phase difference between the frequency model and the time-domain model are shown in
figure 4. The error of the amplitude ratio was within 3% in the observation range from 100 Hz
to 2 kHz. If there is no additional filter in the inverse-whitening filter, the amplitude ratio
is almost unity, and the phase difference is almost zero degree in the lower frequency
region.

5.3. Reconstructed data in Fourier space and the time domain

In order to compare the time-domain reconstruction with the Fourier-space reconstruction, the
time-domain reconstructed data were transformed to the Fourier spectrum. In the Fourier-space
reconstruction, VADC(t) was transformed to Ṽ ADC(f ) with FFT, and was then reconstructed
to h̃(f ). In the time-domain reconstruction, VADC(t) was reconstructed to h(t), and then
transformed to h̃(f ) with FFT. Figure 5 shows the reconstructed sensitivities in DT9. They
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Figure 4. Difference between the IIR and the analogue filter. The upper graph is the amplitude
ratio and the lower graph is the phase difference. There is a small effect of the additional high-pass
filter for the amplitude ratio, but a large effect for the phase difference.
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Figure 5. Sensitivity of TAMA300 in DT9. The blue (grey) line is the Fourier-space reconstruction
and the red (black) line is the time-domain reconstruction.

show good agreement in the observation range. Just before the analogue-to-digital converter,
there was an anti-aliasing filter, whose cutoff frequency is 5 kHz. Since the sensitivity was
limited by the resolution of the analogue-to-digital converter over 5 kHz, which was out of
observation range, we ignored the anti-aliasing filter for the reconstructions.

5.4. Time-domain signals

We can also produce a voltage signal, VADC(t), from a simulated gravitational wave, h(t),
with the IIR. It is useful for software signal injection and some analyses in the time domain.
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Figure 6. Chirp signal of h(t) and VADC(t). The upper graph shows the simulated chirp signal,
which comes from a 1.4–1.4 solar-mass inspiraling binary neutron star. The lower graph shows
the waveform that appears in the acquired data when the chirp signal comes.
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Figure 7. Burst signal of h(t) and VADC(t). The upper graph shows the burst signal of A1B1G1 N
of Dimmelmeier’s burst catalogue. The lower graph shows the voltage signal of VADC(t).

Figures 6 and 7 show a chirp signal and a burst signal, respectively. The chirp signal
is expected from inspiraling binary neutron stars whose masses are 1.4 solar mass. The
amplitude in VADC(t) grows bigger than that in h(t) near the merger phase. The burst signal
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Figure 8. Injection signal and extracted waveform. The upper graph shows the hardware injection
signal and the lower graph shows the extracted waveform. Similar signals appear at the same time.

is from Dimmelmeier’s burst catalogue (no A1B1G1 N) [6, 7]. Because burst signals have
complex waveforms, VADC(t) and h(t) are not very similar.

5.5. Extraction of hardware injection signals

In DT8, some simulated gravitational wave signals were injected into the interferometer. This
is called hardware signal injection. We extracted the injected signal in the reconstructed data
and compared the extracted waveform with the injected signal. Because the reconstructed
data had large noises of higher and lower frequencies, we operated on the reconstruct data for
a band-pass filter of the IIR filter. We could extract a similar waveform to the injection signal.
The injection signal and the extracted waveform are shown in figure 8. This is one burst signal
of the injection signals.

6. Discussion and concluding remarks

We could reconstruct the data in the time domain whose error was within 3% in the observation
range. For the additional filter, there are differences between the time-domain reconstruction
and the Fourier reconstruction. In this work, the additional filter was also made from an IIR
filter. One can make some FIR filters which cut off high and/or low frequency components
without changing the phase. If such a FIR filter is used as the additional filter, there is no phase
difference. However, FIR filters take more time to calculate. Thus, it does not suit the analysis
of a gravitational wave search. In a gravitational wave search with a time-domain matched
filtering technique, the effect of this large phase difference is reduced by operating with the
same IIR additional filter on the template waveform. We can cancel the phase distortion
in gravitational wave search analysis. However, when we catch a gravitational wave, the
detected waveform is very important for gravitational wave astronomy. We thus think that a
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FIR additional filter, which is no phase distortion, is an essential technique even if it takes
more time to calculate.

We demonstrated how to extract the waveform of a hardware injection signal in
reconstructed data. The waveform is similar to the waveform of the injection signal, but
not completely. We think that this is caused by using a conventional way to reduce noises.
The acquired data have some large noises, such as the calibration signal, power-line noise and
its harmonics. These are well known and can be removed in the time domain. If the noises
are reduced, the extracted waveform will be more precise to the injection signal. We plan to
conduct some analyses in the time domain.
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