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Abstract

Axion is a hypothetical particle introduced as a solution of the strong CP problem of quan-
tum chromodynamics (QCD). Various astronomical and experimental searches imply that
the axion is invisible in the sense that its interactions with ordinary matters are considerably
weak. Due to this weakness of the coupling, the axion is regarded as a viable candidate of
dark matter of the universe.

In this thesis, we investigate production and evolution of axion dark matter, and discuss
their cosmological implications. Axions are produced non-thermally in the early universe.
A well known production mechanism is so called the misalignment mechanism, where the
axion field begins to coherently oscillate around the minimum of the potential at the time
of QCD phase transition. This coherent oscillation of the axion field behaves as a cold
matter in the universe. In addition to this coherent oscillation, however, there are other
contributions, which come from the decay of topological defects such as strings and domain
walls. The production mechanism due to topological defects is not understood quite well,
and there is a theoretical uncertainty on the determination of the relic abundance of dark
matter axions.

In order to remove this uncertainty, we analyze the spectrum of axions radiated from
these string-wall systems. The evolution of topological defects related to the axion models
is investigated by performing field-theoretic lattice simulations. The spectrum of radiated
axions has a peak at the low frequency, which implies that axions produced by the defects
are not highly relativistic. By the use of the results of numerical simulations, the relic
abundance of dark matter axions is reanalyzed including all production mechanisms. It is
found that the decay of domain walls produces significant amount of cold axions, which
gives severe constraints on the model parameters. In particular, for the case with short-lived
domain walls, the inclusion of the domain wall contribution leads to a more severe upper
bound on the axion decay constant. Furthermore, models which predict long-lived domain
walls are excluded because of the overproduction of cold axions, unless an unacceptable
fine-tuning exists.
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Chapter 1

Introduction

1.1 Overview
In the last several decades, developments of astronomical observations have provided rich
information about our universe. One of the most important accomplishments is that our
universe is filled by some non-baryonic energy components. Conventionally, these are cat-
egorized into two ingredients: dark matter and dark energy. Dark energy is something
like the Einstein’s cosmological constant, which accelerates the expansion of the present
universe. Although the accelerated expansion is observationally confirmed [1, 2], the exis-
tence of constant energy density is still under debate [3]. On the other hand, the existence
of dark matter is becoming more evident. The total matter density of the universe has been
measured by many different kinds of methods [4], whose results are 5-6 times larger than
the baryon density of the universe obtained by the observation of the light element abun-
dance [5]. This indicates that the large fraction of the cosmic matter density is occupied
by a non-baryonic component. This result is also confirmed by the recent precise measure-
ment of cosmic microwave background (CMB) by the WMAP satellite [6]. Furthermore,
the map of the gravitational potential around a cluster merger 1E0657-558, measured by
means of the weak lensing, clearly shows that the matter distribution of the galaxies does
not trace the distribution of the visible baryonic gas [7]. This observation strongly supports
the existence of a non-baryonic matter, which interacts with ordinary matters only through
the gravitational force.

The existence of the dark matter cannot be explained in the framework of the standard
model of particle physics. This fact motivates us to consider some new physics beyond the
standard model. Several models of the particle dark matter have been proposed so far [see
e.g. [8] for reviews]. One of the well-motivated candidates is the axion [9, 10]. Axion is
a hypothetical particle which arises as a consequence of the Peccei-Quinn (PQ) [11, 12]
mechanism, the most attractive solution to the strong CP problem of quantum chromo-
dynamics (QCD) [13, 14]. This mechanism introduces a global U(1)PQ symmetry (so
called PQ symmetry) that has to be spontaneously broken at some high energy scale. The
spontaneous breaking of this global symmetry predicts an existence of a (pseudo) Nambu-
Goldstone boson, which we identify as the axion.

Historically, the axion was not considered as a candidate for the dark matter at the time
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when it was proposed. In the original model, the axion was “visible” in the sense that
it gives some predictions for laboratory experiments. Unfortunately, no signature was ob-
served, and the prototype axion model was ruled out soon after the proposal [15]. However,
it was argued that models with higher symmetry breaking scale denoted as Fa (the axion
decay constant) can still avoid the experimental constraints [16, 17, 18, 19]. The essential
point is that the couplings between axions and other fields are suppressed by a large fac-
tor of the symmetry breaking scale ∼ 1/Fa. These models are called “invisible axions”
because of their smallness of coupling with matter.

This invisibleness leads to a cosmological consequence. It turns out that almost stable
coherently oscillating axion fields play a role of the dark matter filled in the universe [20,
21, 22]. Furthermore, since these axions are produced non-thermally, they are cold in the
sense that they are highly non-relativistic. This property agrees with the cold dark matter
scenario motivated by the study of the large scale structure formation [23].

The behavior of dark mater axions is closely related with the history of the early uni-
verse. In particular, the cosmological phase transition associated with the spontaneous
symmetry breaking gives some implications for the physics of the axion dark matter. There
are two relevant phase transitions. One is the PQ phase transition corresponding to the
spontaneous breaking of U(1)PQ symmetry, and another is the QCD phase transition cor-
responding to the spontaneous breaking of the chiral symmetry of quarks. Axions are
produced at the PQ phase transition, then they acquire a mass due to the non-perturbative
effect at the QCD phase transition. The remarkable feature of this sequence of phase tran-
sitions is that it predicts the formation of topological defects [see [24] for reviews]. When
the PQ symmetry is spontaneously broken, vortex-like defects, called strings, are formed.
These strings are attached by surface-like defects, called domain walls, when the QCD
phase transition occurs. The cosmological evolution of these topological defects is a key
to understand the physics of dark mater axions.

The structure of the domain walls is determined by an integer numberNDW which is re-
ferred as the “domain wall number”. The value of NDW is related to the color anomaly [25,
26, 13], whose value depends on particle physics models. The cosmological history is
different between the model with NDW = 1 and that with NDW > 1. In the model with
NDW = 1, the string-wall systems turn out to be unstable, and they collapse immediately
after the formation. On the other hand, in the model with NDW > 1, it is known that do-
main walls are stable and they eventually overclose the universe, which conflicts with the
standard cosmology [27, 25].

One possibility to avoid the domain wall problem is to assume the occurrence of in-
flation, the exponentially expanding stage of the universe, after the PQ phase transition.
Inflation was originally introduced in order to solve the flatness, horizon, and monopole
problem of the universe [28, 29], but the same reasoning can be applied to the axionic
domain wall problem. If inflation has occurred after the PQ phase transition, the cosmic
density of topological defects is wiped away, and we can simply ignore them. However, in
this scenario isocurvature fluctuations of the axion field gives some imprints on anisotropies
of cosmic microwave background (CMB) observed today [30, 31, 32, 33, 34]. This obser-
vation gives severe constraints on axion models and requires significant amounts of fine
tunings in the model parameters [35].
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Another way is to introduce a small explicit symmetry breaking term, called the bias [36,
37], which lifts the vacuum degeneracy [25, 38, 39]. In this case, domain walls collapse due
to the pressure force acting between different vacua [40]. It was pointed out that the bias
term might be found in effects of gravity [41]. If we regard the low energy field theory as
an effective theory induced by a Planck-scale physics, we expect that the global symmetry
is violated by higher dimensional operators suppressed by the Planck mass MP . This small
symmetry violating operators cause the decay of domain walls. However, in the case of PQ
symmetry, the situation is more complicated. It was argued that these Planck-scale induced
terms easily violate the PQ symmetry and cause the CP violation [42, 43, 44, 45, 46]. In
particular, the operators with dimension smaller than d = 10 are forbidden [44] by a re-
quirement of CP conservation. If it is true, the biased domain walls should be long-lived,
and disappear at late time due to the effect of highly suppressed operators.

Regarding these problems, we can consider several cosmological scenarios, which are
summarized in Fig. 1.1. Basically, there are two possibilities.

1. For sufficiently large Fa, inflation has occurred after the PQ phase transition. Let us
call it scenario I.

2. For sufficiently small Fa, inflation has occurred before the PQ phase transition. Let
us call it scenario II.

Furthermore, scenario II can be divided into two cases according to the value of domain
wall number NDW. If NDW = 1, domain walls quickly disappear after the formation (we
call it scenario IIA). On the other hand, if NDW > 1, domain walls are long-lived (we call
it scenario IIB). These different scenarios give different predictions about the cosmological
behavior of axion dark matter.

For scenario II, the total abundance of dark matter axions is given by the sum of the
coherently oscillating fields [20, 21, 22] and those produced by the decay of strings [47]
and domain walls [48]. Several groups have investigated the production of axions from
these topological defects, and there is a controversy on the estimation of the string decay
contribution. Some groups claimed that the string decay gives a significant contribution for
the dark matter abundance [49, 50, 51, 52, 53], but another group disproved it [54, 55, 56].
This controversy seems to be resolved by recent extensive numerical simulations performed
by [57, 58], concluding that the string decay gives a large contribution. However, we must
include another contribution, which comes from the decay of domain walls. Since the fate
of domain walls is relevant to the cosmological history, it is necessary to discuss the effect
of dark matter axions produced from these domain walls.

The above discussions force us to reconsider the axion cosmology in a more quantita-
tive way. In this thesis, we study these cosmological aspects of axion dark matter. The aim
of this thesis is to answer the following questions:

• How axions are produced in the early universe, and how they evolved?

• Does the axion explain dark matter of the universe? If so, what class of cosmological
scenario is possible?

In order to clarify these points, we develop some numerical methods to analyze cosmolog-
ical evolution of the axion field.
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Figure 1.1: Possible cosmological scenarios in the axion models. The history of the uni-
verse differs according to the values of Fa and NDW.

1.2 Outline of this thesis

The outline of this thesis is as follows.
In Chapter 2, we review the current status of the research of axion physics. The theoret-

ical backgrounds about the QCD axion, including the theta vacuum, Peccei-Quinn mecha-
nism, and phenomenological models are described. Then, experimental and observational
constraints on the model parameters are briefly discussed.

In Chapter 3, the cosmological behavior of axions is discussed. We introduce some
production mechanisms of dark matter axions. The relation with inflation is shortly dis-
cussed.

In Chapter 4, we explore the production of axions from topological defects. Cosmo-
logical evolution of topological defects is investigated by using field-theoretic lattice sim-
ulations. Based on the results of numerical simulations, we discuss the constraints on the
model parameters.

Finally, we make conclusions and discussion in Chapter 5.
Some of the basic formulae relevant to cosmology are summarized in Appendix A.

In Appendix B, we review field theoretical ingredients such as instantons, strings, and
domain walls. The analysis methods that we used in the numerical studies are described in
Appendix C.
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1.3 Notations
We use the unit of c = ~ = kB = 1, unless otherwise stated. The signature of the metric in
flat Minkowski spacetime is ηµν = (−,+,+,+). Four-vector is represented as xµ, where
the Greek indices take µ = 0, 1, 2, 3, and x0 is the time coordinate. Some field theoretical
expressions are described in Euclidean spacetime, which is obtained by replacing x4 = ix0

in Minkowski spacetime. The Euclidean action is given by multiplying i to the continuation
of Minkowskion action. In the Euclidean spacetime, we do not distinguish upper and lower
indices of four vector, since the sign of the metric becomes ηµν = (+,+,+,+).

In the context where the cosmic expansion is taken into account, we work in spatially
flat Friedmann-Robertson-Walker (FRW) universe with a metric

ds2 = gµνdx
µdxν = −dt2 +R2(t)[dx2 + dy2 + dz2],

where R(t) is the scale factor of the universe. We denote the cosmic time as t and the
conformal time as τ , where dτ = dt/R(t). A dot represents a derivative with respect to the
cosmic time, while a prime represents a derivative with respect to the conformal time, i.e.
˙= ∂/∂t, and ′ = ∂/∂τ . Other notations are described in Appendix A.



Chapter 2

Strong CP problem and axion

Strong CP problem is related to the non-trivial structure of the vacuum of QCD. In QCD,
we can add the following term to the Lagrangian density

Lθ = − θ̄g2

64π2
εµνρσGa

µνG
a
ρσ, (2.1)

where Ga
µν is the gluon field strength, εµνρσ is the totally antisymmetric tensor with ε0123 =

+1. This term does not affect the equation of motion and the Feynman rules since it is
given by a total derivative. However, it gives physical consequences if we consider non-
perturbative effects.

It is known that in 4-dimensional non-Abelian gauge theory there exist configurations
which keep the action finite and are localized in spacetime, called instantons. Due to the
existence of instanton configurations, we must consider the vacuum structure of a quantum
field theory in an unusual way, which is called the theta vacuum. Historically, the instanton
solutions are applied as a resolution of so called the U(1) problem of QCD [59, 60]. This
resolution of the old U(1) problem creates another problem, the strong CP problem. In
other words, strong CP problem is inevitable consequence of the existence of the theta
vacuum.

In a theta vacuum with non-zero value of θ̄, we must include the term given by Eq. (2.1)
in the path integral evaluation of a quantum process. This term violates discrete CP sym-
metry and induces neutron electric dipole moment whose magnitude is proportional to θ̄.
However, experimental results showed that this effect is extremely small, indicating the
value θ̄ . O(10−11). Since θ̄ is a dimensionless parameter of the theory, we naively expect
that its value is O(1). Hence we would like to explore a natural way to explain why θ̄ is so
small. In this sense, strong CP problem is a fine-tuning problem.

The most attractive solution of the strong CP problem was proposed by Peccei and
Quinn [11, 12]. The crucial point is to introduce a dynamical quantity which mimics θ̄
parameter and takes zero value in the low energy Lagrangian. Soon after the proposal,
it was pointed out that this dynamical variable should be identified as a light spin-zero
particle, called the axion [9, 10].

In this chapter, we review some aspects of the strong CP problem of QCD and phe-
nomenological studies of axions. First, we describe the non-trivial structure of QCD vacua
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including non-perturbative effects, and give the observational bound on the θ̄ parameter in
Sec. 2.1. The possible solution of the strong CP problem is discussed in Sec. 2.2. Then, we
briefly describe some phenomenological models of axions in Sec. 2.3, and enumerate its
properties in Sec. 2.4. We also review current status of the experimental and astrophysical
researches of axions in Sec. 2.5. Properties of instanton solutions are briefly described in
Appendix B.3.

2.1 The theta vacuum
Because of the existence of instanton solutions in the SU(3) gauge field theory, we char-
acterize the vacuum of QCD by the Pontryagin index [see Eq. (B.25)]

|n〉, n : integers. (2.2)

The |n〉 vacuum corresponds to the instanton configuration which has the Pontryagin index
ν = n. It turns out that this vacuum is not invariant under the gauge transformation.
For example, under a gauge transformation G1 corresponding to the homotopy class with
ν = 1, the gauge field configuration with n = 0 transforms into that with n = 1

Aµ|0
G1−→ − i

g
(∂µU1)U

−1
1 = Aµ|1, (2.3)

where Aµ|0 and Aµ|1 are gauge field configurations with n = 0 and n = 1, respectively,
and U1 is an element of the gauge group which belongs toG1. This feature is justified since
we can continuously deform Aµ|0 into zero by using a gauge transformation corresponding
to the homotopy class with n = 0. Equation (2.3) implies that the |0〉 vacuum changes into
|1〉 under G1. In general, the |n〉 vacuum changes into |n+m〉 under Gm which is a gauge
transformation corresponding to the homotopy class with ν = m

|n〉 Gm−−→ |n+m〉. (2.4)

One can show it by using the additive property of winding number given by Eq. (B.18).
Since |n〉 is not gauge invariant, we must seek a more proper vacuum. Such a vacuum

can be constructed as a linear combination of |n〉 vacua

|θ〉 =
∞∑

n=−∞

einθ|n〉, (2.5)

which is called the theta vacuum. Using Eq. (2.4), we see that |θ〉 only changes its complex
phase under a gauge transformation

Gn|θ〉 = e−inθ|θ〉, (2.6)

and hence observables are gauge invariant. Note that θ is a periodic quantity

|θ〉 = |θ + 2π〉. (2.7)
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Consider the transition amplitude between |n〉 vacua

〈n|e−Ht|m〉 =

∫
DA|n−m exp

[
−
∫
d4xL

]
, (2.8)

where DA|n−m indicates a functional integration over configurations with winding number
n−m, and the functional integral is performed in the 4-dimensional Euclidean spacetime.
Using the fact that

∞∑
n=−∞

e−in(θ′−θ) = δ(θ′ − θ), (2.9)

we obtain the transition amplitude between theta vacua

〈θ′|e−Ht|θ〉 =
∑
n′

∑
n

e−i(n′θ′−nθ)〈n′|e−Ht|n〉

=
∑
n′

e−in′(θ′−θ)
∑

q

∫
DA|q exp

[
−iqθ −

∫
d4L

]
= δ(θ′ − θ)

∫
DA exp

[
−
∫
d4x(L + Lθ)

]
, (2.10)

where q = n′ − n and
∫
d4xLθ = iqθ. Equation (2.10) indicates that there is no transition

between different theta vacua and hence |θ〉 is a good vacuum. In the Minkowski space, Lθ

leads the effective interaction

Lθ = −θ g2

32π2
GaµνG̃a

µν , (2.11)

which follows from Eq. (B.25). Here, G̃a
µν is the dual of Ga

µν , defined by

G̃a
µν =

1

2
εµνρσG

aρσ. (2.12)

The introduction of instanton solutions solved the old U(1) problem of QCD [59, 60].
In QCD, there is global SU(2)L ×SU(2)R flavor symmetry which arises as a consequence
of the smallness of u and d quark masses. This chiral SU(2)L × SU(2)R symmetry is
spontaneously broken due to the strong dynamics of QCD, and pions π are regarded as
Goldstone bosons associated with the break down of this global symmetry. In addition to
this chiral symmetry, there is U(1)A symmetry under which u and d quarks transform as

u→ exp(iγ5α), d→ exp(iγ5α)d, (2.13)

where α is an arbitral parameter. The spontaneous breaking of the U(1)A symmetry
predicts another Goldstone boson, which might be identified as η′ meson. Since global
SU(2)L × SU(2)R and U(1)A symmetries become exact only in the massless quark limit,
Goldstone bosons acquire small masses due to the finiteness of quark masses.

The problem is that the observed mass of the η′ meson is too large if we regard it as
a Goldstone boson associated with U(1)A symmetry. In particular, the explicit calculation
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gives an upper bound on the η′ meson mass mη′ <
√

3mπ [61], where mπ ≈ 140MeV
is the pion mass. Such a light strongly interacting particle has not been observed in any
experiments.

This U(1) problem can be solved if we admit the existence of instanton solutions. Under
the global U(1)A transformation

qf → q′f = exp(iγ5αf/2)qf , (2.14)

which acts on each of quark fields qf with a flavor index f , the measure for path integrals
over quark fields qf changes due to the anomaly [62, 63]

DqfDq̄f → DqfDq̄f exp

[
− ig2

32π2

∑
f

αf

∫
d4xGaµνG̃a

µν

]
. (2.15)

In the absence of instantons, the integrand Ga
µνG̃

a
µν in Eq. (2.15) has no effect on observ-

ables since it is a total derivative whose integral vanishes for a trivial gauge field configura-
tion. However, this integral does not vanish due to the existence of the instanton solution.
From Eq. (B.25), we find

g2

32π2

∑
f

αf

∫
d4xGaµνG̃a

µν = ν
∑

f

αf , (2.16)

which does not vanish for ν 6= 0. In this sense, we regard that U(1)A is violated due
to the anomaly. Therefore, the theory does not contain U(1)A symmetry, and there is no
Goldstone boson associated with this symmetry.

Although the U(1) problem was solved due to the existence of instantons, it posed
another problem. Since we are living in one of the vacua parametrized by θ, as shown in
Eq. (2.10), we must add a term (2.11) in the Lagrangian density, which violates a discrete
CP symmetry if θ 6= 0. Note that the chiral transformation (2.15) is equivalent to the shift
in the value of θ

θ → θ +
∑

f

αf . (2.17)

On the other hand, when we write down the quark mass terms

Lm = −1

2

∑
f

mf q̄f (1 + γ5)qf −
1

2

∑
f

m∗
f q̄f (1 − γ5)qf , (2.18)

where we assume that the quark mass matrix mf is already diagonalized, the transforma-
tion (2.14) leads to the change in the phase of the quark mass

mf → exp(iαf )mf . (2.19)

Then, the following quantity is invariant under the transformation (2.14)

exp(−iθ)
∏
f

mf . (2.20)
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Let us define the quantity
θ̄ = θ + θweak, (2.21)

where θweak = −Arg(
∏

f mf ). If we use a basis in which all quark masses are taken to be
real, the CP violating effect is induced as a quantity proportional to θ̄, rather than θ.

The effect of CP violation would be observed as the neutron electric dipole moment
(NEDM) [64]. The interaction between the spin S of a non-relativistic neutron and external
electromagnetic fields E and B can be written as

H = −µnB · S

S
− dnE · S

S
. (2.22)

Since the term E · S is odd under the time-reversal symmetry T, the non-zero value of dn

implies the violation of T symmetry, or the violation of CP symmetry. The QCD θ term
contributes to the NEDM, which is estimated as [14]

|dn| = 4.5 × 10−15θ̄ecm. (2.23)

On the other hand, the recent experimental bound on the NEDM gives |dn| < 2.9 ×
10−26ecm [65], which requires

θ̄ < 0.7 × 10−11. (2.24)

It should be emphasized that the NEDM bound (2.24) constrains the magnitude of θ̄,
rather than θ. We must require that the sum of θ and θweak is smaller than O(10−11). The
origin of θweak is the phase of the quark masses. In the standard model, the quark masses are
determined from the Yukawa coupling between quarks and Higgs boson when the Higgs
boson acquires a vacuum expectation value and the electroweak symmetry is spontaneously
broken. Hence, the value of θweak is related to the dynamics of the electroweak theory. On
the other hand, the value of θ parametrizes the QCD vacua. Eqs. (2.21) and (2.24) imply
that two quantities, which come from completely different physics, should cancel out in
the precision of O(10−11). That is the mystery calling for an explanation.

2.2 The Peccei-Quinn mechanism

Peccei and Quinn proposed the theory which naturally explains the smallness of θ̄ [11, 12].
The essence of their idea is threefold: (1) Introduce a field a, which we call the axion field.
(2) Assume that there exists a global U(1) axial symmetry, which we call the Peccei-Quinn
(PQ) symmetry U(1)PQ, and that this U(1) symmetry is spontaneously broken at some
energy scale higher than the QCD scale ΛQCD ≈ O(100)MeV. (3) Impose appropriate PQ
charges into quarks so that there exists U(1)PQ-SU(3)c-SU(3)c anomaly.

The dynamical degree of freedom a can be identified as a Goldstone boson associated
with the spontaneous breaking of U(1)PQ symmetry [9, 10]. The U(1)PQ symmetry acts
as a shift in a field

U(1)PQ : a→ a+ εη, (2.25)
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where ε is an arbitrary constant parameter, and η is the energy scale of the spontaneous
U(1)PQ symmetry breaking. According to the assumption (3), the U(1)PQ current is not
conserved due to the anomaly

∂µjPQ
µ = − g2

32π2
AGaµνG̃a

µν , (2.26)

where A is a constant determined by the charge assignment of the model. This implies that
the Lagrangian should transform under (2.25) as

δL = − g2

32π2
εAGaµνG̃a

µν . (2.27)

Then, the low energy effective Lagrangian can be written as

Leff = −1

4
GaµνGa

µν −
1

2
∂µa∂

µa− g2

32π2

a

Fa

GaµνG̃a
µν −

θ̄g2

32π2
GaµνG̃a

µν + . . . , (2.28)

where dots correspond to the possible terms which contain the derivative of a, and

Fa =
η

A
(2.29)

is called the axion decay constant. Equation (2.28) shows that the observable theta param-
eter θ̄eff is determined by the value of the axion field

θ̄eff =
a

Fa

+ θ̄. (2.30)

If there is no CP violating term except for the term proportional to θ̄eff = a/Fa + θ̄,
the effective potential for the axion field is minimized at θ̄eff = 0, and hence the strong CP
problem is solved. We can confirm this statement by using the following arguments [66].
The effective potential V (a) for the axion field is obtained by integrating out the gluon field
in the path integral1

exp

{
−
∫
d4xV (a)

}
=

∫
DA exp

{
−
∫
d4x

[
1

4
Ga

µνG
a
µν + i

g2

32π2

a+ θ̄Fa

Fa

Ga
µνG̃

a
µν

]}
,

(2.31)

where, we ignored the kinetic energy of the axion field. Using the Schwarz inequality, we
find

exp

{
−
∫
d4xV (a)

}
=

∣∣∣∣∫ DA exp

{
−
∫
d4x

[
1

4
Ga

µνG
a
µν + i

g2

32π2

a+ θ̄Fa

Fa

Ga
µνG̃

a
µν

]}∣∣∣∣
≤
∫

DA
∣∣∣∣exp

{
−
∫
d4x

[
1

4
Ga

µνG
a
µν + i

g2

32π2

a+ θ̄Fa

Fa

Ga
µνG̃

a
µν

]}∣∣∣∣
=

∫
DA exp

{
−
∫
d4x

1

4
Ga

µνG
a
µν

}
= exp

{
−
∫
d4xV (a = −θ̄Fa)

}
.

1Here, we compute the path integral in the Euclidean spacetime.
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Therefore, ∫
d4xV (a) ≥

∫
d4xV (a = −θ̄Fa). (2.32)

We get dynamically the CP conserving value θ̄eff = a/Fa + θ̄ = 0 as a minimum of the
effective potential for the axion field.

Let us redefine the axion field a→ a+ θ̄Fa, and rewrite θ̄eff as θ̄. Then, we obtain

θ̄ =
〈a〉
Fa

= 0. (2.33)

Since θ̄ has a periodicity by 2π, 〈a〉 = 2πFak (k is an integer) are also the minima of the
potential. Figure 2.1 shows the form of the effective potential for the axion field. Since
the potential is generated by integrating out the gluon field, the height of the potential is
roughly given by the QCD scale ∼ Λ4

QCD. Whether the multiple vacua are identical or not
is determined by the construction of the model, which will be discussed in the following
sections.

Figure 2.1: The form of the effective potential for θ̄.

2.3 Phenomenological models of the axion

In this section, some explicit models of the axion are shortly reviewed. As we discussed in
the previous section, the presence of the QCD anomaly is necessary to induce the axion po-
tential whose minimum is located at θ̄ = 0. This requires some extensions of the standard
model and arrangement of the U(1)PQ multiplet appropriately.
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2.3.1 The original PQWW model
The original model of the axion was proposed by Weinberg and Wilczek [9, 10], based on
the idea of Peccei and Quinn [11, 12]. This is called the Peccei-Quinn-Weinberg-Wilczek
(PQWW) model, or the “visible” axion model. In this model, the axion field is identified
as a phase direction of the standard model Higgs field. It is necessary to introduce two (or
more) Higgs doublets, since the axion degree of freedom does not exist in the theory with
single Higgs doublet.

Let us denote two Higgs doublets as ϕ1 and ϕ2. We assign U(1)PQ charges Γ1 and Γ2

to Higgs doublets and quarks such that

U(1)PQ :

ϕ1 → eiεΓ1ϕ1, ϕ2 → eiεΓ2ϕ2,

uL → eiεΓ2/2uL, uR → e−iεΓ2/2uR,

dL → eiεΓ1/2dL, dR → e−iεΓ1/2dR, (2.34)

where ε is an arbitrary constant parameter. The Yukawa couplings for quarks become

Ly = −yuq̄Lϕ2uR − ydq̄Lϕ1dR + h.c. (2.35)

Both PQ symmetry and electroweak symmetry are spontaneously broken when two
Higgs doublets acquire the vacuum expectation values

〈ϕ0
1〉 = v1, 〈ϕ0

2〉 = v2, v =
√
v2

1 + v2
2 = 247GeV, (2.36)

where ϕ0
1 and ϕ0

2 are the neutral component of ϕ1 and ϕ2, respectively. One of two linear
combinations of the phases becomes a degree of freedom h which is absorbed by Z boson,
and another degree of freedom becomes the axion

ϕ0
1 = v1 exp

(
x
a

v
− 1

x

h

v

)
, ϕ0

2 = v2 exp

(
1

x

a

v
+ x

h

v

)
, (2.37)

x ≡ v2/v1 = (Γ1/Γ2)
1/2 . (2.38)

The mass of the axion was estimated by using current algebra [67], and chiral La-
grangian approach [68]. Here, we quote their result,

ma = Ng

(
1

x
+ x

) √
Z

1 + Z

Fπmπ

v
' 74

(
1

x
+ x

)
keV, (2.39)

where Ng is the number of quark generations, Fπ ' 93MeV is the pion decay constant,
and Z = mu/md is the ratio between the up quark mass and the down quark mass. We
used Ng = 3 and Z ' 0.48 [14] in the last equality.

The PQWW axion is visible, in the sense that it predicts observable signatures in the
laboratory experiments. However, the theoretical predictions of the PQWW axion contra-
dict with experimental limits on the branching ratio of J/Ψ and Υ decay [69], and K+
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decay [70]. Some other experiments such as nuclear deexcitations, reactor experiments,
beam dump experiments also disfavored the prediction of the PQWW model [15]. These
results seemed to rule out the original PQWW model. Later, some variant models which
avoid J/Ψ and Υ decay constraints were proposed [71, 72], but these models were also
excluded by the π+ decay experiments [73] and the electron beam dump experiments [74].

2.3.2 The invisible axion
It was pointed out that the problem of the original PQWW model can be avoided, if the
PQ symmetry is broken at some energy scale η, which is higher than the electroweak scale
v = 247GeV, since the couplings of axions with other particles are suppressed by 1/η [16].
This fact motivates the “invisible” axion model. In this model, the axion is not the phase
direction of the standard model Higgs doublet. We must introduce a SU(2)L × U(1)Y

singlet scalar field, whose phase would be identified as the axion.
Let us denote the SU(2)L×U(1)Y singlet scalar field as Φ, and call it the Peccei-Quinn

field. Under the U(1)PQ transformation, it changes as 2

U(1)PQ :

Φ → eiεΦ. (2.40)

If we impose the potential for Φ

V (Φ) =
λ

4
(|Φ|2 − η2)2, (2.41)

the PQ field acquires the vacuum expectation value |〈Φ〉| = η, and the axion field is iden-
tified as a phase direction Φ ∝ exp(ia/η). Experimental constraints can be avoided if η is
sufficiently larger than the electroweak scale.

The PQ field Φ cannot have direct couplings with standard model quarks, since they
become heavy when Φ acquires the vacuum expectation value. In order to obtain the QCD
anomaly, we must introduce additional fields to the standard model sector. Here, we enu-
merate two known examples.

The KSVZ model

In the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [16, 17], the QCD anomaly is
obtained by introducing a heavy quark Q, which has a Yukawa coupling with the PQ field

LQ = −yQQ̄LΦQR + h.c. (2.42)

Under the U(1)PQ symmetry, the heavy quark transforms as

U(1)PQ :

QL → e+iε/2QL, QR → e−iε/2QR. (2.43)

In this model, only Φ and Q are charged under U(1)PQ. In particular, the axion does not
interact with electrons. Such a model is called the “hadronic axion” model [75].

2Here, we choose the PQ charge of Φ to be unity. Alternatively, one can assign the PQ charge QΦ such
that Φ → eiQΦεΦ, a → a + Faε, and Fa = QΦη.
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The DFSZ model

The Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model [18, 19] realizes the QCD anomaly
without introducing a heavy quark. The trick is to assume two standard model Higgs dou-
bletsϕ1 andϕ2. Light quarks directly couple toϕ1 andϕ2 through the Yukawa terms (2.35),
but do not to the PQ field Φ. The PQ field couples with two Higgs doublets through the
scalar potential

V (ϕ1, ϕ2,Φ) =
λ1

4
(ϕ†

1ϕ1 − v2
1)

2 +
λ2

4
(ϕ†

2ϕ2 − v2
2)

2 +
λ

4
(|Φ|2 − η2)2

+ (aϕ†
1ϕ1 + bϕ†

2ϕ2)|Φ|2 + c(ϕ1 · ϕ2Φ
2 + h.c.) + d|ϕ1 · ϕ2|2 + e|ϕ†

1ϕ2|2.
(2.44)

The Lagrangian is invariant under the PQ symmetry transformation

U(1)PQ :

ϕ1 → e−iεϕ1, ϕ2 → e−iεϕ2,

uL → uL, uR → e+iεuR,

dL → dL, dR → e+iεdR, (2.45)

together with (2.40). The axion field is a linear combination of the phases of three scalar
fields ϕ0

1, ϕ0
2 and Φ.

2.4 Properties of the invisible axion
Since the PQWW model was experimentally ruled out, hereafter we will concentrate on
invisible axions. In this section, we quote some formulae which describe properties of the
invisible axion.

2.4.1 Mass and potential
The standard Bardeen-Tye estimation for the axion mass (2.39) is also applicable to the
invisible axion

ma =

√
Z

1 + Z

Fπmπ

Fa

' 6 × 10−6eV

(
1012GeV

Fa

)
, (2.46)

where we used mπ ' 140MeV, Fπ ' 93MeV, and Z ' 0.48. As we will see in the next
section, astrophysical and cosmological observations imply Fa ∼ 109-1012GeV. Hence,
the axion has a tiny mass ma ∼ 10−6-10−3eV.

In Sec. 2.2, we see that the axion potential (or mass) is generated due to the QCD effect.
This means that the axion becomes massless in the limit where the QCD effect becomes
negligible, or in other words, the chiral symmetry is restored. This occurs when the tem-
perature of the universe exceeds the QCD scale ∼ ΛQCD ' O(100)MeV. Hence, the axion
mass depends on the temperature T , if the temperature is sufficiently high (T & ΛQCD). In
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order to estimate the finite temperature axion mass, it is necessary to investigate the non-
perturbative effect of QCD in the quark-gluon plasma with finite temperature. This subject
has been discussed by several authors [76, 77, 78]. Recently, Wantz and Shellard [79]
presented the temperature dependence of ma which is valid at all temperatures within the
interacting instanton liquid model (IILM) [80]. Fitting the numerical result, they obtained
the power-law expression for ma(T )

ma(T )2 = cT
Λ4

QCD

F 2
a

(
T

ΛQCD

)−n

, (2.47)

where n = 6.68, cT = 1.68 × 10−7. Here, ΛQCD is determined by solving the self-
consistency relation for the chiral condensate 〈q̄q〉 in the IILM [81]. This procedure gives
ΛQCD ≈ 400MeV with an overall error of 44MeV. The fitting formula (2.47) is obtained
for ΛQCD = 400MeV. The power-law expression (2.47) should be cut off by hand once it
exceeds the zero-temperature value ma(T = 0), where

ma(0)2 = c0
Λ4

QCD

F 2
a

, (2.48)

and c0 = 1.46 × 10−3. In this thesis, we use Eqs. (2.47) and (2.48) as the expression for
the axion mass.

Let us comment on the form of the potential for the axion field. As described in
Eq. (2.31), the effective potential for the axion field is given by the functional integral

Z = exp {−V4V (a)} =

∫
DAdet(γµDµ +m) exp(−Sg − Sa-g), (2.49)

where V4 is the volume of 4-dimensional Euclidean spacetime, γµ is Dirac matrices, Dµ is
the gauge covariant derivative acting on the quark fields, and Sg and Sa-g are actions for
gluon fields and axion-gluon interaction term, respectively. Here, we included the quark
determinant det(γµDµ + m) which was dropped in Eq. (2.31) for simplicity. Then, the
axion mass is defined by

m2
a ≡ ∂2V (a)

∂a2

∣∣∣∣
a=0

. (2.50)

At zero temperature, the partition function (2.49) can be computed analytically through
the dilute gas approximation [59]

Z =
∑
n,n̄

1

n!n̄!
V n+n̄

4 Zn+n̄
I exp

(
iθ̄(n− n̄)

)
, (2.51)

where θ̄ = a/Fa, and ZI is the contribution from single instanton configuration

ZI =
∫
dρn(ρ), (2.52)

n(ρ) = ρb−5Λb
QCD

(
8π2

g2

)2Nc

CNc

∏NF

f=1 det(γµDµ +mf ), (2.53)

b = 11
3
Nc − 2

3
NF , CNc = 0.466 exp(−1.679Nc)

(Nc−1)!(Nc−2)!
. (2.54)



17

Here, Nc is the color number, and NF is the number of fermions. From Eq. (2.51), it is
straightforward to obtain the potential for the axion field

V (a) = −2

∫
dρn(ρ) cos

(
a

Fa

)
. (2.55)

Combined with Eq. (2.50), we can write it as

V (a) = m2
aF

2
a

{
1 − cos

(
a

Fa

)}
, (2.56)

where we redefined the vacuum such that V (a) = 0 at a = 0.
The dilute gas approximation can also be used at high temperature T � ΛQCD where

perturbative calculation remains valid, and one can derive cosine type potential (2.55) mul-
tiplied by the temperature dependent correction factor [76]. However, it is non-trivial to
calculate the form of V (a) in the intermediate regime, where the perturbative calculation
cannot be applied. In principle, it is possible to obtain exact form of V (a) by comput-
ing (2.49) in the lattice, but there are technical difficulties to execute it. For now, we sim-
ply use the axion potential at finite temperature by replacing m2

a in Eq. (2.56) with ma(T )2

given by Eq. (2.47). This approximation is not out of touch with reality, at least for the
estimation of the height of the potential, since the formula (2.47) is motivated by the IILM,
which holds in the intermediate regime between zero temperature and high temperature.

If there exist other CP violating terms in the Lagrangian, the form of the potential would
be modified. Indeed, weak interactions slightly violate CP [82], which shifts the value of
θ̄ from zero. However, it was argued that this effect is extremely small compared with the
bound on θ̄ given by Eq. (2.24) [83]. Therefore we can safely neglect the weak CP violating
contribution for the potential V (a).

Other possible source of the CP violation is the contribution from gravity. It was
pointed out that the gravitational effect coming from Planck scale physics easily violates
CP symmetry [42, 43, 44, 46, 45]. Taking account of this contribution, we express the full
potential for the axion field as

Vfull(a) = VQCD(a) + Vgrav(a), (2.57)

where VQCD(a) is given by Eq. (2.56). The form of Vgrav(a) is unknown, as we might
not have a comprehensive theory to deal with Planck scale physics. Here, we just assume
that Vgrav(a) is negligible compared with VQCD(a) so that the axion mass is determined
by VQCD(a).3 However, the existence of Vgrav(a) would play a role in cosmology, and
we can constrain the magnitude of Vgrav(a) by cosmological consideration, which will be
discussed in Chapter 4.

2.4.2 Coupling with other particles
The interactions of the invisible axion with other particles were discussed in detail in [75,
85]. Axions interact with photons due to the coupling

Laγγ = −gaγγ

4
aF µνF̃µν , (2.58)

3Some mechanisms to suppress Vgrav(a) were discussed in [84].
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where F µν is the photon field strength, F̃µν ≡ 1
2
εµνλσF

λσ is the dual of it. The magnitude
of the axion-photon coupling is parametrized by

gaγγ ≡ α

2πFa

caγγ , (2.59)

where α = e2/4π is the fine structure constant. The numerical coefficient caγγ is given by

caγγ =
E

A
− 2

3

4 + Z

1 + Z
, (2.60)

whereA is the color anomaly appearing in Eq. (2.26), andE is the electromagnetic anomaly.
E/A = 0 in the KSVZ model, while E/A depends on the charge assignment of leptons in
the DFSZ model [86].

Axions also have interactions with fermions

Lajj = −iCjmj

Fa

aψ̄jγ5ψj, (2.61)

where ψj is the fermion field, mj is its mass, and Cj is a numerical coefficient whose
value depends on models. In hadronic axion models such as KSVZ model, axions do not
have tree level couplings to leptons. On the other hand, in DFSZ model, axions interact
with electrons so that Ce = cos2 β/Ng, where tan β = v1/v2 is the ratio of two Higgs
vacuum expectation values, and Ng is the number of generations (Ng = 3 for the standard
model). The interaction coefficient with proton Cp and neutron Cn are calculated in [87,
88], but they contain some uncertainties which mainly come from the estimation of the
quark masses.

Due to the coupling with photons, the axion would decay into two photons with a rate

Γγ =
g2

aγγm
3
a

64π
=

α2

256π3
c2aγγ

m3
a

F 2
a

' 2.2 × 10−51sec−1

(
1012GeV

Fa

)5

, (2.62)

where we used Eq. (2.46) and caγγ = 1 for simplicity. The lifetime of the axion exceeds
the age of the universe t0 ' 1017sec for Fa & 105GeV. Hence the invisible axion is almost
stable, which motivates us to consider it as the dark matter of the universe.

2.4.3 Domain wall number
In Sec. 2.2, we showed that the potential for the axion field has minima at θ̄ = a/Fa = 2πk,
where k is an integer. This occurs because of the periodicity of θ̄, but the observed value
of θ̄ vanishes at each minimum since the period of θ̄ is 2π. On the other hand, in general
the field a itself can have a periodicity greater than 2πFa. If a has a periodicity 2πNDWFa,
where NDW is an integer, there exist NDW degenerate vacua in the theory. In other words,
the degeneracy of vacua is defined as

NDW ≡ (periodicity of a)

2πFa

. (2.63)
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If NDW is greater than unity, the theory has ZNDW
discrete symmetry, in which the axion

field transforms as

a→ a+ 2πkFa, k = 0, 1, . . . , NDW − 1. (2.64)

This ZNDW
symmetry is spontaneously broken when the axion field acquires the vacuum

expectation value, leading to the formation of domain walls (see Appendix B.5). In this
sense, we call NDW the domain wall number.

For the class of invisible axion models with single SU(2)L×U(1)Y singlet scalar field,
the value of NDW is easily obtained. Since the axion field a is identified as the phase
direction of the complex scalar field Φ such that

Φ = η exp

(
i
a

η

)
, (2.65)

a has a periodicity 2πη. Hence, from Eqs. (2.29) and (2.63), we see that the domain wall
number is determined by the color anomaly [25, 26, 13]

NDW =
η

Fa

= A

=

∣∣∣∣∣2∑
i=L

TrQPQ(qi)T
2
a (qi) − 2

∑
i=R

TrQPQ(qi)T
2
a (qi)

∣∣∣∣∣ , (2.66)

where QPQ(qi) is the U(1)PQ charge for quark species qi,
∑

i=L(R) represents the sum over
the left(right)-handed fermions, and Ta are the generators of SU(3)c normalized such that
TrTaTb = Iδab where I = 1/2 for fundamental representation of SU(3)c. In the KSVZ
model we obtain NDW = 1 if there is single heavy quark Q, while in the DFSZ model it is
predicted that NDW = 2Ng where Ng is the number of generations.

As we discuss in Chapter 3 and 4, the cosmological scenario is different between mod-
els with NDW = 1 and NDW > 1. We will see that the model with NDW > 1 is more
harmful than that with NDW = 1.

2.5 Search for the invisible axion
There are three ways to search for the invisible axion. The first way is to directly detect
it by means of the laboratory experiments. The second way is to indirectly observe it in
the astronomical objects. The third way is to constrain its properties from cosmology.
Although the main topic of this thesis is cosmological aspects of the axion (the third one),
we briefly summarize the constraints obtained in other research activities.

2.5.1 Laboratory searches
Axion helioscopes

Axion produced in the sun would be directly detected by the axion “helioscopes”. Due
to the axion-photon coupling (2.58), axions can convert into photon in the presence of the
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strong magnetic field. This gives a signal in the X-ray detector, or the null detection gives
a bound on the axion-photon coupling gaγγ . The Tokyo Axion Helioscope [89] gives a
bound gaγγ < 6 × 10−10 for ma < 0.03eV. Recently, it is improved to obtain a bound
gaγγ < (5.6-13.4) × 10−10GeV−1 in the mass region 0.84eV < ma < 1.00eV [90]. Phase
I of the CERN Axion Solar Telescope (CAST) [91] gives gaγγ < 8.8 × 10−11GeV−1 for
ma . 0.02eV. It is improved in Phase II [92] as gaγγ < 2.2×10−10GeV−1 forma . 0.4eV.
The sensitivity is expected to be improved up to gaγγ < few × 10−12GeV−1 in the next
generation helioscopes [93, 94].

Microwave receiver detectors

Sikivie [95, 96] proposed the experimental methods to detect axions distributed in the
galactic halo (the axion “haloscopes”). The detection of galactic halo axions is possible by
means of the resonant signal in the microwave cavity [97]. Using this technique, the Axion
Dark Matter Experiment (ADMX) at Lawrence Livermore National Laboratory (LLNL)
excludes KSVZ axions in the mass range 1.9 × 10−6eV < ma < 3.53 × 10−6eV [98].
However, it was also pointed out that this exclusion limit would be avoided due to the
uncertainty in the value of Z = mu/md [99].

Bragg diffraction scattering

Another technique to detect solar axions was proposed by [100]. This uses the crys-
tal, in which axions convert into X-rays due to the atomic electric field. If the scatter-
ing angle of X-ray photon satisfies the Bragg’s condition, the signal would be enhanced
enough to observe. Some groups give constraints on the axion-photon coupling by us-
ing this detection technique. COSME [101] uses germanium detectors and gives a bound
gaγγ < 2.78 × 10−9GeV−1. SOLAX [102] also uses germanium detectors and gives
gaγγ < 2.7 × 10−9GeV−1. TEXONO [103] uses germanium detectors, but the nuclear
power reactor as a source of axions. They gives gaγγg

1
aNN < 7.7 × 10−9GeV−2 for

ma . 105eV, where g1
aNN is the isovector axion-nucleon coupling. DAMA [104] uses

NaI detectors and gives a bound gaγγ < 1.7 × 10−9GeV−1.

Photon regeneration

Photon regeneration experiments [105] also constrain the axion-photon coupling. These
experiments are based on the light signal propagating toward the absorber wall. Some
photons convert into axions due to the external magnetic field, passing through the wall.
These axions reconvert into photons after passing the wall, making a signal in the detector.
Recently, several groups have started this kind of experiments. PVLAS reported some
signatures [106], but they are excluded by subsequent experiments. The null detection of
the signal gives an upper bound on the axion-photon coupling. The BMV experiment [107]
gives a bound gaγγ < 1.6 × 10−6GeV−1. The GammeV experiment [108] improves this
bound up to gaγγ < 3.5 × 10−7GeV−1. Finally, ALPS [109] reports a constraint gaγγ <
(6 − 7) × 10−8GeV−1. These constraints are applicable to axion mass ma . 10−3eV.
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2.5.2 Astrophysical bounds

The sun

The energy loss arguments in the sun give some constraints on the axion coupling pa-
rameters. The energy loss by solar axion emission requires enhanced nuclear burning
and increases solar 8B neutrino flux. The observation of 8B neutrino flux gives a bound
gaγγ . 7 × 10−10GeV−1 [110, 111]. The solar neutrino flux constraint can also be applied
to the axion-electron coupling, giving gaee < 2.8× 10−11, where gaee ≡ Ceme/Fa, and me

is the electron mass.

Globular cluster

The observations of globular clusters give another bound. The helium-burning lifetimes
of horizontal branch (HB) stars give a bound for axion-photon coupling gaγγ . 0.6 ×
10−10GeV−1 [112]. Furthermore, the delay of helium ignition in red-giant branch (RGB)
stars due to the axion cooling gives gaee < 2.5 × 10−13 [113].

Supernova 1987A

From the energy loss rate of the supernova (SN) 1987A [114], one can constrain the axion-
nucleon coupling. For a small value of the coupling, the mean free path of axions becomes
larger than the size of the SN core (so called the “free streaming” regime). In this regime,
the energy loss rate is proportional to the axion-nucleon coupling squared, and one can
obtain the limit Fa & 4 × 108GeV [115]. On the other hand, for a large value of the
coupling, axions are “trapped” inside the SN core. In this regime, by requiring that the
axion emission should not have a significant effect on the neutrino burst, one can obtain
another bound Fa . O(1) × 106GeV [116]. However, in this “trapped” regime, it was
argued that the strongly-coupled axions with Fa . O(1) × 105GeV would have produced
an unacceptably large signal at the Kamiokande detector, and hence they were ruled out
[117].

White dwarfs

The axion-electron coupling is constrained by the observation of white-dwarfs. The cool-
ing time of white-dwarfs due to the axion emission gives a bound gaee < 4 × 10−13 [118].
Recently, it is reported that the fitting of the luminosity function of white-dwarfs is im-
proved due to the axion cooling, which implies the axion-electron coupling gaee '(0.6-
1.7)×10−13 [119, 120]. Also, observed pulsation period of a ZZ Ceti star can be explained
by means of the cooling due to the axion emission, if gaee '(0.8-2.8)×10−13 [121, 122].
These observations might imply the existence of the meV mass axion, but require further
discussions.



22

Telescopes

The axion with mass ma ∼ O(1)eV in galaxy clusters makes a line emission due to the
decay into two photons, whose wavelength is λa ' 24800Å/[ma/1eV]. This line emission
gives observable signature in telescopes [123, 124, 125]. Such a line has not been observed
in any telescope searches, which excludes the mass range 3eV . ma . 8eV.

2.5.3 Cosmology
Hot dark matter

There is a parameter region aroundFa ∼ 106GeV, called the “hadronic axion window” [126],
that is not excluded by observations. This occurs due to the ambiguity in light quark masses
Z = mu/md which leads to the cancellation between E/A and 2(4 + Z)/3(1 + Z) in the
axion-photon coupling (2.60) for the KSVZ model. In such a case, the astrophysical bounds
on gaγγ do not significantly constrain the value of Fa. However, in this parameter region,
the axion becomes a candidate of hot dark matter [127], which can be constrained by ob-
servation of the large scale structure. The analysis in [128] gives a bound ma < 1.05eV,
which corresponds to Fa > 5.7×106GeV. This bound is improved by using WMAP7 data
in [129], pushing up to ma < 0.72eV or Fa > 8.6 × 106GeV. Therefore, this hot dark
matter scenario seems to be excluded.

Cold dark matter

In chapter 3, we will see that the invisible axion with a large value of Fa can be good
candidate of cold dark matter. In this case, cosmological considerations place a limit on
the axion density in the universe. The result of WMAP7 [6] implies the matter density of
the present universe ΩCDMh

2 = 0.11 [see Eq. (A.8)]. By requiring that the present axion
density Ωah

2 = ρa(t0)h
2/ρc,0 should not exceed the present matter abundance

Ωah
2 ≤ ΩCDMh

2 = 0.11, (2.67)

we obtain the upper bound on the energy density of cosmic axions, or the axion decay
constant Fa. The simple discussion gives Fa . 1012GeV [20, 21, 22]. We will give more
extensive study in chapter 4.

2.5.4 Summary – The axion window
From various research activities, we have constrained the property of invisible axions.
Aside from some numerical uncertainties in the coefficients such as caγγ , all constraints
would be translated into the bound on single parameter, the axion decay constant Fa, since
all axion couplings are inversely proportional to Fa. The most stringent bound comes from
the SN 1987A [115], which places the lower limit

Fa > 4 × 108GeV. (2.68)
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If Fa is smaller than this value, the burst duration becomes inconsistent with the energy
loss due to axions. Furthermore, if Fa is smaller than Fa ' O(1) × 105GeV, SN axions
would give too much signals in the Kamiokande detector, and hence it is ruled out [117].
The intermediate region Fa ∼ 106GeV between these two bounds is not excluded from
the observation of SN, but the globular cluster [112] gives another bound gaγγ . 0.6 ×
10−10GeV−1, which corresponds to Fa/caγγ & 2× 107GeV. This bound might be avoided
if we tune the value of caγγ [126, 127], but in this case the axion becomes hot dark matter,
which is excluded by the observation of the large scale structure [128, 129]. Hence in the
following we take Eq. (2.68) as an universal lower bound on Fa. Note that the estimation
of the axion emission rate suffers from various numerical uncertainties which may modify
the bound by a factor of O(1) [115].

Above the bound (2.68), the ADMX experiments [98] exclude the KSVZ axion in the
region 1.9 × 10−6eV < ma < 3.53 × 10−6eV, which corresponds to 1.7 × 1012GeV <
Fa < 3.2× 1012GeV. However, it is possible to avoid this constraint due to the uncertainty
in the value of Z [99].

The cosmological axion density gives an upper bound on Fa [20, 21, 22]. Combined
with the lower bound (2.68), we obtain the “classic axion window”

4 × 108GeV < Fa < 1012GeV. (2.69)

However, this upper bound contains large uncertainties. The problem is that the value
of Ωah

2 in Eq. (2.67) strongly depends on the cosmological scenarios. In particular, the
occurrence of the inflationary expanding stage and the formation of topological defects
completely change the nature of the axion dark mater. The rest part of this thesis is devoted
on this issue.



Chapter 3

Axion cosmology

Invisible axions are ideal candidates of dark matter, in the sense that they are stable and
that their couplings with ordinary matters are extremely suppressed. Therefore, if the relic
abundance of the invisible axions agrees with the present dark matter abundance, it is pos-
sible to explain the dark matter of the universe with axions. In order to discuss whether
axions correctly explain the present abundance of the dark matter, we must investigate their
production mechanisms in the early universe.

As mentioned in Chapter 1, cosmological scenario is different between the case where
inflation has occurred after the PQ phase transition (scenario I) and the case where inflation
has occurred before the PQ phase transition (scenario II). For scenario I, quantum fluctu-
ations of axion field generated at the inflationary stage give a constraint on some model
parameters. On the other hand, for scenario II, we must take account of the evolution of
topological defects such as strings and domain walls. Since these topological defects pro-
duce additional population of axions, the composition of axion dark matter is different for
each of scenarios. In this chapter, we mainly consider the cosmological aspects of axions
produced by mechanisms other than topological defects. Implications of axions produced
by topological defects are extensively studied in the next chapter.

The organization of this chapter is as follows. Two possible production mechanisms
are introduced in Secs. 3.1 and 3.2. Section 3.1 is devoted to the estimation of the thermal
production, while the non-thermal production is discussed in Sec 3.2. In that section, we
give the standard expression for the relic abundance of the coherently oscillating axions.
Finally, the constraint from isocurvature fluctuations is briefly described in Sec. 3.3.

3.1 Thermal production
If the temperature of the primordial plasma is sufficiently high, axions are produced from
the thermal bath of the QCD plasma. The production of thermal axions is described by the
standard freeze out scenario [130, 131, 132]. The number density of thermal axions nth

a

obeys the Boltzmann equation

dnth
a

dt
+ 3Hnth

a = Γ
(
neq

a − nth
a

)
, (3.1)
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where
Γ =

∑
i

ni〈σiv〉, (3.2)

is the interaction rate computed by summing over all processes involving axions a + i ↔
1 + 2 (i, 1, and 2 are other particles), ni is the number density of i-th species, 〈σiv〉 is the
thermal average of the cross section times relative velocity, and H is the Hubble parameter
defined as Eq. (A.7). neq

a is the equilibrium number density of axions, which is obtained by
using the Bose-Einstein distribution (A.13)

neq
a =

∫ ∞

0

4πgp2dp

(2π)3

1

exp(p/T ) − 1
=
ζ(3)

π2
T 3, (3.3)

where ζ(3) = 1.20206 . . . is the Riemann zeta function of 3, and we used g = 1 for axions.
Let us take a normalization

Y ≡ nth
a

s
, (3.4)

where s is the entropy density given by Eq. (A.20)

s =
2π2

45
gs∗T

3. (3.5)

Equation (3.1) can be written as

x
dY

dx
=

Γ

H
(Y eq − Y ) , (3.6)

where x = Fa/T , and

Y eq =
neq

a

s
' 0.27

g∗
. (3.7)

In the above equations, we used the approximation gs∗ ' g∗ ' constant, for simplicity.
The thermal average of the interaction rate Γ is calculated in Ref. [132] including the

following three elementary processes
(1) a+ g ↔ q + q̄
(2) a+ q ↔ g + q and a+ q̄ ↔ g + q̄
(3) a+ g ↔ g + g,
where g is a gluon, and q(q̄) is a light quark (anti-quark). Here, we quote the result of the
analysis in [132]

Γ ' 7.1 × 10−6T
3

F 2
a

, (3.8)

which is obtained by using the value of the strong coupling constant αs ≡ g2/4π ' 1/35
corresponding to the energy scale E ' 1012GeV. Since H ∝ T 2, the following quantity
turns out to be constant

k ≡ x
Γ

H
. (3.9)

Defining the quantity

y ≡ Y

Y eq
, (3.10)
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we reduce Eq. (3.6) into

x2 dy

dx
= k(1 − y), (3.11)

which has a solution
y(x) = 1 − Cek/x, (3.12)

where C is an integration constant. The axions decouple from the QCD plasma at x = k
(Γ = H). Afterwords, the number of axions becomes almost constant. The temperature at
the decoupling TD is obtained from the condition x = k, which gives

TD ' 2 × 1011GeV

(
Fa

1012GeV

)2

. (3.13)

The relic abundance of axions depends on the thermal history of the universe. For
simplicity, let us assume that PQ symmetry is broken after inflation if TR > Fa is satisfied,
where TR is the reheating temperature after inflation.1 We can consider the following
possibilities: (i) TR > Fa > TD, (ii) TR > TD > Fa, (iii) TD > TR > Fa, (iv) TD >
Fa > TR, (v) Fa > TD > TR, and (vi) Fa > TR > TD. These six domains are mapped into
Fa-TR plane, as shown in Fig 3.1.

For the case (i), Eq. (3.12) is rewritten as

y(x) = 1 − ek(1/x−1), (3.14)

where we put the initial condition y(x = 1) = 0 such that axions do not exist at T = Fa.
Requiring that the deviation from the thermal spectrum at the time of decoupling is less
than 5%,

YD

Y eq
= y(x = k) = 1 − ek(1/k−1) > 0.95,

where YD is the value of Y at the decoupling, we obtain

k =
Fa

T

Γ

H
' 5.0 ×

(
1012GeV

Fa

)
> 4. (3.15)

This corresponds to the condition [132]

Fa < 1.2 × 1012GeV. (3.16)

In other words, if Eq. (3.16) is satisfied, axions enter into thermal equilibrium before they
decouple from the plasma. On the other hand, for the cases (ii) and (iii), axions never enter
into thermal equilibrium. Assuming the initial condition y(x = 1) = 0 at T = Fa, we
obtain

y(∞) = 1 − e−k, (3.17)
1Note that there are some exceptions which invalidate this criterion. For example, if the highest temper-

ature after inflation is greater than Fa, PQ symmetry is broken after inflation even if TR < Fa is satisfied.
Furthermore, even though PQ symmetry is broken before inflation, it is restored during inflation if the am-
plitude of fluctuations of the axion field becomes larger than Fa, and hence it is broken again at the end of
inflation. Here, we do not consider such cases since they depend on the detail of inflation models.
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Figure 3.1: Six different domains (i) TR > Fa > TD, (ii) TR > TD > Fa, (iii) TD > TR >
Fa, (iv) TD > Fa > TR, (v) Fa > TD > TR, and (vi) Fa > TR > TD in the parameter
space of Fa and TR. These domains are divided by three lines, TR = Fa (red solid line),
TR = TD (blue solid line), and Fa ' 5 × 1012GeV (dashed line) which corresponds to the
condition TD = Fa.

which implies that the final abundance of thermal axion is suppressed by a factor 1 − e−k.
Since PQ symmetry is broken before inflation for the cases (iv), (v), and (vi), we must

use different initial condition from that used in Eq. (3.14). Here, we simply put the initial
condition y(x) = 0 at T = TR. This leads to the solution

y(x) = 1 − ek(1/x−1/xR), (3.18)

where xR ≡ Fa/TR. For the cases (iv) and (v), axions never enter into thermal equilibrium,
and we obtain

y(∞) = 1 − e−k/xR , (3.19)

where k/xR = TR/TD < 1. On the other hand, for the case (vi), axions might enter into
thermal equilibrium, but the condition for thermalization (3.15) is replaced by

k

xR

=
TR

TD

> 4. (3.20)

Let us estimate the relic abundance of the thermal axions. For case (i) or (vi), if the
condition (3.16) [for case (i)] or (3.20) [for case (iv)] is satisfied, the relic abundance is
determined by the equilibrium number density (3.7) and it does not depend on the initial
condition

nth
a (t0) = Y eqs0 =

0.27

g∗(TD)
s0 = 7.8cm−3

(
100

g∗(TD)

)
, (3.21)
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where s0 is the entropy density at the present time, and g∗(TD) is the radiation degree of
freedom at the time of decoupling. The present density of thermal axions is

Ωa,thh
2 =

man
th
a (t0)

ρc,0/h2
= 4.44 × 10−9

(
100

g∗(TD)

)(
1012GeV

Fa

)
, (3.22)

where ρc,0 is the critical density today, and we used the expression for the axion mass (2.46).
Note that we can use Eq. (3.22) only if the condition (3.16) [for case (i)] or (3.20) [for
case (iv)] is satisfied. Otherwise we must multiply it by the suppression factor given by
Eq. (3.17) or Eq. (3.19). It is clear that the population of thermal axions is too small to
explain dark matter for the typical value of the decay constant Fa ' 109−12GeV.

3.2 Non-thermal production

3.2.1 Evolution of the axion field
The non-thermal production of axions is estimated by investigating the evolution of the
background field. Let us consider the theory with the complex scalar field Φ (the PQ field)
whose Lagrangian density is given by

L = −1

2
|∂µΦ|2 − V (Φ), (3.23)

where the potential V (Φ) is given by Eq. (2.41). When U(1)PQ is spontaneously broken,
the axion field a(x) is described by Eq. (2.65),

〈Φ〉 = ηeia(x)/η. (3.24)

The evolution of the axion field in the expanding universe is described by

ä(x) + 3Hȧ(x) − ∇2

R2(t)
a(x) +

dV (a)

da
= 0, (3.25)

where R(t) is the scale factor of the universe. Substituting the effective potential for the
axion field (2.57) into V (a) and assuming a is small compared with Fa, we obtain

ä(x) + 3Hȧ(x) − ∇2

R2(t)
a(x) +m2

aa(x) = 0. (3.26)

Let us define the time t1 at which the following condition is satisfied

ma(T1) = 3H(t1), (3.27)

where T1 is the temperature at the time t1, and H(t1) is the Hubble parameter at that time.
Using the temperature dependence of ma(T ) given in Eq. (2.47), we find

T1 = 0.981GeV
(g∗,1

70

)−1/(4+n)
(

Fa

1012GeV

)−2/(4+n)(
ΛQCD

400MeV

)
for T1 & 103MeV, (3.28)
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or

T1 = 42.3GeV
(g∗,1

70

)−1/4
(

Fa

1012GeV

)−1/2(
ΛQCD

400MeV

)
for T1 . 103MeV, (3.29)

where g∗,1 is the radiation degree of freedom at the time t1. Equation (3.28) is valid only for
T1 & 103MeV, which corresponds to the case in which the condition given by Eq. (3.27) is
satisfied before ma(T ) becomes the zero-temperature value ma(0). We must use another
expression (3.29) if T1 < 103MeV. However, if we fix the values as g∗,1 = 70 and ΛQCD =
400MeV, this turnover occurs around the value Fa ' 1.7 × 1017GeV. Therefore, we can
simply use Eq. (3.28) as long as we assume that Fa < 1.7 × 1017. The temperature given
by Eq. (3.28) or Eq. (3.29) corresponds to the time

t1 = 3.01 × 10−7sec
(g∗,1

70

)−n/2(4+n)
(

Fa

1012GeV

)4/(4+n)(
ΛQCD

400MeV

)−2

for T1 & 103MeV, (3.30)

or

t1 = 1.61 × 10−10sec

(
Fa

1012GeV

)(
ΛQCD

400MeV

)−2

for T1 . 103MeV. (3.31)

For t < t1, we can ignore the mass term in Eq. (3.26) (H � ma). Defining the Fourier
component of the axion field

a(t,k) =

∫
d3xeik·xa(t,x), (3.32)

we obtain the following equation

ä(t,k) + 3Hȧ(t,k) − k2

R2
a(t,k) = 0, (3.33)

where k = |k|. For the modes outside the horizon (k/R � H), the third term in the left
hand side of Eq. (3.33) is dropped, and the solution is given by

a(t,k) = C1(k) + C2(k)t−1/2, (3.34)

where C1(k) and C2(k) are some k-dependent constants. On the other hand, for modes
inside the horizon (k/R � H), we cannot neglect the third term in the left hand side of
Eq. (3.33). This leads to the solution oscillating with a frequency ' k/R, and the amplitude
of the solution decreases with time as ∝ 1/R(t).

Every mode which is outside the horizon until t ' t1 is frozen like Eq. (3.34). When the
axion mass term becomes non-negligible (t > t1), they begin to oscillate with a frequency
' ma. We call these modes as zero modes and denote a0. Evolution of a0 is described by

ä0 + 3Hȧ0 +m2
aa0 = 0. (3.35)
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Using the WKB approximation, we obtain the solution of this equation

a0(t) ' a0(t1)

(
R(t1)

R(t)

)3/2

cos

(∫ t

madt

)
. (3.36)

This production mechanism of the zero modes is called the “misalignment mechanism”.
Note that, “zero” does not mean that the comoving momentum k is exactly zero. In other
words, all modes satisfying k/R < H at t > t1 can be described by Eq. (3.35) at least
approximately.

3.2.2 Cold dark matter abundance
Let us estimate the contribution of zero modes to the cold dark matter abundance [20, 21,
22]. The crucial point of the misalignment mechanism is that the value of the axion field
a0 deviates from zero at the time of QCD phase transition. Since the axion mass vanishes
at sufficiently high temperature, the value of a0 is not necessarily zero at t . t1. Then,
a0 begins to roll down to zero when the axion mass ma is turned on. Subsequently, it
oscillates around the minimum of the potential as described in Eq. (3.36). This oscillation
energy density is interpreted as relic energy density of dark matter axions.

The energy density of zero modes is given by

ρa,0(t) =
1

2
ȧ2

0(t) +
1

2
m2

a(T )a2
0(t). (3.37)

Here, we include the temperature dependence of ma, since the misalignment production
occurs due to the emergence of the axion mass. For H � ma, we can take time average
over the period of the oscillation in Eq. (3.36), which gives the approximation ρa,0 '
〈ȧ0〉 ' m2

a〈a2
0〉. Then, from Eqs. (3.35) and (3.37) we obtain

ρ̇a,0 =

(
ṁa

ma

− 3H

)
ρa,0, (3.38)

which implies

ρa,0 ∝
ma(T )

R3
. (3.39)

Hence, the number of axions in the comoving volume R3na = R3ρa,0/ma is conserved.
Noting this fact, we find the energy density of zero modes at the present time t0

ρa,0(t0) = ρa,0(t1)
ma(0)

ma(T1)

(
R(t1)

R(t0)

)3

, (3.40)

where ρa,0(t1) is the energy density of zero modes at t1

ρa,0(t1) =
1

2
ma(T1)

2(θ̄ini)2F 2
a , (3.41)

and θ̄ini = a0(t1)/Fa is called the initial misalignment angle.
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From the entropy conservation (A.23), it follows that(
R(t1)

R(t0)

)3

=
s0

2π2

45
g∗,1T 3

1

, (3.42)

where s0 is the entropy density at the present time, and it satisfies

s0h
2

ρc,0

=
4

3

gs∗,0

g∗,0

ΩRh
2

T0

. (3.43)

Here, ρc,0 is the critical density today, gs∗,0 and g∗,0 are the effective degrees of freedom for
entropy density and energy density of radiations at the present time [see Eqs. (A.21) and
(A.22)], T0 is the temperature today, and ΩRh

2 ≡ ρR(t0)h
2/ρc,0 is the density parameter

of radiations. Using Eqs. (3.40) - (3.43) and the expression for T1 given by Eq. (3.28), we
find that the density parameter of the zero mode axions Ωa,0h

2 = ρa,0(t0)h
2/ρc,0 becomes

Ωa,0h
2 = 0.095 × (θ̄ini)2

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
.

(3.44)
Strictly speaking, the above estimation is incorrect since we have used the following

two approximations.

1. The form of the axion potential is assumed to be quadratic [i.e. the mass term in
Eq. (3.37)], and other anharmonic terms are ignored.

2. It was assumed that the quantityR3ρa,0/ma becomes adiabatic invariant immediately
after the time t1.

It was pointed out that the standard estimation (3.44) should be modified [77, 133, 78] if we
take into account the deviation from above assumptions. There are two kinds of corrections
corresponding to two conditions enumerated above. One is the anharmonic effect [77, 133]
which gives a replacement (θ̄ini)2 → f(θ̄ini)(θ̄ini)2 where f(θ̄ini) is a function which con-
verges into 1 for small θ̄ini but takes a value larger than 1 for large θ̄ini. Another is the
deviation from the adiabatic approximation at the initial time t1. It was shown that the ad-
justment in the initial stage, where the expansion rate H is not completely negligible, leads
to larger energy density even though θ̄ini is small [78]. This correction makes f(θ̄ini)(θ̄ini)2

larger than the previous estimations [77, 133] by a factor of 1.85. Taking account of these
corrections, we rewrite Eq. (3.44) as

Ωa,0h
2 = 0.18 × f(θ̄ini)(θ̄ini)2

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
.

(3.45)
If PQ symmetry is broken after inflation (scenario II), it is expected that the value of

θ̄ini spatially varies over the scale of the QCD horizon ∼ (R(t1)/R(t0))t1, which is smaller
than the present horizon ∼ t0. Hence, we must replace θ̄ini by the root-mean square value

〈(θ̄ini)2〉 =
1

π

∫ π

0

f(θ̄ini)(θ̄ini)2dθ̄ini. (3.46)
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If the anharmonic correction is absent [f(θ̄ini) = 1], it gives 〈(θ̄ini)2〉 = π2/3. Turner [77]
calculated the anharmonic effect numerically and obtained the correction factor 1.9-2.4.
The origin of the uncertainty in this correction factor comes from the form of the temper-
ature dependent axion mass. Later, Lyth [133] gave the extensive calculation and reported
the agreement with Turner’s result within a factor of 2.2 Here, we take the magnitude of
the correction as 〈(θ̄ini)2〉 → (1.9-2.4) × π2/3. Substituting this value into Eq. (3.46), we
finally obtain

Ωa,0h
2 = (1.10-1.39) ×

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
for scenario II.

(3.47)

The requirement that Ωa,0h
2 < ΩCDMh

2 = 0.11 leads to the bound

Fa . (1.2-1.4) × 1011GeV (3.48)

for g∗,1 = 70 and ΛQCD = 400MeV. This bound is more severe than that quoted in
Eq. (2.69), due to the inclusion of two correction factors. The error in this expression is
due to the uncertainty in the anharmonic correction factor, which might be caused by the
uncertainty in the temperature dependence of the axion mass. Note that the above result is
only applicable to scenario II. For scenario I, we must use different estimation, which will
be described in Sec. 3.3.

So far we have considered the zero modes only, but there exist non-zero modes in sce-
nario II. The non-zero modes, whose momenta satisfy k/R � H at t > t1, are produced
from other mechanisms, namely the string decay and the domain wall decay. The estima-
tion of the contributions of these non-zero modes will be performed in Chapter 4. We will
see that the bound (3.48) becomes much more severe if we include the contributions from
non-zero modes.

3.3 Axion isocurvature fluctuations
If PQ symmetry is broken before (during) inflation (scenario I), the axion exists as a mass-
less scalar field during inflation, which induces some amount of quantum fluctuations. The
scale of these fluctuations is stretched out beyond the horizon scale, and modes re-entering
the horizon at the scale relevant to CMB observation can be measured precisely. There are
two kinds of such fluctuations, called the adiabatic fluctuations and the isocurvature fluc-
tuations. The adiabatic fluctuations are fluctuations in the total energy density δρ 6= 0, but
the number n does not fluctuate δ(n/s) = 0, where s is the entropy density. On the other
hand, the isocurvature fluctuations are characterized by δρ = 0 and δ(n/s) 6= 0, which
means that there are no fluctuations in the total energy density. Each of them induces a

2In [133], it was assumed that inflation has occurred after PQ phase transition (scenario I), and the aver-
age (3.46) is not calculated. Hence we use Turner’s estimation [77] for the anharmonic correction in scenario
II.
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distinctive spectrum in the anisotropy of CMB observed today. The difference between
adiabatic fluctuations and isocurvature fluctuations becomes distinctive only when they are
outside the horizon. Once they re-enter into the horizon, effects of microphysics become
relevant, and isocurvature modes are converted into fluctuations in the total energy density.
The magnitude of isocurvature fluctuations for a particle species i outside the horizon is
characterized by the following quantity

Si =
δ(ni/s)

ni/s
=
δni

ni

− 3
δT

T
, (3.49)

where ni is the number density of species i, and we used s ∝ T 3 in the second equality.
Fluctuations of the axion field induce isocurvature modes, but the recent observations

prefer the adiabatic type, which might be created by the quantum fluctuations of the inflaton
field [see e.g. [134]]. Therefore, the null observation of the isocurvature component gives
a constraint on the axion models. Recently, several authors analyzed this isocurvature
constraint using up-to-date observational data [135, 33, 34, 136, 137, 79, 138].

During the inflationary stage, the massless axion field has a quantum fluctuation whose
spectrum is given by [see e.g. [139]]

〈|δa(k)|2〉 =

(
HI

2π

)2
2π2

k3
, (3.50)

where HI is the Hubble parameter during inflation. Let us use the abbreviation δa2 =
(HI/2π)2 representing this fact (δa is a typical amplitude of the fluctuations in the real
space). These fluctuations of the axion field lead to fluctuations in the initial misalignment
angle θ̄ini with the amplitude

σ2
θ =

(
δa

Fa

)2

=

(
HI

2πFa

)2

. (3.51)

Since the value of the axion field becomes homogenized into a certain value of θ̄ini due to
the inflationary expansion, we replace 〈(θ̄ini)2〉 → (θ̄ini)2 + σ2

θ in Eq. (3.45). Then, we
obtain the relic abundance of axions

Ωa,0h
2 = 0.18 ×

[
(θ̄ini)2 + σ2

θ

] (g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
for scenario I,

(3.52)

where we ignored the anharmonic correction f(θ̄ini) for simplicity.
Fluctuations of the axion field are considered as isocurvature fluctuations, since the

axion is massless before QCD phase transition, which means that δρa = 0. When the
axion acquires a mass after QCD phase transition, isocurvature fluctuations are arranged
such that fluctuations in the sum of energy constituents vanish

δρ = maδna +
∑
j 6=a

mjδnj + 4ρR
δT

T
= 0, (3.53)
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where we included contributions of massive species j other than the axion. Assuming that
fluctuations in the number density of species j are adiabatic, we obtain

Sj =
δnj

nj

− 3
δT

T
= 0 for j 6= a. (3.54)

From Eqs. (3.49), (3.53), and (3.54), we find

Sa =
δna

na

− 3
δT

T
, (3.55)

δT

T
= −1

4
Sa

(
ρa/ρR

1 + 3ρM/4ρR

)
, (3.56)

where ρM = mana +
∑

j 6=amjnj is the total energy density of cold matters. In the early
epoch (ρR � ρM , ρa), Eq. (3.56) implies that δT/T � Sa. Hence we ignore δT/T in
Eq. (3.55) and obtain

Sa ' δna

na

. (3.57)

Conventionally, the magnitude of isocurvature perturbations is parametrized as

α(k0) =
∆2

S(k0)

∆2
R(k0) + ∆2

S(k0)
, (3.58)

where ∆2
S and ∆2

R are amplitudes of isocurvature fluctuations and adiabatic fluctuations,
respectively, and k0 = 0.002Mpc−1 is the pivot scale. The amplitude of the adiabatic
fluctuations ∆2

R is measured by CMB observations as [6]

∆2
R(k0) = 2.42 × 10−9 ≡ AR. (3.59)

Here, we assume that cold dark matter consists of axions and other particle species, and
that only axions contribute to isocurvature fluctuations. In this case, the amplitude of cold
dark matter isocurvature fluctuations is given by

∆2
S(k0) =

Ω2
a

Ω2
CDM

∆2
a(k0), (3.60)

where ∆2
a is the amplitude of axion isocurvature fluctuations Sa.

Let us relate the amplitude of fluctuations in the axion field during inflation to the
constraint on the magnitude of isocurvature fluctuations measured in CMB. Assuming that
δθ̄ini ≡ θ̄ini − 〈θ̄ini〉 obeys Gaussian distribution, we obtain

∆2
a(k) = 〈|Sa(k)|2〉 =

2σ2
θ(2(θ̄ini)2 + σ2

θ)

((θ̄ini)2 + σ2
θ)

2
. (3.61)

where we used Eq. (3.57) with na ∝ (θ̄ini)2 and σ2
θ = 〈(δθ̄ini)2〉. Combining Eqs. (3.58) -

(3.61), we find

α(k0) '


Ω2

a

Ω2
CDM

4σ2
θ

AR(θ̄ini)2
for (θ̄ini)2 � σ2

θ

Ω2
a

Ω2
CDM

2
AR

for (θ̄ini)2 � σ2
θ

, (3.62)
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where we assumed that ∆2
S � ∆2

R. The seven year observation of WMAP gives a
bound [6]

α(k0) < 0.077. (3.63)

Since AR ∼ 10−9, the case with (θ̄ini)2 � σ2
θ is inconsistent with this bound. Then,

assuming that (θ̄ini)2 � σ2
θ , and that axions give dominant contribution for cold dark

matter abundance (ΩCDM = Ωa), from Eqs. (3.51), (3.62) and (3.63) we obtain

HI

θ̄iniFa

< 4.3 × 10−5. (3.64)

Therefore, the isocurvature constraint gives an upper bound on the Hubble scale during
inflation HI , or a lower bound on the axion decay constant Fa. Note that, this isocurvature
constraint is weakened if we assume that the contribution of axions for cold dark matter
abundance is subdominant.

Defining the energy scale of inflation EI as H2
I = 8πGE4

I /3, we translate Eq. (3.64)
into the bound on EI

EI < 1.3 × 1013GeV(θ̄ini)1/2

(
Fa

1012GeV

)1/2

. (3.65)

Assuming that axions give dominant contribution for cold dark matter abundance ΩCDMh
2 =

0.11, we relate θ̄ini with Fa such that

Ωa,0h
2 = 0.18 × (θ̄ini)2

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
= 0.11,

(3.66)
where we used (θ̄ini)2 � σ2

θ in Eq. (3.52). Then, Eq. (3.65) gives upper bound on θ̄ini or
lower bound on Fa for a given value of inflationary scale EI

θ̄ini < 1.4 × 10−3 ×
(

EI

1014GeV

)−2.92 (g∗,1
70

)1/2
(

ΛQCD

400MeV

)−1.23

, (3.67)

Fa > 4.2 × 1016GeV

(
EI

1014GeV

)4.92 (g∗,1
70

)−1/2
(

ΛQCD

400MeV

)1.23

. (3.68)

Therefore, there is a tension between high scale inflation models and axion isocurvature
fluctuations. We can avoid this constraint by assuming the higher value of Fa, but in this
case we must tune the initial value of the misalignment angle θ̄ini in order to explain the ob-
served dark matter abundance. This region with Fa � 1012GeV and θ̄ini � 1 is called the
“anthropic axion window” [34, 137, 35] in contrast to the classic axion window discussed
in Sec. 2.5.4. Note that this bound is not applicable if the reheating temperature TR is high
enough to satisfy TR � Fa, since the PQ symmetry is restored after reheating. Also, the
Hubble scale HI should be smaller than Fa, otherwise the PQ symmetry is restored during
inflation, and broken again at the end of inflation.



Chapter 4

Axion production from topological
defects

So far, we have neglected the contribution of axions produced by topological defects. How-
ever, if inflation occurs before PQ phase transition (scenario II), we must take account of
their effects. In scenario II, the total abundance of dark matter axions is given by the sum of
three contributions: (i) coherent oscillation, (ii) string decay, and (iii) domain wall decay,

Ωa,toth
2 = Ωa,0h

2 + Ωa,stringh
2 + Ωa,dech

2. (4.1)

We already estimated the contribution from coherent oscillation Ωa,0h
2 [see Eq. (3.45) or

(3.47)]. In this chapter, we will estimate the rest two contributions.
The contribution of the string decay has been studied by many authors [49, 50, 51, 52,

53, 54, 55, 56, 57], and there are some disagreements on the significance of Ωa,stringh
2.

The main uncertainty comes from the assumption of the energy spectrum of axions radi-
ated from strings. The energy spectrum of radiated axions can be computed directly by
performing numerical simulation of global strings, but the results may depend on the nu-
merical methodologies or the approximations used in some analytical calculations. In this
thesis, we estimate Ωa,stringh

2 based on the result of recent numerical simulation executed
by [58], where the contamination from the core of the string is excised carefully.

Compared with the string decay contribution Ωa,stringh
2, the wall decay contribution

Ωa,dech
2 has received less attention in the literature. Perhaps the reason is that the decay

process contains many uncertainties such as the time scale of the decay and the size of the
defects at the decay time [48]. Some authors tried to estimate this contribution [140, 141,
38], but again their conclusions disagree with each other. The main purpose of this chap-
ter is to resolve uncertainties on the estimation of Ωa,dech

2 by performing field-theoretic
lattice simulations. We will see that axions produced by the wall decay give a significant
contribution to the relic dark matter abundance, and that the inclusion of the wall decay
contribution Ωa,dech

2 gives additional constraints on the axion models. 1

The organization of this chapter is as follows. First, the quantitative behavior of topo-
logical defects in the axion models and its cosmological implications are briefly reviewed

1The contents of this chapter are based on the works with T. Hiramatsu, M. Kawasaki, and
T. Sekiguchi [142, 143, 144].

36
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in Sec. 4.1. In Sec. 4.2, the cosmological evolution of topological defects is investigated
by means of numerical simulations. In Sec. 4.3, we shortly discuss on the estimation of the
string decay contribution. The wall decay contribution is discussed in Secs. 4.4 and 4.5. As
mentioned in chapter 1, there are two possible scenarios. One is the case with short-lived
domain walls (scenario IIA), and another is the case with long-lived domain walls (scenario
IIB). Section 4.4 is devoted to the investigation of scenario IIA, while Sec. 4.5 is devoted
to the investigation of scenario IIB. Finally, using the results of numerical simulations, we
give constraints for scenario IIA in Sec. 4.6 and for scenario IIB in Sec. 4.7. Properties of
topological defects are reviewed in Appendices B.3, B.4, and B.5. The analysis methods
for numerical simulations are summarized in Appendix C.

4.1 Formation and evolution of topological defects
In this section, we give an overview of the cosmological evolution of topological defects
predicted in the axion models. Depending on the model parameters, these defects can
become either stable or unstable.

4.1.1 Axionic string and axionic domain wall
We will follow the cosmological evolution of a complex scalar field Φ (the Peccei-Quinn
field) with the Lagrangian density

L = −1

2
|∂µΦ|2 − Veff(Φ, T ), (4.2)

where Veff(Φ, T ) is the finite-temperature effective potential for the scalar field. At suffi-
ciently high temperature (T & Fa), we assume that Φ is in the thermal equilibrium, and the
effective potential is given by [see Eq. (B.36)]

Veff(Φ, T ) =
λ

4
(|Φ|2 − η2)2 +

λ

6
T 2|Φ|2, (4.3)

where we neglect the couplings with other fields for simplicity. The effective potential (4.3)
induces PQ phase transition, which occurs at the temperature given by Eq. (B.38)

T = Tc ≡
√

3η. (4.4)

After that, the scalar field gets vacuum expectation value |〈φ〉|2 = η2, and the U(1)PQ

symmetry is spontaneously broken.
Since the axion field stays in a vacuum manifold ofU(1)PQ after the spontaneous break-

ing of the PQ symmetry, linear topological objects called strings are formed. It is known
that strings enter into the scaling regime, where the population of these strings in the Hub-
ble volume tends to remain in the value of O(1) because of the causality [see e.g. [24]]. In
order to satisfy this scaling property, long strings lose their energy by emitting closed loops
of strings. These loops decay by radiating axion particles with the wavelength comparable
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to the horizon size [47, 49, 50, 51, 57, 58]. The production of axions from decaying string
loops continues until the time when the string networks disappear due to some mechanisms
which we describe below.

When the temperature of the universe becomes comparable to the QCD scale (ΛQCD ∼
O(100)MeV), the non-perturbative nature of QCD becomes relevant. We can describe this
effect by adding the term (2.56) in the effective potential (4.3),

V (a) = m2
aF

2
a

{
1 − cos

(
a

Fa

)}
, (4.5)

where a is the axion field which arises in the phase direction of the complex scalar field
[see. Eq. (2.65)]

Φ = |Φ| exp

(
i
a

η

)
. (4.6)

The axion mass depends on the temperature T , which is described in Eqs. (2.47) and (2.48).
When the temperature is high (T � ΛQCD), axions can be regarded as massless particles.
Later, their mass is turned on at the temperature T ∼ ΛQCD.

We note that there are two different energy scales in this model. One is the scale of
the PQ symmetry breaking η, whose value is related to the axion decay constant through
Eq. (2.66)

Fa =
η

NDW

. (4.7)

Phenomenologically, it takes a value Fa ' 109-1012GeV as we discussed in Chapter 2.
Another is the QCD scale, ΛQCD ' O(100)MeV, which induces the potential (4.5). Since
there is a large hierarchy between these two scales Fa � ΛQCD, the height of the potential
barrier of the first term in Eq. (4.3) (∼ η4) is much larger than that of the term in Eq. (4.5)
(∼ Λ4

QCD).
Using Eq. (4.7), we can rewrite the potential (4.5) as

V (a) =
m2

aη
2

N2
DW

{
1 − cos

(
NDW

a

η

)}
, (4.8)

The existence of the QCD potential (4.8) explicitly breaks the original U(1)PQ symmetry
down to its discrete subgroup ZNDW

, in which the angular direction possesses the shift
symmetry a → a + 2πηk/NDW (k = 0, 1, . . . , NDW − 1). This ZNDW

symmetry is also
spontaneously broken because of the vacuum expectation value of the axion field. As a
consequence, NDW domain walls attached to strings are formed [25].

Because of the existence of the large hierarchy between η and ΛQCD, the formation of
strings occurs much earlier than the formation of domain walls. Once strings are formed,
they evolve into the scaling regime. Subsequently, domain walls are formed when the
Hubble parameter becomes comparable to the mass of the axion H ∼ ma. Shortly after
that, the condition

σwall =
µstring(t2)

t2
(4.9)
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is satisfied at the time t2, where σwall = 9.23maF
2
a is the surface mass density of do-

main walls [given by Eq. (B.67)], µstring(t) ' πη2 ln(t/δs
√
ξ) is the mass energy of the

strings per unit length [given by Eq. (B.56)], ξ is the length parameter of strings defined by
Eq. (4.50), and δs ' 1/

√
λη is the width of strings. From Eq. (4.9), we obtain

t2 = 8.43 × 10−7sec
(g∗,2

70

)−n/2(n+4)
(

Fa

1012GeV

)4/(n+4)(
Λ

400MeV

)−2

for T2 & 103MeV, (4.10)

or

t2 = 2.53 × 10−9sec

(
Fa

1012GeV

)(
Λ

400MeV

)−2

for T2 . 103MeV, (4.11)

and the corresponding temperature

T2 = 0.586GeV
(g∗,2

70

)−1/(n+4)
(

Fa

1012GeV

)−2/(n+4)(
Λ

400MeV

)
for T2 & 103MeV, (4.12)

or

T2 = 10.7GeV
(g∗,2

70

)−1/4
(

Fa

1012GeV

)−1/2(
Λ

400MeV

)
for T2 . 103MeV, (4.13)

where g∗,2 is the radiation degree of freedom at the time t2, and we substituted the typical

value ln
(

t/
√

ξ
δs

)
≈ 69. After the time t2, the dynamics is dominated by the tension of

domain walls.
The structure of domain walls depends on the number NDW, and the fate of the string-

wall networks is different between the case with NDW = 1 and the case with NDW > 1. If
NDW = 1 (scenario IIA), networks of domain walls are unstable, since the string is attached
by only one domain wall. Such a piece of the domain wall bounded by string can easily
chop the larger one, or shrink itself due to the tension of the domain wall [145]. Hence the
networks of domain walls bounded by strings disappear immediately after the formation.
We will discuss this scenario in Secs. 4.2.1, 4.4, and 4.6.

On the other hand, if NDW > 1 (scenario IIB), NDW domain walls are attached to
strings. Such string-wall networks are stable, since the tension of walls acts on the string
from NDW different directions. Furthermore, it has been argued that domain walls also
enter into the scaling regime, where the network of domain walls is characterized by one
scale, the Hubble radius, and the averaged number of walls per Hubble volume remain the
same in the evolution of the universe. Such a property is confirmed both numerically [146,
147, 148, 149] and analytically [150, 151, 152] for a simple model in which the domain
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walls arise from the spontaneous breaking of Z2 symmetry. Also, the numerical simulation
performed in [153] indicates that this property is true for networks of NDW domain walls
attached to strings unless NDW = 1.

If domain wall networks are in the scaling regime, the energy density of domain walls
evolves as

ρwall '
σwall

H−1
∝ t−1, (4.14)

since the typical length scales of defects, such as the wall curvature radius and the distance
of two neighboring walls, are given by the Hubble radius H−1 = 2t. This is equivalent to
the fact

A/V ∝ τ−1, (4.15)

whereA/V is the comoving area density occupied by domain walls, and τ is the conformal
time. We will check this property in the numerical simulation described in the next section.

The scaling solution (4.14) implies that the energy density of domain wall decreases
slower than that of cold matter ρM ∝ R−3 and radiations ρR ∝ R−4. Hence, it eventually
dominate the energy density of the universe. If it occurs at sufficiently late time in the
universe, it may conflict with standard cosmology [27]. This is called the axionic domain
wall problem.

4.1.2 Domain wall problem and its solution
Now, let us look closer at the model with NDW > 1. After the time t2 given by Eq. (4.10)
or (4.11), domain walls are straightened by their tension force up to the horizon scale.
These networks of domain walls bounded by strings evolve into the scaling regime, whose
energy density is given by Eq. (4.14). In the radiation dominated era, the energy density
of the universe is given by ρc(t) = (3/8πG)H2 = 3/32πGt2, where G is the Newton’s
gravitational constant. By equating ρc(t) and ρwall ' σwall/H

−1 = σwall/2t, we find that
the wall domination occurs at the time

tWD =
3

16πGσwall

. (4.16)

For the axionic domain wall with σwall = 9.23maF
2
a and Fa ∼ 1012GeV, this time tWD

corresponds to the temperature of the universe TWD ∼ O(10)keV.
In order to avoid this overclosure problem, Sikivie [25] phenomenologically introduced

a term
δV = −Ξη3(Φe−iδ + h.c.) (4.17)

in the potential (4.8), where Ξ is a dimensionless parameter which is assumed to be much
less than unity. This term, called a bias [36], explicitly breaks the discrete symmetry and
lifts degenerate NDW vacua. The bias term might correspond to the potential Vgrav(a)
introduced in Eq. (2.57). The candidates of this term are the higher dimensional operators
suppressed by the Planck mass MP [44]. Instead of using such operators, however, we just
use the form (4.17) treating Ξ as a free parameter, and give some constraints on the value
of Ξ.
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If this kind of term exists in the potential, it eventually annihilate domain walls. Let us
estimate the typical time scale for the annihilation of walls. The energy difference between
the neighboring vacua introduced by the ZNDW

breaking term (4.17) can be estimated as
∆V ∼ 2π

NDW
2Ξη4, which acts as a volume pressure pV on the wall and accelerates it against

the false vacuum regions:
pV ∼ ∆V ∼ 4πΞη4/NDW. (4.18)

On the other hand, the surface tension pT which straightens the wall up to the horizon scale
can be estimated as

pT ∼ σwall/t. (4.19)

The domain walls collapse when these two effects become comparable. From this fact, we
can estimate the typical time of the decay of domain wall networks as

tdec ∼ σwall/∆V ∼ ma

ΞNDWη2
, (4.20)

We will determine the precise value of the numerical coefficient in the formula (4.20) from
the results of the numerical simulations in the next section. Requiring that the decay of
walls occurs before the wall domination (i.e. tdec < tWD), we obtain a lower bound on Ξ

Ξ > O(1) × 10−59 ×N−3
DW

(
ma

6 × 10−4eV

)2

. (4.21)

Note that there are other ways to avoid the domain wall problem. First, we can simply
assume that the PQ phase transition has occurred before inflation (scenario I). In this case,
however, the isocurvature fluctuations give severe constraints on the model parameters, as
was mentioned in Sec. 3.3. In particular, some high scale inflationary scenarios such as
chaotic inflation models [154, 155] suffer from these kinds of problems. A more intri-
cate solution is to embed the discrete subgroup ZNDW

of U(1)PQ in the center of another
continuous group [156, 157, 158]. In this model, the degenerate vacua are connected to
each other by another symmetry transformations, leading to the same cosmological prop-
erty with the case for NDW = 1. However, in this kind of model, one have to choose the
symmetry group, Higgs representations and U(1)PQ charge judiciously [159]. Here, we do
not consider such models, and simply assume that domain walls exist for a long time and
annihilate due to the bias term which satisfies the condition (4.21). This biased domain
wall scenario is investigated in Secs. 4.2.2, 4.5, and 4.7.

4.2 Evolution of string-wall networks
In this section, we show the results of numerical simulations of axionic string-wall net-
works. First, we consider the case with NDW = 1 (scenario IIA) in Sec. 4.2.1. The forma-
tion and collapse of string-wall systems is investigated by performing three-dimensional
lattice simulations. Next, in Sec. 4.2.2 we investigate the evolution of the long-lived string-
wall networks in the case with NDW > 1 (scenario IIB). In this case, we perform two-
dimensional simulations in addition to three dimensional ones, since it is impossible to
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estimate the decay time of domain wall networks in the limited dynamical ranges of three-
dimensional simulations.

This section is devoted to the investigation of the evolution of defect networks. The
production of axions from the decay of domain walls will be described in Secs. 4.4 and
4.5. The details of the analysis methods are described in Appendix C.

4.2.1 Short-lived networks
Let us consider NDW = 1 axionic model model, with the effective potential given by

Veff(Φ, T ) =
λ

4
(|Φ|2 − η2)2 +

λ

6
T 2|Φ|2 +ma(T )2η2

{
1 − |Φ|

η
cos (Arg(Φ))

}
. (4.22)

Note that the last term of Eq. (4.22) is different from the QCD potential (4.8). We find
that the simulation becomes unstable when we use the potential given by Eq. (4.8) since
this potential is not well defined at |Φ| = 0. The modified potential given by Eq. (4.22)
avoids this singularity since there is a factor |Φ| in front of the cosine term. The difference
between Eqs. (4.22) and (4.8) is not important in the bulk region on which |Φ| = η, and we
observe that the quantitative behavior of topological defects such as time evolution of the
length of strings is unchanged, except the existence of the numerical instability.

In the radiation-dominated universe, the time and temperature are related by the Fried-
mann equation

1

4t2
= H2 =

8πG

3

π2

30
g∗T

4, (4.23)

where g∗ is the relativistic degree of freedom. For convenience in the numerical study, we
introduce a dimensionless quantity

ζ ≡
√

45

16π3Gg∗

1

η
. (4.24)

Using this parameter, Eq. (4.23) can be written as

t =
ζη

T 2
. (4.25)

In the simulation of the short-lived networks, we normalize all the dimensionful quan-
tities in the unit of τc, which is the conformal time at which PQ phase transition occurs [cf.
Eq. (4.4)],

Φ → Φτc, T → Tτc, x→ x/τc, etc. (4.26)

Also, we introduce the normalized initial Hubble parameter as an input parameter of the
numerical simulation

H(t = ti) → τcH(t = ti) ≡ α, (4.27)

and we set the scaling parameter at the initial time into unity

R(ti) = 1. (4.28)
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Note the following relations:

R(τc) = τc/τi = α and τc =
2ζ

3ηα
. (4.29)

By using Eq. (4.29), we can enumerate the various relations in the unit (4.26),

τi = 1/α, R(τ) = ατ, Ti =
2ζ√

3
and η =

2ζ

3α
. (4.30)

The ratio between the axion mass (2.47) and the axion decay constant can be written as

ma(T )2/η2 = cTκ
n+4

(
T

Fa

)−n

, (4.31)

where κ is the ratio between the QCD scale and the PQ scale,

κ ≡ ΛQCD/Fa = ΛQCD/η. (4.32)

We decompose the complex scalar field into its real and imaginary part, such that Φ =
φ1 + iφ2, where φ1 and φ2 are real variables. Assuming that Φ is in the thermal equilibrium
at the high temperature, we give the initial conditions such that the two real scalar fields
satisfy the equal-time correlation relations with temperature β ≡ 1/Ti,

〈β|φa(x)φb(y)|β〉 = δab

∫
d3k

(2π)3

1

2ωk

[1 + 2nk]e
ik·(x−y), (4.33)

〈β|φ̇a(x)φ̇b(y)|β〉 = δab

∫
d3k

(2π)3

ωk

2
[1 + 2nk]e

ik·(x−y), (4.34)

〈β|φa(x)φ̇b(y)|β〉 = 0, (4.35)

where 〈β| . . . |β〉 ≡ Tr(. . . e−βĤ)/Tre−βĤ is the thermal average, and Ĥ is the Hamiltonian
of the system. Here, we used the following notations

nk =
1

eωk/Ti − 1
, ωk =

√
k2 +m2

eff , (4.36)

and m2
eff ≡ ∂2Veff/∂Φ∗∂Φ|Φ=0 is the effective mass of the scalar fields at the initial time.

The first term in the bracket in Eqs. (4.33) and (4.34) corresponds to vacuum fluctuations,
which contribute as a divergent term when we perform the integral over k. In numeri-
cal studies, we subtract these fluctuations and use the following renormalized correlation
functions

〈φa(x)φb(y)〉ren. = δab

∫
d3k

(2π)3

nk

ωk

eik·(x−y), (4.37)

〈φ̇a(x)φ̇b(y)〉ren. = δab

∫
d3k

(2π)3
ωknke

ik·(x−y), (4.38)

〈φa(x)φ̇b(y)〉ren. = 0. (4.39)
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In the momentum space, these correlation functions can be written as

〈φa(k)φb(k
′)〉ren. = δab

nk

ωk

(2π)3δ(3)(k + k′), (4.40)

〈φ̇a(k)φ̇b(k
′)〉ren. = δabωknk(2π)3δ(3)(k + k′), (4.41)

where φa(k) is the Fourier transform of φa(x). Since φa(k) and φ̇a(k) are uncorrelated
in the momentum space, we generate φa(k) and φ̇a(k) in the momentum space randomly
following the Gaussian distribution with

〈|φa(k)|2〉sim. = nk

ωk
V, 〈|φ̇a(k)|2〉sim. = nkωkV, (4.42)

and 〈φa(k)〉sim. = 〈φ̇a(k)〉sim. = 0, (4.43)

for each a = 1 and 2, where 〈. . . 〉sim. represents the average over realizations of numerical
simulations. Note that these conditions should be regarded as field configurations which
mimic the conditions (4.40) and (4.41). We transform them into the configuration space
and obtain the initial field configurations φ(x) and φ̇(x). Here we used (2π)3δ(3)(0) ' V ,
where V = L3 is the comoving volume of the simulation box and L is the size of the
simulation box (in the unit of τc).

We solve the classical equations of motion for Φ = φ1 + iφ2 (see Appendix C.1),
with the potential (4.22) in the three-dimensional lattice with 5123 points. In numerical
simulations, we can vary four parameters λ, κ, ζ and α. We set α = 2.0 which corresponds
to the fact that τi = 0.5τc. Also, we choose the value of ζ as 3.0, which corresponds to
the conditions η = 1.23 × 1017GeV and g∗ = 100. It seems that this value of η may be
too high and affect the small scale dynamics of the system. We will discuss this point in
the end of this subsection. Note that, from Eq. (4.30) we see that η = 1 in the unit of τ−1

c .
Other parameters that we used are summarized in Table 4.1. The dynamical range of the
simulation is estimated as τf/τi = 24.

We must keep the following conditions, in order to simulate the dynamics of the topo-
logical defects correctly.

• The width of global strings δs = 1/η
√
λ must be greater than the physical lattice

spacing ∆xphys = R(t)L/N , where N = 512 is the number of grids, in order to
maintain the resolution of the width of strings.

• The Hubble radius H−1 must be smaller than the box size R(t)L, to avoid the un-
physical effect caused by the finiteness nature of the simulation box.

The physical scale of the Hubble radius and the width of strings divided by the physical
lattice spacing are respectively

H−1

∆xphys

=
N

L
τ, and

δs
∆xphys

=
3N

2Lζτ
√
λ
. (4.44)

For the parameters given in table 4.1, we get H−1/∆xphys ' 307 and δs/∆xphys ' 1.07 at
the end of the simulation τ = τf . Therefore, the conditions described above are satisfied
even at the end of the simulation.
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Table 4.1: Parameters used in numerical simulations for short-lived domain walls.

Grid size (N ) 512
Box size (L) 20

Total number of steps 1150
Time interval (∆τ ) 0.01

λ 1.0
κ [Eq. (4.32)] varying
ζ [Eq. (4.24)] 3.0
α [Eq. (4.27)] 2.0
cT [Eq. (2.47)] 6.26
c0 [Eq. (2.48)] 1.0
Initial time (τi) 0.5
Final time (τf ) 12.0

We also treat cT and c0 defined in Eqs. (2.47) and (2.48) as free parameters in numerical
simulations. In terms of these parameters, the time at which the value of ma(T ) reaches
the zero-temperature value ma(0) is written as

τa = 1.73 ×
(
c0
cT

)1/n

κ−1. (4.45)

Here we used the conformal time with the unit of τc = 1. Also, the time t1 given by
Eq. (3.27) is rewritten as

τ1 = 1.52 ×
(

3.0

ζ

)2/(4+n)

c
−1/(n+4)
T κ−1. (4.46)

Choosing the values of three parameters c0, cT and κ corresponds to the fact that we tune
the values of τa, τ1, and ma(0) in the numerical simulations. Unfortunately, due to the
limitation of the dynamical range, we cannot choose all parameters to be realistic values.
One possible choice is to fix the ratio between τ1 and τa so that

τ1/τa = 0.88 ×
(
cT
c0

)1/n

c
−1/(n+4)
T

(
3.0

ζ

)2/(n+4)

= 0.97 ×
(

3.0

ζ

)2/(n+4)

, (4.47)

where the last equality follows from the realistic values cT = 1.68× 10−7 and c0 = 1.46×
10−3. In order to satisfy the condition (4.47), we must choose cT and c0 so that

cT c
−(n+4)/4
0 ' 6.26. (4.48)

In numerical simulations, we use the values c0 = 1.0 and cT = 6.26 which satisfy the
above condition. In this case the expression for τ2 becomes

τ2 = 1.26 ×
(

3.0

ζ

)2/(4+n)(
β

4

)2/(4+n)(
6.26

cT

)1/(4+n)

κ−1, (4.49)
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which follows from Eq. (4.10). The expression (4.49) depends on β ≡ ln(t/
√
ξδs) which

comes from µstring in Eq. (4.9). Here we use the value β ' 4 obtained by using parameters
which are used in numerical simulations. Both of the time scales τ1 and τ2 become compa-
rable, but τ2 is slightly shorter than τ1 because of the small value of β. We summarize the
typical time scales given by Eqs. (4.45), (4.46) and (4.49) in Table 4.2.

Table 4.2: Typical time scales for various values of κ.

κ τ2 τ1 τa
0.4 3.15 3.20 3.29

0.35 3.59 3.65 3.76
0.3 4.19 4.27 4.38

0.25 5.03 5.12 5.26
0.2 6.29 6.40 6.57

Now, let us show the results of the simulations. Figure 4.1 shows the visualization of
one realization of the simulation. We see that at the first stage of the simulation, strings
evolve with keeping the scaling property. However, at late time they shrink because of the
tension of domain walls. We also show the spatial distribution of the phase of the scalar
field Arg(Φ) in Fig. 4.2. Note that the width of domain walls ∼ m−1

a is much greater than
that of strings ∼ (

√
λη)−1, as shown in Fig. 4.2.

We performed 20 realizations for each choice of the parameter κ. For each realization,
we calculated the length parameter of strings

ξ ≡ ρstring

µstring

t2, (4.50)

and the area parameter of domain walls

A ≡ ρwall

σwall

t, (4.51)

where ρstring and ρwall are energy densities of strings and domain walls, respectively. It
is not straightforward to calculate µstring and σwall exactly in numerical simulations, but
it is possible to estimate ξ and A indirectly by computing the length of strings and area
of domain walls in the simulation box (see Appendix C.2.3).2 These parameters take a
constant value when the defect networks enter the scaling regime (i.e. ρstring ∼ 1/t2 and
ρwall ∼ 1/t). Henceforth we refer to these parameters as the “scaling parameters”. Fig-
ure 4.3 shows the time evolutions of ξ and A for various values of κ. Comparing the
plot of A with Table 4.2, we see that the value of A deviates from the scaling behavior

2We can roughly estimate ρstring and ρwall by summing up the contributions of grid points located within
the core of defects, as shown in Fig. 4.20. Here, instead of using ρstring and ρwall directly, we simply compute
ξ and A by using Eq. (C.11).
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(A 'constant) around τ = τ1 and begins to fall off. Note that ξ starts to fall later than
A does. This can be interpreted as follows. Since domain walls are two-dimensional ob-
jects, they curve in various directions. This curvature gets stretched when the tension of
walls becomes effective. The stretching process of walls reduces the value of A, but might
not affect the length of strings (i.e. the value of ξ). Later, stretched walls pull the strings
attached on their boundaries, which causes the reduction of ξ.

We emphasize that there are ambiguities in the values of scaling parameters defined
in Eqs. (4.50) and (4.51). Our result ξ ' 0.5, shown in Fig. 4.3, is somewhat lower than
the value ξ ' 0.8-1.3 obtained in previous studies [57, 58, 160, 161, 162]. This might be
caused by the different choice of the parameter ζ used as an input of the numerical sim-
ulations. Our choice ζ = 3.0 is smaller than the values ζ = 8-10 used in past numerical
simulations [57, 160, 161, 162]. The parameter ζ controls the magnitude of the symmetry
breaking scale η [see Eq. (4.30)], which determines the width of global stings δs ∝ 1/η.
Therefore, different choice of ζ affects the emission rate of Nambu-Goldstone bosons from
strings [24, 163] ΓNG = Γ̃/[2πLs ln(Ls/δs)], where Γ̃ is a numerical factor of O(10-100)
and Ls ∼ t is the characteristic length scale of strings. The simulation with small value
of ζ corresponds to the simulation with thick strings, in which the global string networks
lose their energy efficiently due to the emission of Nambu-Goldstone bosons, since the
logarithmic correction to the emission rate ΓNG ∝ 1/ ln(t/δs) becomes large. This large
emission rate of Nambu-Goldstone bosons reduces the energy density of global string net-
works and suppresses the value of ξ. However, it was argued that in the realistic case with
ln(t/δs) ≈ 70 the radiative effect becomes subdominant, and the value of ξ is purely de-
termined by the formation rate of loops [162, 164]. Regarding this effect, the authors of
Ref. [162] estimated the final value of scaling parameter as ξ = 1.6 ± 0.3. Indeed, the
results with smaller values of κ in Fig. 4.3 indicate that the value of ξ increases due to the
change of emission rate ΓNG ∝ 1/ ln(t/δs) with time. We anticipate that the value of the
length parameter gradually reaches the final value ξ ≈ 1, which cannot be observed in the
simulations with the limited dynamical range.

The reason why we choose smaller value of ζ is to improve the dynamical range of
simulations by keeping the width of strings greater than the lattice spacing [see Eq. (4.44)].
This choice enables us to try to perform simulations with varying the values of κ but in-
validates the estimation of ξ due to the large emission rate of Nambu-Goldstone bosons.
However, we believe that this choice does not affect our main result about the radiated
axions produced by domain walls, since the choice of the parameter ζ only controls the
small scale properties such as the width of strings, while the population of axions is dom-
inated by low momentum modes 3 which are governed by the large scale physics with the
wavelength comparable to the inverse of the axion mass.

The precise determination of the values of scaling parameters including the effect of
back-reaction of Numbu-Goldstone boson emission is beyond the scope of this work. To
be conservative, we use the rough estimate ξ ' 1.0 ± 0.5 with 50% uncertainty when we
calculate the abundance of cold axions in the subsequent sections. We also assume that the
area parameter A possesses similar uncertainty, and use the value A ' 0.50± 0.25 around

3We will confirm it in Sec. 4.4.
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Figure 4.1: Visualization of one realization of the simulation. In this figure, we take the
box size as L = 15 and N = 256, which is smaller than that shown in Table 4.1. Other
parameters are fixed so that λ = 1.0, ζ = 3.0, α = 2.0 and κ = 0.4. The white lines
correspond to the position of strings, while the blue surfaces correspond to the position of
the center of domain walls.
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Figure 4.2: The distribution of the phase of the scalar field Arg(Φ) on the two-dimensional
slice of the simulation box. In this figure, we used the same data that are used to visualize
the result with τ = 5.0 in Fig. 4.1. The value of Arg(Φ) varies from −π (blue) to π (red).
Domain walls are located around the region on which Arg(Φ) passes through the value ±π,
while the green region corresponds to the true vacuum [Arg(Φ) = 0]. The length scale of
the change of Arg(Φ) is roughly estimated as ∼ m−1

a , which gives the thickness of domain
walls.
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Figure 4.3: Time evolution of the length parameter ξ (top panel) and the area parameter
A (bottom panel) for various values of κ. Although walls do not exist before the time τ1,
we can show the value of A evaluated at the time τ < τ1. This is because the value of A is
calculated from the number of grid points on which the phase of the scalar filed passes the
value θ = π. In this sense, A represents the area of domain walls only after the time τ1.
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the time of the formation of domain walls.

4.2.2 Long-lived networks
Next, let us consider the models withNDW > 1. In this case, we solve the classical equation
of motion for Φ with the potential

V (Φ) =
λ

4
(|Φ|2 − η2)2 +

m2
aη

2

N2
DW

{
1 − |Φ|

η
cosNDW (Arg(Φ))

}
. (4.52)

Similarly to Eq. (4.22), the second term of Eq. (4.52) is modified from that of Eq. (4.8) in
order to avoid the numerical instability.

Here, some formulations are different from that used in Sec. 4.2.1. In the simulation of
the long-lived networks, we normalize all the dimensionful quantities in the unit of η,

Φ → Φη, x→ xη, etc, (4.53)

instead of using the time of the phase transition τc. The reason is as follows. In the case
with NDW > 1, domain walls exist for a long time, and decay at the time tdec given by
Eq. (4.20). However, because of the limitation of the dynamical range, it is difficult to
follow the whole process including the formation of strings, that of domain walls, and
decay of them, in the single realization of the simulation. Hence, in the simulation of long-
lived networks, we just consider the late time evolution of them, ignoring the physics at
the formation time τc. The normalization of the scale factor is the same with Eq. (4.28)
[R(τi) = 1].

For initial conditions, we treat φ1 = Re(Φ) and φ2 = Im(Φ) as two independent real
scalar fields so that each of them has quantum fluctuations at the initial time with correlation
function4 in the momentum space given by

〈φi(k)φi(k
′)〉 =

1

2k
(2π)3δ(3)(k + k′), (4.54)

〈φ̇i(k)φ̇i(k
′)〉 =

k

2
(2π)3δ(3)(k + k′). (i = 1, 2) (4.55)

Since the effective squared masses of the fields quickly become negative at the initial time
(i.e. on the top of the mexican hat potential), we used the massless fluctuations as the initial
conditions, replacing the factor

√
k2 +m2 with k in the above formulae. We also put the

momentum cutoff kcut above which all fluctuations are set to zero in order to eliminate the
unphysical noise which comes from high frequency modes in the field distributions. Here
we set kcut = 1 (in the unit of η = 1).

We generate initial conditions in momentum space as Gaussian random amplitudes sat-
isfying Eqs. (4.54) and (4.55), then Fourier transform them into the configuration space to
give the spatial distributions of the fields. We emphasize that this choice of initial condi-
tions does not take account of the correct circumstances in the QCD epoch. However, we

4These correlation functions are evaluated at zero temperature, and different from the renormalized cor-
relation functions used in Eqs. (4.40) and (4.41).
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expect that the result at the late time of the simulations are qualitatively unchanged if we
used the different initial conditions, since the evolution of defect networks in the scaling
regime is not so much affected by the initial field configurations.

We also note that, in the simulation of the long-lived networks, the axion mass ma is
treated as a constant parameter. We do not use the temperature dependent expression (4.31)
since we are interested in the late time evolution of domain walls where the axion mass is
described as the zero-temperature value. In this case, ma represents the ratio between the
axion mass at the zero-temperature and PQ symmetry breaking scale η (recall that we use
the unit of η = 1). With this normalization, the physical scale of the Hubble radius H−1,
the width of the wall δw = m−1

a , and the width of the string δs = λ−1/2 divided by the
lattice spacing ∆xphys = R(t)∆x = R(t)L/N are given by

H−1

∆xphys

=
Nτ

L
,

δw
∆xphys

=
N

Lma

(τi
τ

)
, and

δs
∆xphys

=
N

Lλ1/2

(τi
τ

)
. (4.56)

Since the dynamical range of the numerical simulation is limited, we perform simula-
tions both in two-dimensional and three-dimensional lattice. In two-dimensional simula-
tions, we can improve dynamical range since the size of data is give by N2. Memory of the
computer limits us to much smaller grid size and shorter dynamical range, if we perform
three-dimensional simulations. In particular, the short dynamical range prevents us from
following the evolution of string-wall networks until they decay due to the bias term in the
three-dimensional simulations. Hence, first we perform two-dimensional lattice simula-
tions by including a bias term (4.17) to investigate the annihilation of string-wall networks.
Then, we calculate the spectrum of radiations produced by string-wall systems without a
bias term by performing three-dimensional lattice simulations.5

2D

Here, we solve the evolution of Φ with the potential given by Eqs. (4.52) and (4.17) on
the two-dimensional lattice with 40962 points. First, we present the evolution of unbiased
domain walls (i.e. Ξ = 0) and check the consistency of the result with other existing nu-
merical simulations. Next, we investigate the Ξ dependence of the results and estimate the
lifetime of domain wall networks. The parameters used in the simulation are summarized
in Table 4.3. We set the initial time as τi = 2.0 and the final time as τf = 110.0. The
dynamical range of the simulation is therefore τf/τi = 55. At the end of the simulation
τf = 110, ratios given in Eq. (4.56) become H−1/∆xphys ' 1959 < N , δw/∆xphys ' 3.2,
and δs/∆xphys ' 1.02.

The spatial distribution of the potential energy and the phase of the PQ field is shown in
Fig. 4.4. We can see that the phase of the PQ field is indeed divided into NDW domains and
there is the core of strings attached by NDW domain walls at the location where Arg(Φ)
rotates by 2π. Since these are the results of two dimensional simulations, strings exist as a
“point” in the two dimensional surface.

5It is impossible to calculate the gravitational waves properly in the two-dimensional field theoretic sim-
ulations. See Sec. 4.5.2.
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Figure 4.4: The distribution of the potential energy (left) and the phase of the PQ field
Arg(Φ) (right) with the caseNDW = 2 (top),NDW = 4 (middle), andNDW = 6 (bottom) at
the time τ = 56. The size of these figures is set to be a quarter of the size of the simulation
box. In the distribution of the energy density, the white region corresponds to the vacuum
[V (Φ) ' 0], the blue region corresponds to the domain wall [V (Φ) ' 2m2

aη
2/N2

DW], and
the green region corresponds to the string [V (Φ) ' λη4/4], but the core of the string is too
thin to see in this figure. We take the range of Arg(Φ) as −π < Arg(Φ) < π in the right
panel.
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Table 4.3: Parameters used in numerical simulations for long-lived domain walls (2D).

Grid size (N ) 4096
Box size (L) 230

Total number of time steps 10800
Time interval (∆τ ) 0.01

λ 0.1
ma 0.1
NDW varying

Initial time (τi) 2.0
Final time (τf ) 110.0

We calculated the time evolution of the comoving area density of domain walls as
shown in Fig. 4.5. In the case with NDW > 1, the scaling regime in which the area density
scales as τ−1 [see Eq. (4.15)] begins around τ ' 10. On the other hand, if NDW = 1,
the area density falls off shortly after the beginning of the simulation. These properties are
similar with that found in the past simulations [153].

Next we consider the effect of the term which explicitly breaks the discrete symmetry
[i.e. Eq. (4.17)]. This effect is parameterized by two quantities: δ and Ξ. In general, δ can
be defined relative to the phase in the quark mass matrix and have any value, but in the
numerical simulation it only determines the location of the true minimum in the potential
without affecting the results of the simulations. Therefore, we take δ = 0 for simplicity.

We note that the lift of the degenerate vacua must be sufficiently small since we assume
the circumstance in which the discrete symmetry is held approximately. We can understand
this requirement more quantitatively as follows. If the lift of the degenerate vacua is large,
the probability of choosing vacuum at the time of formation of domain walls is not uniform
between different vacua. For example, assume that there are two vacua (NDW = 2), and
the energy density of one vacuum (false vacuum) is greater than that of another vacuum
(true vacuum) due to the presence of the bias term δV . Then, let us denote the probability
of having a scalar field fluctuation at the time of the formation of domain walls end up in
true vacuum as pt and in false vacuum as pf . The ratio of these two probabilities is given
by [165]

pf

pt

= exp

(
−∆Vbias

∆Vpot

)
≡ exp(−R), (4.57)

where ∆Vpot ' 2m2
aη

2/N2
DW is the height of the axion potential, and ∆Vbias ' 2Ξη4 is the

difference of the energy density between two vacua. These probabilities are not uniform
(i.e. pt = pf = 0.5) if Ξ 6= 0. It was shown that this non-uniform initial probability
distribution also destabilizes domain walls [166, 37]. Let us define the parameter ε which
represents the deviation from the uniform probability distribution as pt = 0.5 + ε. Accord-
ing to the numerical simulations [37], the time scale of the decay of domain walls τdec,prob
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Figure 4.5: The time evolution of the comoving area density of domain walls for various
values of NDW.

(in conformal time) due to this effect is given by

τdec,prob/τform ' ε−D/2, (4.58)

where τform is the time of the formation of domain walls, andD is the spatial dimension. We
must require that this time scale should be greater than the simulation time scale (τdec,prob >
τf ), since we would like to check the effect of volume pressure [i.e. the relation given by
Eq. (4.20)] as a decay mechanism of domain walls. This requirement leads the condition

R =
Ξη2N2

DW

m2
a

< 0.4, (4.59)

for τf = 110 and τform ' 10.
Note that this result is obtained for the case with NDW = 2. It is not so straightforward

to generalize above arguments for the case with multiple vacua. However, we guess that
the condition for the case with NDW > 2 might be less severe than that given by Eq. (4.59),
since if NDW is large, the relative probability of choosing true vacuum becomes small and
less sensitive to R. Therefore, we take Eq. (4.59) as a criterion to ignore the effect of non-
uniform initial probability distribution even for the case with NDW > 2. It is difficult to
satisfy this requirement for large NDW in the numerical simulation, since the height of the
axion potential is proportional to N−2

DW and we have to choose small value of Ξ to make
R satisfy the condition (4.59). Such an adjustment is forbidden because of the limitation
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of the dynamical range (domain walls cannot decay in the simulation time scale). This
restriction forbids us to perform the simulations with NDW = 5 and 6.

We performed simulations for NDW = 2, 3, 4, and Ξ satisfying the condition described
above and calculated the time evolution of the area density of domain walls. The results
are shown in Fig. 4.6. We confirmed that domain walls decay in the time scale which we
naively expect as Eq. (4.20).

According to Eq. (4.20), the ratio

kd ≡ τdec√
ma/(NDWΞη3)

(4.60)

is expected to have a constant value of O(1), where we translated Eq. (4.20) into the relation
in conformal time. Here, we determine this coefficient based on the results of simulations.
In numerical simulations, we define τdec as a conformal time when the value of A/V be-
comes 1% of that with Ξ = 0. Figure 4.7 shows the numerical results for kd averaging over
5 realizations. Every result gives a value of O(1) for kd, but some data points seem to be
inconsistent with each other.

It should be noted that calculated values of kd (or τdec) might be affected by unphysical
nature of numerical simulations. First, if the value of Ξ is sufficiently small, domain walls
tend to collapse around the final time of simulations where the Hubble radius (or typical
distance between neighboring walls) is comparable with the size of the simulation box.
In such a case, finiteness of the simulation box tends to promote walls to collapse faster,
which gives smaller value of kd than that obtained in simulations with larger values of Ξ.6

Furthermore, if the value of Ξ is sufficiently large, the criterion in Eq. (4.59) is marginally
violated, which tends to collapse domain walls faster than the time scale estimated by
Eq. (4.20) due to the non-uniform initial distribution. In order to resolve these effects, we
must run simulations with higher spatial resolution (or larger simulation box), which is
impossible in the current computational resources. For now, we estimate the value of kd

regarding large uncertainties observed in Fig. 4.7,

kd ' 8.5 ± 1.0. (4.61)

In Sec. 4.7, we will use this value with the formula for tdec in cosmic time

tdec =
k2

d

4

(
ma

NDWΞη2

)
. (4.62)

Finally, let us comment on the dependence of the decay time tdec on the axion mass
ma. It is impossible to make the value of ma arbitrarily small since we invalidate our
assumption about the approximate discrete symmetry. Furthermore, ma cannot be so large
because the core size of the string δs must be smaller than the width of the domain wall δw
for the formation of stable networks [38]: δs/δw ' ma/

√
λ � 1.7 Therefore, the range of

ma, which we can choose in the actual numerical simulation, is narrow.
6A similar effect was observed in another numerical study [165].
7For the parameters we used in the simulations, ma/

√
λ ≈ 0.32.



57

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 10  100

A
re

a 
/ V

ol
um

e

conformal time τ (in the unit of η-1)

NDW = 2

Ξ = 0

Ξ = 0.0003

Ξ = 0.0004

Ξ = 0.0005

Ξ = 0.0006

Ξ = 0.0007

Ξ = 0.0008

Ξ = 0.0009

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 10  100

A
re

a 
/ V

ol
um

e

conformal time τ (in the unit of η-1)

NDW = 3

Ξ = 0

Ξ = 0.0002

Ξ = 0.0003

Ξ = 0.0004

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 10  100

A
re

a 
/ V

ol
um

e

conformal time τ (in the unit of η-1)

NDW = 4

Ξ = 0

Ξ = 0.0002

Figure 4.6: The time evolution of the comoving area density of domain walls for various
values of Ξ with NDW = 2 (top), NDW = 3 (middle), and NDW = 4 (bottom). In the case
with NDW = 4, we can choose only one parameter for Ξ because of the restriction given
by Eq. (4.59).
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Figure 4.8 shows thema dependence of the time evolution of the comoving area density
of domain walls. Although the range of ma is limited, from this figure we see that the
decay time of domain walls (in conformal time) is proportional to

√
ma, as we anticipated

in Eq. (4.20). Therefore, we assume that this dependence on ma is correct for other values
of ma, and use the relation (4.62) for the evaluation of the decay time of domain walls.

3D

In three-dimensional simulations, we simply use the potential (4.52) without including
a bias term (4.17). The grid size is chosen as N3 = 5123. We set the initial time as
τi = 2.0 and the final time as τf = 40.0. The dynamical range of the simulation is
therefore τf/τi = 20. The other parameters are summarized in Table 4.4. At the end
of the simulation τf = 40, ratios given in Eq. (4.56) become H−1/∆xphys ' 256 < N ,
δw/∆xphys ' 3.2, and δs/∆xphys ' 1.01.

We naively guess that domain walls formed in the model withNDW = 2 have a common
property with that formed in the model of real scalar field with spontaneous breaking of
a discrete Z2 symmetry. Based on this observation, we also consider the real scalar field
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theory with the Lagrangian density given by

L = −1

2
∂µφ∂

µφ− V (φ), (4.63)

V (φ) =
m2

a

3η2

(
φ2 − 3

2
η2

)2

, (4.64)

where φ is the real scalar field. In Appendix B.5, it is shown that this model mimics the
axionic model with NDW = 2, in the sense that the surface mass density and the width of
domain walls are same.

Figure 4.9 shows the visualization of one realization of the simulation. Using the identi-
fication scheme described in Appendix C.2, we confirmed thatNDW domain walls attached
to strings are formed at late time of the simulations. The structure of defect networks be-
comes more complicated when we increase the number NDW. Figure 4.10 shows the spa-
tial distribution of the phase of the scalar field Arg(Φ) in the model with NDW = 3 at
selected time slices. Since we give the initial configuration of the scalar field as Gaussian
random amplitude, the scalar field randomly oscillates around the minima |Φ|2 = η2 of
the potential, given by the first term of Eq. (4.52). Strings are formed when this initial
random configuration becomes relaxed. Subsequently, the value of the phase of the scalar
field Arg(Φ) is separated into NDW = 3 domains. Domain walls are located around the
boundaries of these domains.

In a similar way to the case of the short-lived networks, we compute the length param-
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(a) NDW = 2 (b) NDW = 3

(c) NDW = 4 (d) NDW = 5

(e) NDW = 6

Figure 4.9: Visualization of the simulations with (a)NDW = 2, (b)NDW = 3, (c)NDW = 4,
(d) NDW = 5, and (e) NDW = 6. In this figure, we take the box size as L = 60 and
N = 256, which is smaller than that shown in Table 4.4. Each figure shows the spatial
configurations of topological defects at the time τ = 25. The white lines correspond
to the position of the core of strings, which is identified by using the method described in
Appendix C.2.1. NDW domain walls are represented by surfaces with various colors, which
are identified by using the method described in Appendix C.2.2.
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(a) τ = 7 (b) τ = 13

(c) τ = 19 (d) τ = 25

Figure 4.10: The distribution of the phase of the scalar field Arg(Φ) on the two-dimensional
slice of the simulation box. Each figure shows the visualization at different times: (a)
τ = 7, (b) τ = 13, (c) τ = 19, and (d) τ = 25. In these figures, we used the same data that
are used to visualize the result with NDW = 3 in Fig. 4.9. The value of Arg(Φ) varies from
−π (blue) to π (red). At late times, the value of Arg(Φ) is separated into three domains
represented by blue, red, and green region. Domain walls are located around the boundary
of these three regions, Arg(Φ) = π/3, Arg(Φ) = −π/3, and Arg(Φ) = ±π. Strings,
which are represented by white lines, pass through the point where three regions meet each
other.
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Table 4.4: Parameters used in numerical simulations for long-lived domain walls (3D).

Grid size (N ) 512
Box size (L) 80

Total number of time steps 1900
Time interval (∆τ ) 0.02

λ 0.1
ma 0.1
NDW varying

Initial time (τi) 2.0
Final time (τf ) 40.0

eter ξ of strings and the area parameter A of domain walls given by Eqs. (4.50) and (4.51),
respectively. The time evolution of these parameters is plotted in Fig. 4.11. From this fig-
ure, we see that the defect networks are in scaling regime in the time scale τ & 15. The
length parameter ξ does not strongly depend on NDW, and its value is consistent with that
obtained in the simulations of short-lived networks (see Fig. 4.3). On the other hand, the
value of the area parameter A increases for large NDW. This fact agrees with the intuitive
argument that the number of domain walls increases proportionally to NDW if the number
of strings per simulation box is unchanged.

The bottom panel of Fig. 4.11 also implies that the area of domain walls in the real
scalar field theory given by Eqs. (4.63) and (4.64) evolves similarly to the axionic model
with NDW = 2. This means that the behavior of the networks for the case with NDW = 2
is similar to that produced by the model with Z2 symmetry, except that they contain strings
on the surface of walls. We note that the bump-like behavior of A in the real scalar field
model at the initial stage of the simulation should be regarded as a numerical fake. We
identify the position of domain walls as the point on which scalar field changes its sign
for the model with the real scalar field. This identification scheme is different from that
used for the model with the complex scalar field (see Appendix C.2.2). These different
identification schemes cause the different behavior of A at the initial stage, where domain
walls do not relax into the scaling regime.

4.3 Axion production from strings

Before going to the analysis of the axion production from string-wall systems, let us make
a comment on the string decay contribution. Historically, there was long-term controversy
on the estimation of string decay contribution. Davis [47] first recognized that axions
emitted by strings give an additional cosmological abundance and found that this addi-
tional contribution dominates over the coherent oscillations, which gave more severe upper
bound on the axion decay constant. This suggestion was supported by various analyti-
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(4.64).
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cal and numerical studies given by different authors [49, 50, 51, 52]. However, Harari
and Sikivie [54] presented a different scenario which claims that the abundance of axions
produced by strings do not exceed that of coherent oscillations, and gave a weaker upper
bound on Fa. The subsequent numerical studies provided by [55, 56] supported this weaker
bound.

This controversy about the contribution from strings arises from different assump-
tions on the spectrum of radiated axions, which determines the number of axions. From
Eq. (4.50), the energy density of strings can be written as

ρstring(t) =
µstringξ

t2
, (4.65)

where µstring is given by Eq. (B.56)

µstring = πη2 ln

(
t/
√
ξ

δs

)
. (4.66)

Strings continue to radiate axions from the era of PQ phase transition tc to the era of the
QCD phase transition t1. For simplicity, let us assume that axions are exactly massless
before QCD phase transition t < t1.8 During this epoch, the evolution of energy densities
of strings and axions is described by the following equations

dρstring

dt
= −2Hρstring −

dρstring

dt

∣∣∣∣
emission

, (4.67)

dρa

dt
= −4Hρa +

dρstring

dt

∣∣∣∣
emission

, (4.68)

where (dρstring/dt)|emission is the rate of radiation form strings. From Eqs. (4.65) and (4.67),
we obtain

dρstring

dt

∣∣∣∣
emission

= πη2 ξ

t3

[
ln

(
t/
√
ξ

δs

)
− 1

]
. (4.69)

Let us define the comoving energy of radiated axions

Ea,string(t) = R4(t)ρa(t). (4.70)

Then, Eq. (4.68) reduces to

dEa,string

dt
= R4(t)

dρstring

dt

∣∣∣∣
emission

. (4.71)

8Contribution of axions radiated by strings in t > t1, where the axion mass becomes non-negligible, will
be included in the wall decay contribution ρa,dec in Secs. 4.6 and 4.7. In the realistic situation, however,
the axion mass is continuously turned on around the time t1. Inclusion of such an effect might lead to a
correction by a factor of O(1) in the estimation of the relic axion abundance similarly with the correction at
the initial time t1 of the coherent oscillation discussed in Sec. 3.2.2, but we will not include such a correction
in the current analysis.
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Therefore, the comoving number of radiated axions at the time t > t1 is given by

Na,string(t > t1) =

∫ t1

tc

dt′
1

R(t′)〈ωa(t′)〉
dEa,string

dt

=

∫ t1

tc

dt′
R3(t′)

〈ωa(t′)〉
πη2 ξ

t′3

[
ln

(
t′/

√
ξ

δs

)
− 1

]
, (4.72)

where 〈ωa(t)〉 is the mean energy of radiated axions at time t. In order to estimateNa,string(t >
t1), we must know 〈ωa(t)〉, whose value depends on the interpretation of the spectrum of
radiated axions.

In Refs. [47, 49, 50, 51, 52] it is assumed that the typical wavelength of radiated axions
is given by the curvature size of global strings which is comparable to the size of the
horizon, k ∼ 2π/t, based on the result of [167, 168] which claims that closed loops or bent
stings oscillate many times before they lose most of their energy. Let us call this case as
case A. In this case, we can write 〈ωa(t)〉 as

〈ωa(t)〉 = ε
2π

t
, (4.73)

where ε is a factor whose value is determined from numerical simulations. Substituting
Eq. (4.73) into Eq. (4.72), we obtain

Na,string(t > t1) =
η2ξ

ε

[
R3(t′)

t′

(
ln

(
t′/

√
ξ

δs

)
− 3

)]t1

tc

.

Hence, the present number density of axions produced by strings is given by

na,string(t0) =
Na,string(t > t1)

R3(t0)
'
(
R(t1)

R(t0)

)3
η2

t1

ξ

ε
ln

(
t1/

√
ξ

δs

)
, (4.74)

In this scenario, the contribution from axions produced by strings becomes greater than
that from coherent oscillations by a factor of ln(t1/

√
ξδs) ∼ 60.

On the other hand, Refs. [54, 55, 56] suggest that the motion and decay of the global
strings are more “turbulent”. Let us call this as case B. In this case, strings lose their
energy in one oscillation time, quickly decaying into small pieces. Therefore, whole scales
between the largest scale ∼ t and the smallest scale ∼ δs give the same contribution to the
power spectrum of radiated axions, dE/d ln k ∼ (independent on k), or

dρstring

dtdk

∣∣∣∣
emission

∼ 1

k
. (4.75)

Integrating it between two length scales, we obtain

dρstring

dt

∣∣∣∣
emission

∼ ln

(
t/
√
ξ

δs

)
. (4.76)
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In this case, the mean energy of radiated axions is given by

1

〈ωa(t)〉
=

1

(dρstring/dt)|emission

∫
dk

k

dρstring

dtdk

∣∣∣∣
emission

∼
(
t

2π

)
1

ln
(

t/
√

ξ
δs

) . (4.77)

Due to the the additional factor ln(t/
√
ξδs) in 〈ωa(t)〉, the contribution from strings is

subdominant compared with that from coherent oscillations.
This discrepancy between two scenarios might be resolved by the field-theoretic global

simulations including the cosmic expansion performed in [57, 58]. In [57, 58], it was
concluded that the power spectrum of radiated axions has a sharp peak around the horizon
scale kphys ∼ 2π/t, supporting case A. Here, we estimate Ωa,stringh

2 by using their results.
Noting that the energy density of axions today is given by ρa.string(t0) = ma(0)na,string(t0),
where na,string(t0) is given by Eq. (4.74), we find the density parameter of axions radiated
from strings

Ωa,stringh
2 = 8.74 × ξ

ε

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
. (4.78)

In numerical simulations of Ref. [58], the value of ε is estimated as ε−1 = 0.23 ± 0.02. By
using this value for ε and the rough estimation for the length parameter ξ ' 1.0 ± 0.5, we
obtain

Ωa,stringh
2 = (2.0 ± 1.0) ×

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
.

(4.79)
It seems that the estimation of the contribution from domain walls is faced with the

similar discrepancy about the spectrum of radiated axions. Nagasawa and Kawasaki [140,
141] found that axions produced by the collapse of domain walls are mildly relativistic,
and this contribution can exceed that from strings. On the other hand, in the study given
by Chang, Hagmann and Sikivie [38], the mean energy of axions produced by the decay of
domain walls was estimated to be larger than that obtained in [140, 141] by a factor of 20.
This leads to the conclusion that axions produced by the collapse of walls are subdominant
compared with that produced by strings. The conclusion of [38] relies on the following
reasoning. Since domain walls are bounded by strings, the wall energy is converted into
the kinetic energy of strings. Then, if we assume that case B is correct, the spectrum of
radiated axions becomes hard (dE/dk ∼ 1/k). However, as we described above, the recent
network simulation of global strings supports case A. Therefore it is not so clear whether
the domain wall contribution is significant or not. We point out that this discrepancy on
the domain wall contribution is also resolved by preforming full field-theoretic network
simulations. In the following two sections, we present the results of the analysis on the
spectrum of axions radiated from domain walls.

4.4 Axion production from short-lived domain walls
Let us show the spectrum of axions produced from short-lived domain walls bounded by
stings (NDW = 1). From data of the scalar field obtained by numerical simulations de-
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scribed in Sec. 4.2.1, we compute the power spectrum P (k) of axions radiated by string-
wall networks, which is defined by

1

2
〈ȧ(t,k)∗ȧ(t,k′)〉 =

(2π)3

k2
δ(3)(k − k′)P (k, t), (4.80)

where ȧ(t,k) is the Fourier component of the time derivative of the axion field, and 〈. . . 〉
represents an ensemble average.

In general, the data of the scalar field Φ contain other components, which can be enu-
merated as follows:

1. Initial fluctuations. In numerical simulations, we give the initial conditions as Gaus-
sian random fluctuations [see Eqs. (4.37), (4.38) and (4.39)]. These fluctuations are
diluted away by the cosmic expansion, but might not be completely negligible even
at the final time of the simulation, since the dynamical range of the numerical sim-
ulation is short. Therefore, they can contaminate the final form of the spectrum of
radiated axions.

2. Radiations from strings. As we mentioned in Sec. 4.3, oscillating loops of strings
radiate axions during the time between the string formation (T = Tc) and the domain
wall formation (T = T1). This contribution must be distinguished from the wall-
decay contribution which is produced after the time t1.

3. Core of defects. In the core of strings, the energy density of the scalar field is higher
than that of free axions. This can be regarded as another contamination on the spec-
trum of radiated axions.

Figure 4.12 shows the pipeline of removing these contaminations. To remove the con-
taminations from the core of strings, we mask the region near the position of the core of
strings and estimate the power spectrum which contains only the contribution from free ra-
diations. We calculate the power spectrum in two time slices, the time at which the mass of
the axion becomes relevant (t = t1) and the time at which the decay of string-wall networks
completes (t = td). Then, we subtract the spectrum evaluated at t1 from that evaluated at
td in order to remove the contributions from initial fluctuations and strings, such that

Pdec(k, td) = P (k, td) − Ppre(k, td), (4.81)

where Ppre(k, td) is computed from P (k, t1) [see Eq. (C.38)]. We regard Pdec(k, td) as
the spectrum of radiations produced after the decay of domain walls. A more detailed
description of these procedures is given in Appendix C.3.3.

Figure 4.13 shows the spectra of free axions evaluated at t1 and td. The basic behav-
ior of the spectrum evaluated at t1 is similar to that obtained in Ref. [58]. This spectrum
is dominated by the contribution of axions produced by strings. However, the population
of axions with high momenta increases after the decay of domain walls (t = td). The fi-
nal form of the spectrum, obtained by subtracting the components of radiations produced
before t1, is shown in Fig. 4.14. The spectrum has a peak at the low momentum. This dis-
agrees with the result of Chang, Hagmann and Sikivie [38], which claims that the radiated



68

Figure 4.12: Schematics of the procedure to estimate the power spectrum of axions radiated
from short-lived networks.

axions have a spectrum proportional to 1/k. Note that, however, there is a high frequency
tail in the spectrum, which has a cutoff at the momentum corresponding to (twice the size
of) the width of strings k ' (2π/2δs)R(td) ' 64.4 (for κ = 0.3). This feature might
be interpreted in terms of the reasoning of [54, 55, 56, 38] (case B). Namely, there are
various size of defects around the time t = td, and small scale defects can radiate axions
with harder momentums. As we see in Fig. 4.14, the contribution from these hard axions
is subdominant, and most axions have a momentum comparable to the mass of the axion
k/R(td) ∼ ma.

Using the result of Pdec(k, td), we compute the mean comoving momentum of radiated
axions

k̄(td) =

∫
dk
2π
Pdec(k, td)∫

dk
2π

1
k
Pdec(k, td)

. (4.82)

Let us define the ratio of the physical momentum k̄/R(td) to the axion mass ma(td),

εw ≡ k̄(td)/R(td)

ma(td)
. (4.83)

The value of εw will be determined from the results of numerical simulations.
Note that there are some ambiguities in this analysis. For instance, we choose the time

td, at which the decay of networks completes, by hand. If we choose td as sufficiently
late time (for example, the final time of the simulations), we would underestimate the
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Figure 4.13: The power spectrum of free axions calculated by using Eq. (C.28) in the
simulations with κ = 0.3. We plot the spectra evaluated at two different times t1 and td.
Note that the result of P (k, t1) shown here does not contain the numerical factor defined in
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70

 1e-05

 0.0001

 0.001

 0.01

 2  4  10  20  40  80di
ffe

re
nc

e 
of

 e
ne

rg
y 

sp
ec

tru
m

 P
de

c(
k)

comoving wavenumber k (in the unit of τc
-1)

κ = 0.40 (τd = 7.00 τc)
κ = 0.35 (τd = 8.50 τc)

κ = 0.30 (τd = 10.25 τc)

Figure 4.14: The spectrum of axions produced by the decay of networks, defined by
Eq. (4.81). Note that the results with different value of κ are evaluated at different times
(τd). The form of the spectra is different from the relation Pdec(k) ∝ 1/k which is indicated
by the dotted line. Here, we choose the number of bins nbin = 25.
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mean momentum of radiated axions defined by Eqs. (4.82) and (4.83), since the physical
momentum gets redshifted proportionally to 1/R(τd). Figure 4.15 shows the results of the
physical momentum k̄/R(τd) for various choices of τd in the simulations with κ = 0.3.
The value of k̄/R(τd) begins to shift as ∝ 1/R at the result with τd = 10.25. This value
of τd corresponds to the time at which the area of domain walls becomes less than O(1)%
of the Hubble scale (A .0.01). Therefore, we choose τd as the time at which the value of
A falls below 0.01. We use this criterion to calculate the spectra with different values of κ
shown in Fig. 4.14.

 0.2

 0.25

 0.3

 0.35

 8  9  10  11  12  13

k
 /
 R

(τ
d
)

decay tim e τd (in the unit of τc)

(a)
(b)

(c)
(d)

(e)

Figure 4.15: The value of the mean physical momentum of radiated axions k̄/R(τd) and
its dependence on the choice of τd. The dashed line represents the relation k̄/R(τd) ∝
1/R(τd) ∝ 1/τd. The five points correspond to the results with the value of the area
parameters (a) A(τd) .0.1, (b) A(τd) .0.05, (c) A(τd) .0.01, (d) A(τd) .0.005 and (e)
A(τd) .0.001.

Another subtlety is whether the results of numerical simulations are sensitive to the
choice of κ ≡ ΛQCD/Fa. There is a tremendous hierarchy between the QCD scale and the
PQ scale, ΛQCD/Fa ' 100MeV/1010GeV = 10−11, but we cannot perform simulations
with such a small value of κ because of the limitation of the dynamical range. Nonetheless,
we believe that the ratio between the mean momentum of the radiated axions and the typical
momentum scale (such asma) is not so sensitive to the value of κ, since the power spectrum
has a definite peak at the typical momentum scale as shown in Fig. 4.14.

However, in the present numerical results, the value of εw given by Eq. (4.83) might
vary when we change the setup of simulations, which should be regarded as a systematic
error in our numerical calculations. In order to clarify this uncertainty, we compute εw
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by varying the value of κ and the number of bins nbin over which the average (4.82) is
computed. Here, nbin is an integer which determines the total number of indices in the
discretized power spectrum [see Eqs. (C.30)-(C.34)]. Figure 4.16 shows the spectrum of
axions for nbin = 100 with the same parameters as that used in Fig. 4.14, where we choose
nbin = 25. Comparing Fig. 4.16 with Fig. 4.14, we see that the resolution of the peak
location improves if we choose a larger value of nbin. Since there are only a few data
points around the peak location in the spectrum with smaller value of nbin, results for the
mean momentum k̄(td) (or εw) will be overestimated if we use such coarse bins. The effect
of the choice of nbin is shown in Fig. 4.17, where we plotted the results for εw given by
Eq. (4.83) for various values of κ and nbin. We see that the value of εw changes by a factor
of O(1) when we use a different value of nbin for the evaluation of the mean momentum of
radiated axions.

We note that the dependence of εw on κ is not serious, compared with the uncertainty
caused by the choice of nbin. The value of εw may become large if we use a small value
of κ, but it is also regarded as a numerical fake due to the poor resolution of the peak
location in the power spectrum. For a small value of κ (such as κ = 0.3), domain walls
begin to collapse at the late time of the simulation, where the width of walls (∼ m−1

a ) is
not sufficiently small compared with the size of the simulation box. Therefore, in the result
with the small value of κ, the peak location is not fully resolved in the plot of the power
spectrum, as we see in Fig. 4.16. This effect causes the overestimation of εw shown in
Fig. 4.17.

In Fig. 4.17, we also plotted the results obtained by simulations with grid points N3 =
2563. These results provide another confirmation that the uncertainty in εw is caused by the
resolution of the peak location in the power spectrum. In the simulation with a small value
of spatial resolution N , the maximum value of the comoving wavenumber k(max) = πN/L
also becomes small. Hence the resolution of the power spectrum ∆k ≡ k(max)/nbin is
improved for a small value of N with a fixed value of nbin. Indeed, data with κ = 0.4
plotted in Fig. 4.17 show that the value of εw becomes small for a fixed value of nbin if we
take N = 256 rather than N = 512.

Although we expect that the value of εw converges into a certain value for nbin →
∞, it cannot be confirmed in the current computational resources since the calculation
with a large value of nbin requires O(n2

bin) arithmetics.9 Here, we estimate the systematic
uncertainty as the range of εw observed in Fig. 4.17,

εw ' 2 ± 1. (4.84)

This corresponds to the mean energy of radiated axions,

〈ωa(td)〉/ma(td) =
√

1 + ε2w = 2.2 ± 0.9. (4.85)

We will use this result when we calculate the relic abundance of axions produced from
collapse of string-wall systems in Sec. 4.6.

The limitation of the dynamical range of the simulation is provided by the conditions
described above Eq. (4.44). Especially, the condition that the width of strings δs should be

9There are O(n2
bin) arithmetics because we need to calculate matrices in Eq. (C.34).
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grater than the lattice spacing ∆xphys might be marginally violated at the end of the simu-
lation. It is not confident that our choice, δs/∆xphys ' 1.07 at the end of the simulation,
is safe enough. To clarify this point, we performed the set of test simulations with smaller
dynamical range and larger string width by tuning the grid size N and the box size L. We
chose two set of parameters, (N = 512, L = 10) and (N = 256, L = 10), corresponding
to the string width δs/∆xphys|τ=6 ' 4.27 and 2.13, respectively. Since the box size L = 10
is half of the full simulation with L = 20, we cannot run the simulation beyond the time
τ = 6, otherwise the condition on the Hubble radius described above Eq. (4.44) might be
violated. In Fig. 4.18, we compare the results of these test simulations with the results
found in simulations with larger dynamical range (N = 512, L = 20). We confirmed that
there is no dramatic change in results of the time evolution of scaling parameters, except
that the error bars become slightly larger for the simulation with smaller dynamical range.
This result quantitatively supports our supposition that the dynamical range does not much
affect the results of the simulations. However, as we see in Fig. 4.18 (c), the result of the
energy spectrum in the simulation with high resolution (N = 512, L = 10) deviates from
others at wavenumber k & 50. This indicates that at wavenumber greater than k ∼ 50
the result depends on the spatial resolution, but the result is robust at small wavenumber
k . 50. We may overestimate the abundance of small scale modes, but it does not much
affect the final results since their contribution is subdominant.

4.5 Axion production from long-lived domain walls
Next, let us consider the case withNDW > 1. In this case, we also compute the spectrum of
gravitational waves radiated from domain walls in addition to the spectrum of axions, since
there is a speculation that long-lived domain walls lose their energy by radiating gravita-
tional waves at the late time of their evolution [38, 142]. In Sec. 4.7, we will determine
the amount of radiated axions and gravitational waves by using the spectra obtained in this
section.

4.5.1 Production of axions

We computed the power spectrum of free axions from data of the scalar field obtained in
three-dimensional simulations presented in Sec. 4.2.2. In the case with NDW > 1, axions
are continuously produced from stable domain walls in the scaling regime. Hence we must
compute the spectrum of axions in the scaling regime, rather than that in the decay time td
defined in the case with NDW = 1.

Here, in order to compute the spectrum of axions produced from scaling domain wall
networks, we modify some computational procedures from that used in the previous sec-
tion. One modification is that we mask the position of the core of domain walls in addition
to that of strings. This is because the core of domain walls becomes dominant source of
contaminations for the spectrum of axions in the case with NDW > 1. This situation is
opposed to the case with NDW = 1 (short-lived domain walls), where we did not mask
the core of domain walls. The reason why we ignored the contamination from the core
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Figure 4.18: The comparison between simulations with larger dynamical range (N = 512,
L = 20) and that with smaller dynamical range (N = 512, L = 10) and (N = 256, L = 10)
on the result of (a) time evolution of the length parameter, (b) time evolution of the area
parameter and (c) power spectrum of free axions evaluated at time t1 with nbin = 25. In
these simulations, we choose the same set of parameters shown in Table 4.1 except that
κ = 0.4. Note that we cannot calculate the difference of power spectrum Pdec(k, td) and
the mean momentum k̄(td), since the time td is beyond the final time in the simulation with
smaller dynamical range.
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of domain walls in the analysis of axion production from short-lived domain walls may
be explained as follows. In the case with NDW = 1, as described in the previous section,
we compute the spectrum of radiated axions in two time slices t1 and td. At t = t1 (wall
formation time), the energy of domain walls is smaller than that of strings, and hence the
core of strings dominantly contaminates the power spectrum of axions. Furthermore, since
the width of domain walls is comparable with the Hubble radius δw ' m−1

a ∼ t−1
1 , it is

impossible to identify domain walls as localized defect in this epoch. The effect of the
core of domain walls is also ignored at t = td, since most of the walls disappeared at this
time (recall that the decay time td was defined such that the area parameter of domain walls
becomes less than A . 0.01 at that time). On the other hand, in the case with NDW > 1,
the energy of walls becomes higher than that of strings at the late time of the simulation
(we will explicitly confirm it later). At that time, the width of walls δw ' m−1

a becomes
sufficiently shorter than Hubble radius, and we can identify walls as localized defects.
Therefore, the core of walls may contaminate the spectrum of radiated axions in the case
with long-lived domain walls.

The other modification is that we compute the spectra at two time slices tA and tB
where tA and tB are different from t1 and td used in the analysis for the case withNDW = 1,
and subtract the spectrum obtained at tA from that obtained at tB in order to remove the
contaminations from initial conditions. Since we are interested in the spectrum of axions
radiated from domain walls in the scaling regime, we fix tA at the time when the system
begins to follow the scaling behavior. It is expected that the feature of the spectrum (such as
the location of the peak) does not change once domain walls enter into the scaling regime,
and the mean energy 〈ωa〉 of radiated axions does not depend on the choice of time tB at
which 〈ωa〉 is computed. We will confirm it by computing the spectra for various values of
tB.

Figure 4.19 shows the results for P (k, tf ) for various values of NDW evaluated at the
final time of the simulation (tB = tf ). We find that the spectrum has a peak around the
momentum scale determined by the mass of the axion, k/R(tf ) ∼ ma, or k ∼ R(tf )ma ∼
2. However, this peak does not seem to fall off, but makes a tail at higher momenta. This
tail-like feature was also found in the spectrum of axions radiated from short-lived networks
(see Fig. 4.14). Again, the appearance of this high-frequency tail can be understood in
terms of the conjecture made in Refs. [54, 38, 55, 56]. The strings whose radius smaller
than the horizon size quickly decay due to the tension of domain walls in the time scale
comparable to (or less than) the Hubble time. This fast process does not change much the
energy spectrum of the axion field composing the string configuration, which has a form
dE/dk ∼ 1/k with a high-momentum cutoff of order δ−1

s (the width of strings) and a
low-momentum cutoff of order t−1 (the Hubble radius) [55]. This 1/k behavior makes a
tail in the spectrum of radiated axions, as we see in Fig. 4.19. This argument cannot be
applied for the spectrum of axions produced by global strings [57, 58], which has a sharp
peak at the horizon scale since in the absence of domain walls the strings lose their energy
in the time scale much longer than the Hubble time. The high-momentum cutoff which is
given by the width of the string ∼ δ−1

s is not clearly shown in Fig. 4.19 because of the poor
resolution at the final time of the simulation.

Note that the amplitude of the high-frequency tail becomes small if we increase the
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domain wall number NDW. In the case of large NDW, the decay of loops of strings with
small curvature radius might be “frustrated”, because of the tension of domain walls acting
on the strings from various directions. Then, the radiation of hard axions with spectrum
∼ 1/k is suppressed, compared with the case of small NDW.

We emphasize that our conclusion will be different from that made in [38] in support
of [55, 56]. In Ref. [38] it was claimed that the spectrum of axions radiated by domain walls
behaves as ∼ 1/k in the whole frequency domain, and hence the mean energy of radiated
axions is proportional to ln(

√
λη/ma) ∼ 60, which suppresses the relic abundance of

cold dark matter axions. Our result, however, shows that the spectrum does not behave
like ∼ 1/k except for the high-frequency modes, and most axions are mildly relativistic,
making a peak at the low frequency. This result supports the interpretation that most axions
are produced by the self-interaction of domain walls whose width is given by the inverse
of the mass of the axion ∼ m−1

a , which is different from the claim in [38] where axions are
dominantly produced by the fast decay process of wall bounded by strings. Hence the mean
energy of radiated axion is given by ma, and there is no correction like ln(

√
λη/ma) ∼ 60.

This fact implies that the relic abundance of axions becomes large compared with the result
of [38] and leads to severe constraints on the axion models, as we will see in Sec. 4.7.

The above observation can be confirmed by estimating the energy of radiated axions.
Roughly speaking, the product P (k)k represents the fraction of the energy density of ax-
ions with comoving wavenumber k against the total energy of axions. Hence the ratio of
the energy between hard axions which contribute to the tail of the power spectrum and the
energy of axions which contribute to the peak of the power spectrum can be estimated as
Ehard/Epeak ∼ [P (khard)khard]/[P (kpeak)kpeak] ∼ [O(10−6)×O(10)]/[O(10−4)×O(1)] ∼
10−1. On the other hand, the ratio between the energy of domain walls and the energy of
strings at the final time of the simulations becomes Estring/Ewall ∼ [tfµstring]/[t

2
fσwall] ∼

10−1. Therefore, strings have 10% of the energy of domain walls at the final time, which
contributes to the hard component ∼ 1/k of the power spectrum of radiated axions. Since
the fraction Estring/Ewall decreases with time, we expect that the amplitude of the high-
frequency tail would be negligible compared with the height of the peak of the spectrum if
we follow the evolution for much larger dynamical ranges.

Since the population of the axions radiated by string-wall networks is dominated by
low-momentum modes which has the frequency comparable to the mass of the axion ma,
we expect that the mean energy of radiated axions is determined by the parameter ma.
Here, using the result of P (k, tB), where tB is chosen at the late time of the simulation [see
Eq. (C.39)], we compute the mean comoving momentum of radiated axions

k̄(tB) ≡
∫

dk
2π2P (k, tB)∫
dk
2π2

1
k
P (k, tB)

, (4.86)

and its ratio to the axion mass

εa ≡ k̄(tB)/R(tB)

ma

. (4.87)

The results are shown in Table 4.5. We see that the value of the mean momentum is not
strongly depend on the number NDW. However, the uncertainty becomes large for the case
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with large NDW. This is because a large portion of the simulation box is masked when we
evaluate the power spectrum, which causes a large systematic errors when we evaluate the
spectrum in the large scale, as shown in Fig. 4.19.

Table 4.5: The values of mean comoving momentum k̄ and parameter εa defined in
Eqs. (4.86) and (4.87) for various values of NDW.

NDW k̄ εa
2 2.38±0.28 1.19±0.14
3 2.38±0.25 1.19±0.12
4 2.63±0.29 1.31±0.15
5 2.97±0.45 1.49±0.22
6 3.07±0.42 1.54±0.21

The claim is that the parameter defined by Eq. (4.87) does not depend on the time tB.
To confirm it, we calculate the parameters k̄ and εa at different time steps, while fixing the
reference time τA = 14 in Eq. (C.39). The results are shown in table 4.6. We find that the
value of k̄ changes proportionally to R(tB). On the other hand, the ratio εa between the
physical momentum k̄/R and the axion mass ma remains constant. Therefore, we use the
parameter εa as a constant of O(1) when we perform the analytic investigations in Sec. 4.7.

Table 4.6: The values of k̄ and εa evaluated at different times τB for the case withNDW = 3.

τB k̄ εa
24 1.42±0.22 1.19±0.18
28 1.62±0.13 1.15±0.09
32 1.88±0.19 1.18±0.12
36 2.04±0.22 1.13±0.12
40 2.38±0.25 1.19±0.12

We close this subsection by showing Fig. 4.20, the time evolution of the total energy
density of axions and topological defects in the simulation box. From this figure, we see
that the domain wall networks evolve as ρwall ∼ 1/t, or ρwall ∼ 1/τ 2 in conformal time.
This behavior is expected from the property of the scaling solution, given by Eq. (4.14).
We also find that the energy density of axions radiated by string-wall networks behaves
similarly to that of topological defects at the late time. We will confirm this behavior in
Sec. 4.7.1.
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Figure 4.20: Time evolution of energy densities for various values of NDW. ρdefects rep-
resents the energy density of the string-wall networks which is evaluated by summing up
the data of scalar field placed near the defects whose position is identified by using the al-
gorithm described in Appendix C.2. ρa,kin, ρa,grad, and ρa,pot are the kinetic, gradient, and
potential energy density of radiated axions, respectively. ρa,tot is the sum of ρa,kin, ρa,grad,
and ρa,pot. These energy densities of axions are evaluated by subtracting the data of scalar
field which contribute to ρdefects.
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4.5.2 Production of gravitational waves
Next, we investigate the production of gravitational waves from string-wall networks. The
spectrum of gravitational waves is represented by the quantity

Ωgw(k, t) =
1

ρc(t)

dρgw(k, t)

d ln k
, (4.88)

where ρc(t) is the critical density of the universe at the time t, and ρgw is the energy density
of gravitational waves. We compute Ωgw using the data of the scalar field Φ obtained from
the numerical simulation. The method of the calculation is summarized in Appendix C.4.

Figure 4.21 shows the results for Ωgw(k, t) for various values of NDW. The slope
of the spectrum changes at two characteristic scales. One is the Hubble radius (k ∼
2πR(τf )H(τf ) ∼ 0.1) and another is the width of the domain wall (k ∼ R(τf )ma ∼ 2).
This result agrees with the general argument made in [169]. However, the amplitude of
Ωgw at high momenta is enhanced for the case with large NDW. This can be interpreted as
follows. Since the number of domain walls is large in the model with large NDW, domain
walls are “frustrated”, and there are many small scale configurations whose correlation
length is shorter than the Hubble radius. Therefore, the small scale anisotropy becomes
enhanced in the model with large domain wall number NDW. We also plot the spectrum
of gravitational waves produced by domain walls in the real scalar field theory given by
Eqs. (4.63) and (4.64). Although the evolution of domain wall networks shown in Fig. 4.11
is similar between the model with NDW = 2 and the model with real scalar field, the form
of the spectrum of gravitational waves is slightly different between these two models at
high momenta. This might be caused by the different form of the effective potential which
determines the small scale structure of the defects.

As we see in Fig. 4.20, at the early times (τ . 15) topological defects do not relax
into the scaling regime. However, the nonlinear dynamics of scalar fields during this initial
stage produces a “burst” of gravitational waves, which may contaminate the spectrum of
gravitational waves produced at late times where the defect networks evolve along to the
scaling solution. We subtract this contribution with the same manner that we used for the
subtraction of axions produced at the initial stage [see Eq. (C.58)]. Figure 4.22 shows the
time evolution of the spectrum of gravitational waves, where we compare the effect of this
subtraction procedure. We see that the form of the spectrum is different at early times if
we make a subtraction. In particular, there is a bump at the scale given by the Hubble
radius k/R ∼ H , and a plateau which falls off at the scale given by k/R ∼ ma. This form
is different from that found in Refs. [165, 169], where a nearly “flat” spectrum extends
between two characteristic scales. It seems that this difference in the form of spectra is
caused by the contamination of radiations produced at the initial relaxation regime. We
also note that the dynamical range of the past numerical studies (τf/τi ' 12) [165, 169] is
shorter than that of the present studies (τf/τi = 20). Therefore, the bump-like feature is
less apparent in the past numerical studies with shorter dynamical ranges. The form of the
spectrum at the final time of the simulation is similar between the result with subtraction
and that without subtraction, which indicates that contaminations of the initial stage are
diluted due to the cosmic expansion.
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Figure 4.21: The spectra of gravitational waves for various values of NDW. The plot de-
noted as “real” shows the spectrum of gravitational waves produced in the model with real
scalar field defined by Eqs. (4.63) and (4.64). In this figure, we normalized the vertical axis
by the amplitude at the peak momentum.
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Figure 4.22: The time evolution of the spectrum of gravitational waves for the case with
NDW = 3. Here, we plot the function Sk(τ) defined by Eq. (C.56) (top panel) and
∆Sk(τ) defined by Eq. (C.58) (bottom panel), which is proportional to Ωgw in the radiation-
dominated background. In the bottom panel, we subtract the contribution of gravitational
waves produced before the time τg = 15. The spectra are shown from the conformal time
τ = 20 (pink) to τ = 40 (green) with the interval ∆τ = 5.
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The spectrum shown in Fig. 4.21 is normalized in terms of the peak amplitude in order
to give the relative form of the spectrum between different theoretical parameter NDW. On
the other hand, the total amplitude of gravitational waves is determined by the following
arguments. Since the spectrum of gravitational waves has a peak at the momentum which is
given by the Hubble scale, we regard that the most of the gravitational waves are generated
at the length scale ∼ t. Suppose that the radiation of gravitational waves occurs with the
time scale comparable to the Hubble time. The power of gravitational waves radiated from
domain walls is estimated by using the quadrupole formula [170]

P ∼ G
...
Qij

...
Qij. (4.89)

Here,Qij ∼MDWt
2 is the quadrupole moment, andMDW ∼ ρwallt

3 ∼ σwallAt2 is the mass
energy of domain walls, where we used Eq. (4.51). The energy of gravitational waves is
estimated as

Egw ∼ Pt ∼ GA2σ2
wallt

3. (4.90)

We see that the energy density of gravitational waves does not depend on the time t

ρgw ∼ Egw/t
3 ∼ GA2σ2

wall. (4.91)

Now, we define the efficiency εgw of gravitational waves

ρ(sim)
gw ≡ εgwGA2σ2

wall, (4.92)

where ρ(sim)
gw is the total energy density of gravitational waves computed from numerical

simulations. We plot the time evolution of the parameter εgw in Fig. 4.23. Although the
value of εgw does not remain in constant exactly, it seems to converge into a universal value
of O(5-10).

We note that the time dependence of εgw is strongly affected by the choice of the time
τg at which we subtract the contribution of gravitational waves produced in the initial relax-
ation regime [see Eq. (C.58)]. This is shown in Fig. 4.24, where we plot the time evolution
of εgw for various values of τg. If we choose τg at an early time of the simulation, ρ(sim)

gw con-
tains the contribution of gravitational waves produced during the initial relaxation regime.
Hence the behavior of ρ(sim)

gw might be different from what we expect from Eq. (4.92), where
we assumed that the energy density of domain walls is given by the scaling formula (4.51).
This additional contribution is not negligible even at the late time of the simulations be-
cause the dynamical range of the numerical simulation is short. This constancy of εgw

should be tested in future numerical studies with improved dynamical ranges. Since the
time variation of εgw is small for the large value of τg, as shown in the plot of τg = 25
in Fig. 4.24, we assume that εgw takes a constant value when string-wall networks enter
into the scaling regime, and use the value εgw ' 5 when we estimate the abundance of
gravitational waves in Sec. 4.7.

4.6 Constraints for models with NDW = 1

In this section, we calculate the abundance of dark matter axions produced from short-lived
domain walls by using the result obtained in Sec. 4.4. Combining with other contributions,
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Figure 4.23: The time evolution of the efficiency parameter εgw defined by Eq. (4.92) for
various values of NDW. The points denoted as “real” show the evolution of εgw in the
model with real scalar field defined by Eqs. (4.63) and (4.64). In this figure, we subtract
the contribution of gravitational waves produced before the time τg = 15.
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Figure 4.24: The time evolution of εgw and its dependence on the choice of τg. In this
figure, we plot the result of the model with NDW = 3.

we derive constraints for models with NDW = 1 (scenario IIA).
Define the area parameter of domain walls at t = t1

A1 ≡
ρwall(t1)

σwall(t1)
t1, (4.93)

and the length parameter of strings at t = t1

ξ1 ≡
ρstring(t1)

µstring(t1)
t21. (4.94)

The string-wall networks begin to collapse around the time t = t1. We simply assume that,
after the time t1, the whole energy stored in these defects is diluted as R−3(t) due to the
cosmic expansion

ρstring-wall(t) =

[
A1

σwall(t1)

t1
+ ξ1

µstring(t1)

t21

](
R(t1)

R(t)

)3

for t > t1. (4.95)

Suppose that the decay completes at the time td (> t1). The number density of axions
produced by the decay of string-wall networks is

na,dec(t) =
ρstring-wall(td)

〈ωa〉

(
R(td)

R(t)

)3

=
1√

1 + ε2wma(td)

[
A1

σwall(t1)

t1
+ ξ1

µstring(t1)

t21

](
R(t1)

R(t)

)3

, (4.96)
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where 〈ωa〉 =
√

1 + ε2wma(td) is an average of the energy of radiated axions [see Eq. (4.85)].
The above expression does not depend on td except for the factor 1/ma(td). Since the

change in the mass of the axion can be negligible (|ṁa/m
2
a| ' H/ma < 1) for t > t1,

we can approximate ma(td) ≈ ma(t1). Then, the present energy density of axions radiated
after t1 is given by

ρa,dec(t0) = ma(0)na,dec(t0) =
ma(0)√

1 + ε2wma(t1)

[
A1

σwall(t1)

t1
+ ξ1

µstring(t1)

t21

](
R(t1)

R(t0)

)3

.

(4.97)
The density parameter of axions radiated from the decay of defects is given by

Ωa,dech
2 = 8.46 × 10−2 × 13.8A1 + 217ξ1√

1 + ε2w

×
(g∗,1

70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
. (4.98)

As we discussed in Sec. 4.2.1, we use the conservative estimations ξ1 ' 1.0 ± 0.5 and
A1 ' 0.50± 0.25. Also, discussion in Sec. 4.4 revealed that there are some ambiguities in
the determination of εw. Here, we use the estimation εw ' 2± 1, taking account of various
uncertainties in numerical calculations. Substituting these values, we finally obtain

Ωa,dech
2 = (8.5 ± 5.3) ×

(g∗,1
70

)−(n+2)/2(n+4)
(

Fa

1012GeV

)(n+6)/(n+4)(
ΛQCD

400MeV

)
.

(4.99)
Comparing Eq. (4.99) with Eqs. (3.47) and (4.79), we see that the contribution from domain
wall decay is comparable with that from misalignment production and string decay. This
result supports the conclusion of Refs. [48] and [140, 141].

The total abundance of cold dark matter axions is given by the sum of Eqs. (3.47),
(4.79) and (4.99),

Ωa,toth
2 = Ωa,0h

2 + Ωa,stringh
2 + Ωa,dech

2

= (11.8 ± 5.4) ×
(g∗,1

70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
, (4.100)

where we used n = 6.68 according to [79]. The large uncertainty arises from the poor
determination of the scaling parameter ξ ' 1.0± 0.5 and the peak location in the spectrum
of radiated axions εw ' 2 ± 1. The value of ξ might be fixed by developing the model of
the evolution of global string networks, such as the study given by [163]. Also, future high-
resolution simulations will resolve the uncertainty in εw. We require that Ωa,toth

2 must not
exceed the observed value of the abundance of the cold dark matter ΩCDMh

2 = 0.11 [6].
This gives an upper bound for the axion decay constant

Fa . (1.4-3.3) × 1010GeV, (4.101)

if we take g∗,1 = 70 and ΛQCD = 400MeV. This bound is severer than Eq. (3.48), which
is obtained by considering only the contribution of coherent oscillations. We note that



89

the other group [79] already reported another bound Fa . 3.2+4
−2 × 1010GeV as severe

as obtained here, although they considered only the contribution of axionic strings. We
believe that this severity would come from the larger scaling parameter ξ ≈ 13 used in their
analysis than our numerical prediction ξ ≈ 1, which overestimates the relic abundance of
axions radiated by strings. In this sense, we regard that the axion string constraint is milder
than that indicated by Eq. (4.101).

As we mentioned in Sec. 2.5.4, there is a lower bound Fa & 109GeV which comes
from astrophysical observations. Combining this lower bound with the bound (4.101), we
conclude that axion models are constrained into the narrow parameter region Fa ' 109-
1010GeV, which corresponds to the axion mass ma ' 10−3-10−2eV.

4.7 Constraints for models with NDW > 1

In this section, we give constraints on the parameters of axion models with long-lived do-
main walls (scenario IIB), using the results of numerical studies described in Secs. 4.2.2
and 4.5. First, we calculate the relic abundance of cold axions and gravitational waves
produced by string-wall networks in Sec. 4.7.1. In Sec. 4.7.2, constraint on the magnitude
of the bias parameter is described. In Sec. 4.7.3, we combine various observational con-
straints, and discuss their implications on the models with NDW > 1. We find that the
overabundance of the cold axions produced by domain walls gives a stringent bound on
the model parameters, which excludes the most part of models, except for tiny loopholes.
Finally we comment on some exceptions in Sec. 4.7.4.

4.7.1 Axion cold dark matter abundance

The relic abundance of axions produced from long-lived domain walls can be estimated
similarly as to how we did with Sec. 4.3. Here we assume that the energy of strings be-
comes negligible compared with that of domain walls, and axions and gravitational waves
are only produced by domain walls. In this approximation, the evolution of energy densi-
ties for domain walls, axions, and gravitational waves is described by the following coupled
equations

dρwall

dt
= −Hρwall −

dρwall

dt

∣∣∣∣
emission

, (4.102)

dρa

dt
= −3Hρa +

dρw→a

dt
, (4.103)

dρgw

dt
= −4Hρgw +

dρw→g

dt
, (4.104)

where
dρwall

dt

∣∣∣∣
emission

=
dρw→a

dt
+
dρw→g

dt
(4.105)
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is the rate of radiation from domain walls. Following from Eqs. (4.51) and (4.92), we put
an ansatz on the behavior of the energy densities of domain walls and gravitational waves

ρwall = Aσwall

t
, and ρgw = εgwGA2σ2

wall, (4.106)

where A and εgw are constants. Substituting these expressions to the above equations, we
obtain

dρwall

dt

∣∣∣∣
emission

= Aσwall

2t2
, (4.107)

dρw→g

dt
= 2εgw

GA2σ2
wall

t
. (4.108)

From Eqs. (4.105), (4.107), and (4.108), we find

dρw→a

dt
= Aσwall

2t2
− 2εgw

GA2σ2
wall

t
. (4.109)

Note that the sign of the right hand side of this equation becomes negative for t & (Gσwall)
−1.

This is not problematic, since domain walls have to collapse before the time t ∼ (Gσwall)
−1

otherwise they overclose the universe [see Eq. (4.16)].
Let us define the energy and number of axions per comoving box

Ea,dec(t) ≡ R3(t)ρa(t), (4.110)
Na,dec(t) ≡ R3(t)na(t), (4.111)

where na(t) is the number density of axions at the time t. Integrating Eqs. (4.103) and
(4.109), we find

Ea,dec(t) =

∫ t

t1

dt′R3(t′)

[
Aσwall

2
t−2 − 2εgwGσ

2
wallA2t−1

]
, (4.112)

where t1 is the time when domain walls begin to radiate axions, which might be chosen as
the time of the QCD phase transition. In the regime t� t1, it reduces to

Ea,dec(t) ' R3(t)

(
Aσwall

t
− 4

3
εgwGσ

2
wallA2

)
. (4.113)

For sufficiently early times t � (Gσwall)
−1, the first term of Eq. (4.113) dominates over

the second term, which leads to the behavior ρa ∝ 1/t. This agrees with what we observed
in numerical simulations, shown in Fig. 4.20. The ratio between Ea,dec(t) andNa,dec(t) can
be determined by the result of numerical simulations

Ea,dec(t)

Na,dec(t)
=
√

1 + ε2ama, (4.114)
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where εa is defined by Eq. (4.87). Suppose that domain walls disappear at the time tdec and
the radiation of axions and gravitational waves is terminated at that time. In this case, the
energy densities of axions and gravitational waves at the present time t0 are given by

ρa,dec(t0) =
maNa,dec(tdec)

R3(t0)

=
1√

1 + ε2a

(
R(tdec)

R(t0)

)3(
Aσwall

tdec

− 4

3
εgwGσ

2
wallA2

)
, (4.115)

ρgw(t0) =

(
R(tdec)

R(t0)

)4

εgwGA2σ2
wall. (4.116)

The annihilation of domain walls occurs in the time scale estimated by Eq. (4.62)

tdec =
k2

d

4

(
ma

NDWΞη2

)
, (4.117)

where kd is given by Eq. (4.61). Note that the relation

R(tdec)

R(t0)
= 6.43 × 10−10 × kdN

−3/2
DW

(
1010GeV

Fa

)3/2(
10−58

Ξ

)1/2

. (4.118)

Substituting Eqs. (4.117) and (4.118) into Eqs. (4.115) and (4.116), we obtain the density
parameter of axions and gravitational waves

Ωa,dec(t0)h
2 =

ρa,dec(t0)

ρc(t0)/h2

= 1.68 × k3
dA√

1 + ε2a
N

−3/2
DW

(
10−58

Ξ

)1/2(
1010GeV

Fa

)1/2

×

[
1 − 5.35 × 10−3 × εgwAN−3

DW

(
10−58

Ξ

)(
1010GeV

Fa

)2
]
, (4.119)

Ωgw(t0)h
2 =

ρgw(t0)

ρc(t0)/h2

= 4.33 × 10−12 × k4
dεgwA2N−6

DW

(
10−58

Ξ

)2(
1010GeV

Fa

)4

, (4.120)

We can fix the numerical values of kd, A, εa and εgw from the results of numerical sim-
ulations. Then, the relic abundance of axions and gravitational waves is determined by
three theoretical parameters: NDW, Ξ, and Fa. The second term in the square bracket in
Eq. (4.119) represents the effect of gravitational radiation, which is negligible at early times
but becomes relevant when domain walls survive for a long time. In particular, when do-
main wall survives enough time such that they overclose the universe, tdec ∼ (Gσwall)

−1,
the contribution of the second term in the square bracket in Eq. (4.119) becomes O(1).
In such a case, the gravitational field around walls cannot be regarded as a small perturba-
tion [40], and we must use the full general relativistic treatment, which is out of the scope of
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this work. Hence, the expression (4.119) is valid only for the time t� tWD ∼ (Gσwall)
−1.

This condition is automatically satisfied as long as we consider the parameter region where
domain walls do not overclose the universe.

The total abundance of cold dark matter axions is given by the sum of the coherent os-
cillation [Eq. (3.47)], the string decay [Eq. (4.79)] and the domain wall decay [Eq. (4.119)],

Ωa,toth
2 = Ωa,0h

2 + Ωa,stringh
2 + Ωa,dech

2. (4.121)

where

Ωa,0(t0)h
2 ' 1.2 ×

(
Fa

1012GeV

)1.19

, (4.122)

Ωa,string(t0)h
2 ' 2.0 ×

(
Fa

1012GeV

)1.19

. (4.123)

In the above expressions, we fixed the QCD scale such that ΛQCD = 400MeV. Again, we
require that Ωa,toth

2 should not exceed the observed value of the abundance of cold dark
matter ΩCDMh

2 = 0.11. This gives an upper bound on Fa and a lower bound on Ξ.

4.7.2 Neutron electric dipole moment
Next, we consider the effect of the Ξ term on the degree of strong CP-violation, following
Refs. [42, 43, 45, 44]. As we described in Sec. 2.1, the recent experimental bound on the
NEDM requires

θ̄ < 0.7 × 10−11. (4.124)

The original idea of Peccei and Quinn is to set θ̄ = 0 by introducing a symmetry [11, 12].
However, if the additional term (4.17) exists in the effective potential, it shifts the CP-
conserving minimum with a magnitude controlled by the parameters Ξ and δ.

Substituting the parametrization Φ = ηeia/η into the effective potential given by Eqs. (4.8)
and (4.17), and expanding for small a/η, we obtain the effective potential for a

V (a) ' 1

2
m2

physa
2 −m2

physFaθ̄a, (4.125)

where mphys is the effective mass of the axion

m2
phys = m2

a +m2
∗ ≡ m2 + 2ΞN2

DWF
2
a cos δ, (4.126)

and θ̄ is the shifted minimum

θ̄ =
〈a〉
Fa

=
2ΞN3

DWF
2
a sin δ

m2
a + 2ΞN2

DWF
2
a cos δ

. (4.127)

Requiring that this should not exceed the experimental bound (4.124), we obtain an upper
bound for Ξ.
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4.7.3 Implication for models
In Fig. 4.25, we plot the observational constraints described in the previous subsections.
Based on the estimation given by Eq. (4.121), we find that the overabundance of cold axions
gives a stringent lower bound on the bias parameter, Ξ & 10−50-10−52. This lower bound is
much stronger than that obtained from the overclosure of domain walls (4.21). Combined
with the NEDM constraint, it completely excludes the parameter region if we assume that
the phase δ of the bias term (4.17) is O(1). This bound might be weakened if we assume
the extremely small value of δ, but this assumption spoils the genius of the original PQ
solution to the strong CP problem. We must fine-tune δ in order to solve the fine-tuning
problem of θ̄.

We find that the amplitude of gravitational waves produced by domain walls is weak
Ωgwh

2 . 10−20 in the parameter space considered above. This is irrelevant to any obser-
vations, since even the ultimate phase of DECIGO [171], which is a space-borne interfer-
ometer planned to launch in the future, will have a sensitivity Ωgwh

2 ∼ 10−18 [172]. The
weakness of the signal of gravitational waves is due to the fact that domain walls annihilate
in early epoch in order to avoid the overclosure of axions produced from them, and the
dilution factor of cosmic expansion becomes large.

From the results shown in Fig. 4.25, we conclude that the axion models with NDW > 1
are excluded if the PQ symmetry is broken after inflation. The exception is the case in
which the value of δ is suppressed. Note that the degree of tuning in δ to avoid observa-
tional constraints is affected by uncertainty in kd used in Eq. (4.119). As we discussed in
Sec. 4.2.2, results for kd vary due to unphysical nature of the numerical simulation. Taking
into account of this uncertainty, we obtain critical value of δ as δcrit = 0.023-0.006 which
corresponds to kd = 7.5-9.5 [see Eq. (4.61)]. If δ is smaller than this value, there are still
allowed regions in Fa-Ξ parameter space. By using Eqs. (4.119) and (4.127), one can show
that this degree of tuning does not strongly depend on the value of NDW. Hence, about
O(1-0.1)% fine-tuning is required regardless of the value of NDW.

4.7.4 Scenario with extremely small δ
Although there is no theoretical reason to consider the extremely small value of δ, it is
possible, by accident or design of some fundamental physics, to yield δ whose value is
small enough to avoid the NEDM bound. Let us comment on such a situation. In this
case, the value of Ξ can take larger value than that we considered so far. In particular, if Ξ
becomes as large as

Ξ > 2 × 10−45N−2
DW

(
1010GeV

Fa

)4

, (4.128)

the axion mass is not determined by QCD instanton effect, but by the correction term
m∗ [see Eq. (4.126) and also Ref. [44]]. Then, the cosmological history is significantly
modified.

When the condition (4.128) is satisfied, the magnitude of the bias term (4.17) exceeds
that of the QCD potential (4.8). Hence, “domain walls” with the tension σwall ' 8m∗F

2
a

are formed when the Hubble parameter becomes H ' m∗. The subsequent history is
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Figure 4.25: The various observational constraints in the parameter space of Fa and Ξ.
The green dashed-line represents the parameter region estimated by Eq. (4.121) where
Ωa = ΩCDM is satisfied, and the region below this line is excluded since the relic abundance
of axions exceeds the cold dark matter abundance observed today. The vertical dotted-line
represents the bound given by Eq. (2.68) which comes from the observation of supernova
1987A. The red solid-lines represent the NEDM bound given by Eqs. (4.124) and (4.127)
for δ = 1, 10−4, and 10−8. The region above these lines is excluded since it leads to an
experimentally unacceptable amount of CP-violation. The pink line represents the NEDM
bound for the critical value δcrit = 1.1 × 10−2 for kd = 8.5. There are still allowed regions
if the value of δ is smaller than this critical value. The blue dotted-lines represent the
parameter regions on which the amplitude of gravitational waves, given by Eq. (4.120),
becomes Ωgwh

2 = 10−20 and 10−22. In this figure, we fixed other parameters as NDW = 6,
kd = 8.5, εa = 1.5, A = 2.6, and εgw = 5.
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categorized into two possibilities, analogously to the scenarios described in Sec. 4.1. One
possibility is that strings are get attached by domain walls at the time t ∼ m∗, and they
quickly disappear due to the tension of walls. Let us call this scenario case (a). On the
other hand, if the structure of the term (4.17) is the form ∝ Φn, where n is an integer,
n domain walls are attached to strings, and they survive for a long time. Let us call this
scenario case (b). These string-wall networks annihilate due to the effect of a “bias” term
which arises from the QCD instanton effect, δV ∼ Λ4

QCD ∼ m2
aF

2
a . This occurs at the time

tdec,∗ ∼ σwall/Λ
4
QCD ∼ 8m∗/m

2
a. Requiring that domain walls should disappear before the

epoch of big bang nucleosynthesis (BBN), tdec,∗ < tBBN ∼ 1sec, we obtain

Ξ < 2 × 10−23 ×N−2
DW

(
Fa

1010GeV

)−6

. (4.129)

In case (a), the abundance of axions is estimated in the usual way, as a sum of the
coherent oscillation, strings, and decay of domain walls bounded by strings. The num-
ber of axions is fixed at t ∼ t∗ ≡ m−1

∗ . At that time, the energy density of axions is
given by ρa(t∗) ∼ 10 × m2

∗F
2
a , where the factor 10 arises from the fact that the abun-

dance of axions becomes larger by an order of magnitude if we include the contribu-
tion of strings and domain walls (see Sec. 4.6). The present energy density becomes
ρa(t0) ∼ 10(R(t∗)/R(t0))

3m2
∗F

2
a , which leads

Ωnt
a(case (a))h

2 ' 1.3 × 10−5 ×N
1/2
DW

(
Ξ

10−45

)1/4(
Fa

1010GeV

)5/2

, (4.130)

where the subscript “nt” indicates that they are produced non-thermally.
Axions are also produced from thermal bath of the primordial plasma (see Sec. 3.1).

The difference from the usual scenario is that the axion mass is given by m∗ so that their
relic energy density can be large. The number of axions is fixed when their interactions
with the thermal bath with the process mediated by gluons freeze out. Their number at the
present time is given by 10 nth

a (t0) ' 7.8cm−3, which leads

Ωth
a h

2 ' 3.3 × 10−7 ×NDW

(
Fa

1010GeV

)(
Ξ

10−45

)1/2

, (4.131)

where the subscript “th” indicates that they are produced thermally. For sufficiently large
value of Ξ, the contribution of thermal component (4.131) exceeds the non-thermal com-
ponent (4.130). Requiring that it should not exceed the present cold dark matter abundance
Ωth

a h
2 < 0.11, we obtain

Ξ < 1.1 × 10−34 ×N−2
DW

(
Fa

1010GeV

)−2

for case (a). (4.132)

10Here, we assume that the interaction with gluons is determined by the aGG̃ vertex in the effective
Lagrangian (2.28), while the axion mass is given by m∗. In this case, Eq. (3.21) can be applied. Note that
this estimation is applicable only if the value of Fa satisfies the condition (3.16).
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On the other hand, in case (b), axions are copiously produced from long-lived domain
walls. The relic abundance of axions produced by domain walls can be estimated by using
the argument analogous to that leads Eq. (4.119). Then we obtain

Ωnt
a(case (b))h

2 ' 9.1 × 10−5 ×N
3/2
DW

(
Ξ

10−45

)3/4(
Fa

1010GeV

)9/2

. (4.133)

In this case, the thermal component does not exceeds the non-thermal component. Requir-
ing that Ωnt

a(case (b))h
2 < 0.11, we obtain

Ξ < 1.3 × 10−41 ×N−2
DW

(
Fa

1010GeV

)−6

for case (b). (4.134)

This bound is more severe than that obtained from the lifetime of domain walls, given by
Eq. (4.129).

However, if Ξ is much larger than the values considered above, axions become heavy
and no longer stable. Their dominant decay channel is a decay into two photons. The
lifetime is given by

tγ = Γ−1
γ =

64π

m3
∗g

2
aγγ

= 1.1 × 1041sec ×N−3
DW

(
Ξ

10−45

)−3/2(
1010GeV

Fa

)
, (4.135)

where Γγ is the decay late of the process a → γγ, and we fixed the numerical coefficient
caγγ = 1 in the axion-photon coupling for simplicity. Since the axion mass is not given
by ma, we must treat m∗ and gaγγ as different parameters. Cosmological bounds on such
models are investigated in [173]. The heavy axions which decay at early times lead to
various effects on the cosmological observations, such as the distortion in the spectrum of
CMB, and the disagreement of the theoretical prediction with the observed light element
abundance. Each of the observations gives a severe constraints on the coupling gaγγ . In
order to avoid these constraints, the lifetime of axions must be short enough to decay earlier
than the onset of the BBN, tγ . 10−2sec. This requirement leads a bound

Ξ > 4.6 × 10−17 ×N−2
DW

(
Fa

1010GeV

)−2/3

. (4.136)

In summary, if the value of Ξ is sufficiently large, the mass of axions is determined by
the term proportional to Ξ, and this parameter is again constrained by various observational
considerations. In order to avoid the observational bounds, axions should be light enough
to avoid the overclosure of the universe, whose condition is given by Eq. (4.132) or (4.134),
or heavy enough to decay before the BBN epoch, whose condition is given by Eq. (4.136).



Chapter 5

Conclusions and discussion

The axion possesses curious and distinctive properties, which emerge from the connection
among particle physics, astronomy, and cosmology. Research on its properties leads to
some clues to understand the origin of dark matter and the early history of the universe. In
this thesis, we have investigated the production mechanisms of axions and their cosmolog-
ical implications. The cosmological scenario depends on two theoretical parameters, the
axion decay constant Fa (or the PQ symmetry breaking scale) and the domain wall number
NDW. Composition and behavior of dark matter axions differ in each scenario, which gives
some constraints on the model parameters.

Cosmological domain wall problem leads to serious constraints on the axion models.
Let us summarize its implications for each scenario.

• Scenario I. Inflation has occurred after the PQ phase transition. In this case, the dark
matter abundance is dominated by the coherent oscillation of the axion field. The
population of topological defects is wiped away beyond the horizon scale, and do-
main walls are not problematic. The axion decay constant Fa must take a high scale,
which lies in the anthropic window. The observation of the isocurvature fluctuations
in anisotropies of CMB gives constraints on the model parameters.

• Scenario IIA. Inflation has occurred before the PQ phase transition. Domain walls
disappear shortly after their formation (NDW = 1), and there is no cosmological
problem. The dark matter abundance is dominated by axions produced from the
decay of string-wall systems. The axion decay constant is constrained within the
classic window.

• Scenario IIB. Inflation has occurred before the PQ phase transition. Domain walls
lived for a long time (NDW > 1), and the existence of Ξ term annihilates them. This
possibility is almost excluded because of the overproduction of cold axions and the
constraint from the observation of NEDM. The exception is the case where the phase
δ of CP violating term is fine-tuned in an accuracy less than O(1-0.1)%. In this
case, however, the value of Ξ is still constrained by cosmology, such as Eqs. (4.132),
(4.134), and (4.136).
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In this thesis, the spectrum of axions produced by string-wall systems is computed nu-
merically. Two possibilities on the form of the spectrum of axions produced by topological
defects have been argued in the literature. One possibility is that the spectrum has a peak at
the typical scale such as the Hubble scale (for string decay) or the axion mass (for domain
wall decay) and that the decay of topological defects gives significant contributions on the
cold dark matter abundance (case A). Another possibility is that the spectrum becomes hard
(dE/dk ∝ 1/k), and that contributions on the cold dark matter abundance are subdominant
(case B). The current numerical studies of defect networks support case A. Taking account
of these results of numerical simulations, we expect that contributions of axions produced
by the decay of topological defects can be comparable with that of axions produced by the
misalignment mechanism in scenario IIA.

However, the results of current numerical simulations contain several uncertainties due
to the limitation of computational resources or the usage of some approximations. Let us
comment on the errors which should be taken into account in the estimation of axion cold
dark matter abundance.

• On the estimation of the contribution of zero modes [see Eq. (3.47)], the main un-
certainty comes from the calculation of anharmonic corrections. This might occur
due to the form of the temperature dependent axion mass. In other words, this is the
uncertainty in the determination of the time t1 at which axions begin to coherently
oscillate. Taking account of this uncertainty, we obtain the relic abundance of zero
modes as

Ωa,0h
2 = (1.10-1.39) ×

(g∗,1
70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
. (5.1)

• On the estimation of the contribution of the string decay [see Eq. (4.78)], the main
uncertainty comes from the determination of the length parameter ξ of global strings.
Regarding the fact that other numerical studies obtained various values of ξ, here we
use a conservative estimation ξ ' 1.0 ± 0.5. Using this value, we obtain the relic
abundance of axions produced by the string decay

Ωa,stringh
2 = (2.0 ± 1.0) ×

(g∗,1
70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
. (5.2)

• The wall decay contribution (4.98) depends on three parameters ξ1, A1, and εw,
which are determined by numerical simulations. The uncertainty of the area pa-
rameter A1 does not strongly affect the final result, since the energy of topological
defects is dominated by that of strings at the decay time of them. For the same reason
described above, the length parameter has a large uncertainty ξ1 ' 1.0±0.5. Further-
more, the value of εw changes up to the choice of the setup of numerical calculation.
However, it has been argued that this ambiguity is caused by the poor resolution of
the peak location in the spectrum. For now, taking account of this ambiguity in the
determination of εw, we estimate the uncertainty as εw ' 2 ± 1. For the estimation



99

of the relic abundance of axions produced by the decay of string-wall networks, we
obtain

Ωa,dech
2 = (8.5 ± 4.1) ×

(g∗,1
70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
, (5.3)

where we included uncertainties in ξ1 and A1, and used the value εw = 2. On the
other hand, if we include the uncertainty in εw, we obtain

Ωa,dech
2 = (8.5 ± 5.3) ×

(g∗,1
70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
. (5.4)

Hence we conclude that the uncertainty in εw is as large as that in ξ, which strongly
affects the final result of the relic dark matter abundance.

• In addition to ambiguities described above, there is subtlety in the behavior of string-
wall networks around the time t = t1. In this thesis, we used the approximation
in which the axion is massless for t < t1 and becomes massive for t > t1. Then,
contributions of axions produced at t < t1 and t > t1 are calculated separately in
Eqs. (4.78) and (4.98). Furthermore, we used a naive argument that domain walls
suddenly decay at td ' t1 in the analytic estimation [see Eqs. (4.95)-(4.97)]. The
effect of the continuous change in the axion mass at t = t1 might give further correc-
tions on the estimation of the relic axion abundance. We expect that this correction
will be similar to that discussed in Sec. 3.2.2, where the relic axion density is cor-
rected by a factor of O(1) due to the deviation from adiabaticity at the initial time t1
of coherent oscillation. However, we did not include such corrections for the estima-
tion of the abundance of axions produced by topological defects.

In the classic window (scenario IIA), if we consider the contribution from zero modes
only, the upper bound on the axion decay constant, which explains the observed cold dark
matter abundance, is given by Fa . (1.2-1.4) × 1011GeV for g∗,1 = 70 and ΛQCD =
400MeV. This corresponds to the axion massma & (4.3-5.0)×10−5eV. This bound might
become more severe when we include the contributions of axions produced by strings and
domain walls. If we use values of numerical parameters ξ, A, and εw obtained by numerical
simulations, the total abundance of dark matter axions in the classic window is given by

Ωa,toth
2 = Ωa,0h

2 + Ωa,stringh
2 + Ωa,dech

2

= (11.8 ± 5.4) ×
(g∗,1

70

)−0.41
(

Fa

1012GeV

)1.19(
ΛQCD

400MeV

)
. (5.5)

Then, for g∗,1 = 70 and ΛQCD = 400MeV, the upper bound on the axion decay con-
stant becomes Fa . (1.4-3.3) × 1010GeV, which corresponds to the axion mass ma &
(1.8-4.2) × 10−4eV.

Note that the contribution of zero modes already gives a bound Fa . 1011GeV, which
is more severe than the naive estimation Fa . 1012GeV used in the literature. Inclusion
of contributions from the decay of topological defects might further constrain the value of
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Fa, but there still remain various uncertainties which give corrections by a factor of O(1).
Future simulations with higher resolutions will provide more precise bound on axions pa-
rameters. Combined with astrophysical and experimental researches, we will probe further
into the property of axion dark matter.
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Appendix A

Notes of standard cosmology

In this appendix, we summarize some basic formulae which are often used in discussions
on cosmology. Our notations and discussions closely follow Refs. [174, 134].

A.1 The Friedmann Equation
It is reasonable, from the observational grounds, to assume that the universe is almost
isotropic and homogeneous. Mathematically, such an isotropic and homogeneous universe
is described by the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 +R2(t)

[
dx2 +

(x · dx)2

1 −Kx2

]
, (A.1)

where K is the constant representing the geometry of the space, which takes +1, 0, or −1,
corresponding to the closed, flat, or open universe, respectively.

The dynamics of the cosmic expansion is determined by the Einstein equation

Rµν −
1

2
gµνR = 8πGTµν , (A.2)

where Rµν is the Ricci tensor, R is the Ricci scalar, G is Newton’s gravitational constant,
and Tµν is the energy momentum tensor. Because of the assumption of the isotropy and
homogeneity, the energy momentum tensor must take the form of the perfect fluids

T00 = ρ(t), Ti0 = 0, and Tij = R2(t)p(t)

(
δij +K

xixj

1 −Kx2

)
, (A.3)

where i and j run over the three spatial coordinate directions, and ρ and p are the energy
density and pressure of fluids. Substituting the metric (A.1) into Eq. (A.2), we obtain the
Friedmann equation (

Ṙ

R

)2

+
K

R2
=

8πG

3
ρ, (A.4)
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and the conservation law

ρ̇ = −3Ṙ

R
(ρ+ p). (A.5)

Various energy components contribute to the right hand side of Eq. (A.4), such as cold
matter ρM ∝ R−3, radiations ρR ∝ R−4, and dark energy ρΛ = constant. Gathering these
three contributions, we see that the energy density behaves as

ρ = ρM,0

(
R0

R

)3

+ ρR,0

(
R0

R

)4

+ ρΛ, (A.6)

where the subscript 0 represents the quantity at the present time. Let us define the Hubble
parameter

H2(t) ≡

(
Ṙ

R

)2

, (A.7)

and the density parameters

ΩM ≡ ρM,0

ρc,0

, ΩR ≡ ρR,0

ρc,0

, ΩΛ ≡ ρΛ,0

ρc,0

, ΩK ≡ − K

R2
0H

2
0

, (A.8)

where ρc,0 ≡ 3H2
0/8πG is the critical density today, and H0 = 100hkm sec−1Mpc−1 is

the Hubble parameter at the present time. h parameterizes the measures of the Hubble
parameter and current measurements indicate h ' 0.7 [175]. Combining Eqs. (A.4), (A.6),
(A.7) and (A.8), we obtain

H(t)2

H2
0

= ΩM

(
R0

R

)3

+ ΩR

(
R0

R

)4

+ ΩΛ + ΩK

(
R0

R

)2

. (A.9)

The seven-year data from WMAP measurements indicates ΩMh
2 = 0.11161 and ΩΛ =

0.729 [6]. Also, from the observed temperature of the cosmic microwave background T0 =
2.725 ± 0.002K [176], the density parameter of radiations is estimated as ΩRh

2 = 4.15 ×
10−5. Using this result, the epoch of matter-radiation equality, where the energy density of
matter becomes equal to that of radiations, is estimated asReq/R0 = 4.15×10−5(ΩMh

2)−1.

A.2 Thermodynamics in the expanding universe
In the early universe, various particle species contribute to the energy density of the uni-
verse as radiations. If the collision rate Γi of relativistic particle species i satisfies Γi � H ,
where H is the Hubble parameter, particles are in thermal equilibrium with each other,
and we can define the equilibrium temperature T of the relativistic particles. Neglecting
the chemical potential, we can describe the evolution of such system via thermodynamical
functions such as the energy density ρ(T ), pressure p(T ), and entropy density s(T ), which
depend on the temperature T alone.

1In this thesis, we frequently use the notation ΩCDM rather than ΩM , emphasizing that it represents the
density parameter of cold dark matter.
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From the second law of thermodynamics, the change in the entropy is given by

d(s(T )V ) =
d(ρ(T )V ) + p(T )dV

T
, (A.10)

where V is volume of the system. Comparing the coefficient of dV and dT , we obtain

s =
dp

dT
=
ρ+ p

T
, (A.11)

Using Eqs. (A.5) and (A.11), we see that the entropy of the universe is conserved

d(sR3)

dt
= 0. (A.12)

The number density of particle i with momentum p is given by the Bose-Einstein or
Fermi-Dirac distributions

ni(p, T )dp =
4πgip

2dp

(2π)3

1

exp (
√
p2 +m2

i /T ) ± 1
, (A.13)

where gi is the degeneracy of the species, mi is the mass of the species, and the sign is +
for fermions and − for bosons. The energy density ρi and pressure pi of a particle species
i is given by

ρi(T ) =

∫ ∞

0

√
p2 +m2

ini(p, T )dp, (A.14)

pi(T ) =

∫ ∞

0

p2

3
√
p2 +m2

i

ni(p, T )dp. (A.15)

In the ultrarelativistic limit mi � T , they reduce to

ρi(T ) =

{
π2

30
giT

4 for bosons
7
8

π2

30
giT

4 for fermions
, (A.16)

pi(T ) =
1

3
ρi(T ) =

{
π2

90
giT

4 for bosons
7
8

π2

90
giT

4 for fermions
(A.17)

From Eq. (A.11), the entropy density is given by

si(T ) =
4ρi(T )

3T
=

{
2π2

45
giT

3 for bosons
7
8

2π2

45
giT

3 for fermions
(A.18)

The total energy density and entropy density is given by the sum over whole contributions
of relativistic particles

ρR(T ) =
π2

30
g∗(T )T 4, (A.19)

s(T ) =
2π2

45
gs∗(T )T 3, (A.20)
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where g∗ and gs∗ are the total number of effectively massless degrees of freedom,

g∗(T ) =
∑

i=bosons

gi

(
Ti

T

)4

+
∑

i=fermions

7

8
gi

(
Ti

T

)4

, (A.21)

gs∗(T ) =
∑

i=bosons

gi

(
Ti

T

)3

+
∑

i=fermions

7

8
gi

(
Ti

T

)3

. (A.22)

Combining Eqs. (A.12) and (A.20), we obtain

gs∗(T )R3T 3 = constant. (A.23)

As an application of this formula, let us estimate the temperature of neutrinos. Neutri-
nos are in thermal equilibrium with photons via the weak interaction until the temperature
of photons cools down below ≈ 1010K. Before the decoupling, electrons (2 spin states),
positrons (2), neutrinos (3 generations), anti-neutrinos (3), and photons (2 spin states) are
contribute as relativistic degrees of freedom. Hence the value of Eq. (A.23) is estimated as

gs∗(T1)R
3
1T

3
1 = [2 + (7/8)(2 + 2 + 3 + 3)](R1T1)

3, (A.24)

where T1 is the common temperature before the decoupling and R1 is the scale factor at
that time. Soon after the decoupling of neutrinos, electrons and positrons annihilate into
photons. After the annihilation, the value of Eq. (A.23) is given by[

2

(
Tγ

Tν

)3

+
7

8
(3 + 3)

]
(R2Tν)

3, (A.25)

where Tγ and Tν are the photon and neutrino temperature after the annihilation, and R2 is
the scale factor at that time. Equating (A.24) and (A.25), and using R1T1 = R2Tν which
follows from the fact that the neutrino temperature scales as R−1, we find the ratio between
the temperature of photons and neutrinos

Tν

Tγ

=

(
4

11

)1/3

. (A.26)

Substituting it into Eq. (A.21), we can estimate the effective degrees of freedom of radia-
tions at the present time

g∗,0 = 2 +
7

8
(3 + 3)

(
4

11

)4/3

' 3.36. (A.27)

In a similar way, from Eq. (A.22) we obtain

gs∗,0 ' 3.91. (A.28)
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A.3 Horizons
The maximum proper distances which can be reached by a light signal emitted in the past is
called particle horizons. These length scales characterize the region of the universe which
is in causal contact. Let us rewrite the FRW coordinate (A.1) by using spherical polar
coordinates dx2 = dr2 + r2(dθ2 + sin2 θdφ2) so that

ds2 = −dt2 +R2(t)

[
dr2

1 −Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (A.29)

Then, when the greatest value of radial coordinate which is reached by a photon emitted at
t = 0 (the beginning of the universe) is given by rmax(t), the particle horizon is defined as

dH(t) = R(t)

∫ rmax(t)

0

dr√
1 −Kr2

= R(t)

∫ t

0

dt′

R(t′)
. (A.30)

For example, in the radiation dominated universe we obtain dH(t) = 2t = 1/H(t), while
in the matter dominated universe we obtain dH(t) = 3t = 2/H(t). From this fact, we see
that the particle horizon is comparable to the Hubble radiusH−1 in the radiation and matter
dominated universe. Hence, in this thesis we do not make a distinction between dH(t) and
H−1, and simply call them horizons.



Appendix B

Extended field configurations

In this appendix, we review some non-perturbative results of quantum field theory. We es-
pecially consider instantons, strings, and domain walls, which are relevant to the discussion
on axions and cosmology.

B.1 Classifications
Consider the following scalar field theory in 1 + 1 dimensions

L = −1

2
∂µφ∂

µφ− V (φ), µ = 0, 1, (B.1)

where x0 = t, x1 = x, and the potential is given by

V (φ) =
λ

4
(φ2 − η2)2. (B.2)

The field equation obtained from Eqs. (B.1) and (B.2) has a solution

φ(x) = η tanh

(√
λ

2
ηx

)
. (B.3)

This solution describes a kink-like configuration localized at x = 0, which interpolates
between φ = −η at x = −∞ and φ = η at x = +∞. It can be shown that this solution is
stable under small perturbations [177].

The classical stability of this field configuration is a consequence of the topology of the
vacuum manifold. The finiteness of the energy requires that the value of the field φ at the
spatial infinity must be zeros of the potential V (φ). There are distinct configurations which
satisfy such conditions. A non-trivial one is the configuration which takes φ(−∞) = −η
and φ(∞) = η, similar to the solution given by Eq. (B.3). It is impossible to continuously
change this solution into a trivial one such as φ(x) = η without the infinite cost of lifting
the field at the spatial infinity. In this case, the classical stability of the field configuration
arises from the fact that the vacuum manifold is disconnected.
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Since the topological nature of the classical stability is related to the continuous defor-
mation of the field configurations, we can easily extend the discussion on the stability of
time-independent, localized solutions into arbitrary spatial dimensions. Consider a theory
of a gauge field Aµ

a in D spatial dimensions, with a scalar field φ which transforms as a
linear representation of the gauge group. The energy of a localized solution (φ(x), Ai

a(x))
is given by

E =

∫
dDx

[
1

2
(Diφ)2 +

1

4
FaijF

ij
a + V (φ)

]
≡ IKS

+ IKA
+ IV , (B.4)

where IKS
≡
∫
dDx1

2
(Diφ)2, IKA

≡
∫
dDx1

4
FaijF

ij
a , IV ≡

∫
dDxV (φ), and Di is the

usual gauge covariant derivative. Here, we consider the gauge field in temporal gauge, in
which A0

a = 0. We assume that the potential energy is chosen such that V ≥ 0, and hence

IKS
≥ 0, IKA

≥ 0, IV ≥ 0. (B.5)

Suppose that (φ(x), Ai
a(x)) is a set of time-independent, localized solution. Define the

transformation of (φ(x), Ai
a(x)) as φ(x) → φ(λx) and Ai

a(x) → λAi
a(λx) where λ is a

positive parameter. Then, the energy of the new configuration becomes

Eλ = λ2−DIKS
+ λ4−DIKA

+ λ−DIV . (B.6)

Requiring that this must be stationary at λ = 1, we find

(2 −D)IKS
+ (4 −D)IKA

−DIV = 0. (B.7)

In the absence of the gauge field (IKA
= 0), we see that the stable solution for the scalar

field exists only if D = 1 [Derrick’s theorem [178]]. This corresponds to the solution
given by Eq. (B.3), which will be investigated further in Sec. B.5. On the other hand, in
the absence of the scalar field (IKS

= 0 and IV = 0), the stable solution for the gauge
field exists only if D = 4. The topologically non-trivial gauge field solutions for D = 4 is
called instantons, which we will discuss in the next section.

In the mathematical point of view, whether non-trivial solutions exist is related to the
study of homotopy theory.1 As we saw in the above example, finite energy configurations
are determined by the field value in the spatial infinity. Then, field configurations which can
be deformed into each other with keeping their energyE finite are regarded as topologically
equivalent. In general, for a field theory with D dimensions, a finite energy configuration
φ(x) [andAi

a(x) if there exists a gauge field] which is restricted by a condition at the spatial
infinity represents a mapping from the D-dimensional space with the infinity |x| = ∞
taken as a single point, into the vacuum manifold M. Since a D-dimensional space with
the infinity identified as a single point is topologically identical to the (D−1)-dimensional
sphere SD−1, the field configuration φ(x) defines a continuous mapping from SD−1 into
the manifold M,

φ : SD−1 → M. (B.8)
1See e.g. [177, 179] for more comprehensive reviews.
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The set of mappings which are topologically equivalent to each other defines a equiva-
lence class, which is called the homotopy class. It is known that the mappings which are
distinguished according to the homotopy class define a group. Such a group is called the
(D − 1)th homotopy group of the manifold M and denoted as πD−1(M).

The elements of πD−1(M) which can be continuously changed into the configuration φ
which takes the same value (say φ = η) in the whole region of the space are called trivial.
The physical interest arises if there exist non-trivial elements, which describe localized
finite energy configurations. A homotopy group which consists of just a trivial element is
called the trivial homotopy group, and is denoted as πD−1(M) = I . Then, non-trivial field
configurations are possible if πD−1(M) 6= I .

Suppose that φ represents a Higgs field which causes spontaneous breaking of a cer-
tain symmetry group G into its subgroup H . In such a case, zeros of the potential of φ
correspond to the coset space G/H . Hence, whether non-trivial configurations exist is de-
termined by the structure of the manifold M = G/H . In other words, when a symmetry
breaking G → H occurs, non-trivial configurations arise if πD−1(G/H) 6= I . For exam-
ple, in one-dimensional theory defined by Eqs. (B.1) and (B.2), a Z2 symmetry in which
the scalar field transforms as φ→ −φ is broken down to the trivial subgroup I . Non-trivial
configurations exist since π0(G/H) 6= I where G = Z2 and H = I .

From the viewpoint of physical interests, there are two kinds of extended field con-
figurations which affect real phenomena in the universe. One is event-like field configu-
rations whose effect arises as correction terms in path integrals, and another is lump-like
field configurations which appear as components of actual physical states. We will de-
scribe the former case in the next section. The later case contains string-like configurations
called strings, and sheet-like configurations called domain walls, which will be described
in Secs. B.4 and B.5 with a focus on the axionic models.

B.2 Instantons
In Eq. (B.7) we see that there exist non-trivial localized configurations in a pure gauge
field theory with D = 4 spatial dimensions. To derive this result, we assumed temporal
gauge (A0

a = 0) in (D+ 1)-dimensional Minkowski spacetime. However, this result is also
applicable to pure gauge field theories inD = 4 -dimensional Euclidean spacetime. Indeed,
such 4-dimensional Euclidean gauge theories describe the actual physics of elementary
particles such as QCD, since quantum field theory may be rigorously formulated in terms
of Feynmann amplitudes in Euclidean spacetime [180].

Henceforth we consider a pure gauge theory in which the Lagrangian is invariant under
transformations of a non-abelian gauge group G, with the action given by

S =

∫
d4x

1

4
F a

µνF
a
µν , (B.9)

where we work in a Euclidean spacetime with x4 = x4 = ix0 and Aa4 = Aa
4 = iAa

0. The
Euclidean field strength is defined in the same way as the Minkowski space

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (B.10)



110

where g is the gauge coupling constant, and fabc is the structure constants of the gauge
group G, which is defined by the commutator between generators T a of the gauge group,
[T a, T b] = ifabcT c. For matrices of the gauge group, we choose the normalization so that

Tr[T aT b] = Crδ
ab. (B.11)

where Cr is a constant depending on the representation, which takes Cr = 1/2 for funda-
mental representation of SU(N). We also define abbreviate notations

Aµ = T aAa
µ, Fµν = T aF a

µν . (B.12)

The gauge transformation yields

Aµ → UAµU
−1 − i

g
(∂µU)U−1, (B.13)

Fµν → UFµνU
−1, (B.14)

where U is an element of the gauge group G

U(x) = exp (iT aΛa(x)) , (B.15)

and Λa(x) is a set of real functions.
In the path integral formulation of the quantum field theory, we construct a perturbation

theory by integrating over fluctuations on a field configuration for which the Euclidean ac-
tion is finite. Hence we must consider gauge field configurations which make the Euclidean
action (B.9) finite. In order for the action to be finite, the field strength F a

µν must vanish at
|x| → ∞.2 This can be achieved when the gauge field approaches a pure gauge

Aµ(x) → i

g
(∂µU(x̂))U−1(x̂) for |x| → ∞, (B.16)

where U(x̂) is an element of the gauge group G, which depends only on the direction of
x. Eq. (B.16) maps one direction of 4-dimensional Euclidean space x̂ into one element of
the gauge group G. Hence this condition defines a mapping from the unit sphere |x̂| = 1
(3-dimensional sphere S3) to the group manifold G. Classes of such mappings are topo-
logically distinguishable, and define the third homotopy group of the group manifold G,
π3(G). For QCD with G = SU(3), it is known that this homotopy group is non-trivial

π3(SU(3)) = Z. (B.17)

This implies that the vacuum of QCD is topologically distinguishable, labeled by an integer
number which is an element of Z.

The remarkable fact is that non-trivial configurations exist even though there are no
spontaneous breaking of the gauge symmetry G. This is inevitable consequence of pure

2In this section we use the notation in which x represents 4-dimensional Euclidean vector x =
(x1, x2, x3, x4) and |x| =

√
(x1)2 + (x2)2 + (x3)2 + (x4)2. The Greek indices take components of the

4-dimensional Euclidean vector µ = 1, 2, 3, 4.
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QCD in 4-dimensional space. Since these solutions are localized in 4-dimensional Eu-
clidean space,3 they correspond to the configurations localized both in space and time in
Minkowski space. Such time-localized nature of these configurations motivates their nam-
ing, instantons.

It is known that the topologically distinguishable vacuum of the gauge field theory is
characterized by a topologically invariant quantity which is written as an integral over the
manifold

ν =
1

48π2Cr

∫
dθ1dθ2dθ3εijkTr

[
U−1(θ)

∂U(θ)

∂θi
U−1(θ)

∂U(θ)

∂θj
U−1(θ)

∂U(θ)

∂θk

]
, (B.18)

where θi with i = 1, 2, 3 are coordinates of the 3-sphere S3, εijk is the totally antisymmetric
quantity with ε123 = 1, and Cr is a normalization constant defined by Eq. (B.11). The
quantity (B.18) is indeed a topologically invariant, in the sense that it is independent of the
choice of the coordinate system θi, and that it is invariant under a small deformation of
the group element U . Furthermore, the value ν is additive, in the sense that if U = UaUb

where Ua and Ub are other elements of G, then ν = νa + νb where νa and νb are obtained
by substituting Ua and Ub into Eq. (B.18), respectively. Hence any mapping S3 → G
is characterized by ν, and it is called the winding number. Substituting Eq. (B.16) into
Eq. (B.18), we find

ν =
ig3

48π2Cr

lim
r→∞

r3

∫
dθ1dθ2dθ3εijk

∂x̂µ

∂θi

∂x̂ρ

∂θj

∂x̂σ

∂θk
Tr [AµAρAσ] , (B.19)

where r = |x| is the radius of 3-sphere.
To evaluate this integral, we define a quantity

Kµ ≡ C−1
r εµνρσTr

(
AνFρσ +

2i

3
gAνAρAσ

)
, (B.20)

where εµνρσ is the totally antisymmetric tensor with ε1234 = 1. The divergence of this
quantity can be written as

∂µKµ = F a
µνF̃

a
µν , (B.21)

where F̃ a
µν is the dual of F a

µν , defined by

F̃ a
µν =

1

2
εµνρσF

a
ρσ. (B.22)

Since the field strength vanishes in the limit r → ∞, we obtain

Kµ → C−1
r

2i

3
gεµνρσTr [AνAρAσ] for r → ∞. (B.23)

3Here, we consider a gauge field theory in 4-dimensional Euclidean spacetime, rather than that in (D+1)-
dimensional Minkowski spacetime assumed in Eq. (B.7). Hence the “energy” E in Eq. (B.4) should be
replaced by the Euclidean action, and instantons are non-trivial configurations which keep the Euclidean
action finite.
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Using Gauss’s theorem and Eq. (B.23), we reduce the surface integral in Eq. (B.19) into
the form

ν =
g2

32π2

∫
S3

dSnµKµ =
g2

32π2

∫
E4

d4x∂µKµ (B.24)

where
∫

S3 dS represents the integration over the surface of 3-sphere,
∫

E4 d
4x represents

the integration over 4-dimensional Euclidean space, and nµ is an unit vector normal to the
surface of S3. Then, using Eq. (B.21) we obtain

ν =
g2

32π2

∫
E4

d4xF a
µνF̃

a
µν . (B.25)

This quantity is called the Pontryagin index.
An explicit form of the solution which satisfies the boundary condition (B.16) was

found by [181],

Aµ(x) =
i

g

(
r2

r2 + ρ2

)
(∂µU1(x̂))U−1

1 (x̂),

U1(x̂) =
x4 + i(x1σ1 + x2σ2 + x3σ3)

r
, (B.26)

where ρ is an arbitrary parameter which represents the instanton size, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.27)

It can be shown that this configuration leads ν = 1. Also, this configuration is self-dual, so
that

F a
µν = F̃ a

µν . (B.28)

From Eqs. (B.25) and (B.28), and the fact that ν = 1, we see that the value of Euclidean
action (B.9) becomes

S =
8π2

g2
. (B.29)

To make a physical interpretation of instantons, let us consider a cylindrical surface
along to x4-axis shown in Fig. B.1, which is obtained by deforming the boundary S3 of
the Euclidean spacetime. Since the quantity ν in Eq. (B.24) does not depend on the gauge,
here we choose a gauge such that A4 = 0. In this gauge K1, K2, and K3 vanish since they
contain at least one factor of A4, according to Eq. (B.23). Therefore, the contribution to
the integral (B.24) only comes form the upper and lower hypersurfaces x4 = ±∞ of the
cylinder

ν =
g2

32π2

∫
d3xK4

∣∣x4=∞
x4=−∞ , (B.30)

where
∫
d3x represents the integration over 3-dimensional hypersurface at x4 = ±∞. This

implies that, for a vacuum at x4 = −∞ with a winding number n, the existence of the
instanton with ν = 1 makes a transition into another vacuum with the winding number
n+ 1 at x4 = +∞. This situation is sketched in Fig. B.1.
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Figure B.1: Schematics of the cylindrical surface which is chosen in order to evaluate the
winding number in 4-dimensional Euclidean space. The upper and lower bases correspond
to the 3-dimensional hypersurfaces at x4 = ∞ and x4 = −∞, resprectively. On the side
of the cylinder, the contribution to the integral (B.24) vanishes since nµKµ = 0. When a
instanton with ν = 1 exists, the winding number n at x4 = −∞ changes into n + 1 at
x4 = ∞.
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B.3 Symmetry restoration and phase transitions
In the following sections we describe another kind of extended field configurations, called
topological defect, which might be created when some symmetry is spontaneously broken.
Before going to the discussion on particular solutions, let us discuss how such defects are
created in the early universe.

Let us consider a spontaneous symmetry breaking which caused by a complex scalar
field Φ acquiring the non-zero vacuum expectation value due to the dynamics of the clas-
sical scalar potential V (Φ). In the early universe, the field Φ couples with light degrees
of freedom in the thermal bath with the temperature T . Such couplings induce correc-
tion terms in the effective potential at high temperature. The leading contribution is given
by [182, 183]

Veff(Φ, T ) = V (Φ) + Tr

[
T 4

2π2
JB(M2

s /T
2) − T 4

2π2
JF (M †

fMf/T
2) +

3T 4

2π2
JB(M2

g /T
2)

]
,

JB(m2/T 2) =

∫ ∞

0

dxx2 ln
[
1 − e−

√
x2+m2/T 2

]
,

JF (m2/T 2) =

∫ ∞

0

dxx2 ln
[
1 + e−

√
x2+m2/T 2

]
, m = Ms, Mf , or Mg, (B.31)

where Ms, Mf , and Mg are mass matrices for scalar fields, fermions, and gauge bosons
which couple to the field Φ, respectively, and “Tr” takes the trace over the mass matrices.
These contributions are exponentially suppressed at low temperature T � m. On the
other hand, at sufficiently high temperature T � m, we can expand Eq. (B.31) in terms of
m2/T 2, and obtain

Veff(Φ, T ) = V (Φ) +
1

24
M2T 2 − π2

90
gT 4 + . . . , (B.32)

where dots represent the contributions with higher order in m2/T 2, g = gB + 7gF/8 is the
sum of the number of bosonic states gB and fermionic states gF with a weighting factor
7/8, and M2 is given by

M2 = TrM2
s + 3TrM2

g +
1

2
TrM †

fMf . (B.33)

For simplicity, here we assume that the field Φ has no coupling with fermions and gauge
bosons, and only has a self coupling, which is given by the bare potential

V (Φ) =
λ

4
(|Φ|2 − η2)2. (B.34)

By using the decomposition Φ = φ1 + iφ2 where φ1 and φ2 are real scalar fields,4 we find
the scalar mass matrix

(M2
s )ij =

∂2V

∂φi∂φj

= λ(|Φ|2 − η2)δij + 2λφiφj, (B.35)

4We assume that the kinetic term of the complex scalar field takes the form Lkin = − 1
2 |∂µΦ|2, and hence

φ1 and φ2 are canonically normalized.
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where i, j = 1, 2. Then, the effective potential reduces to

Veff(Φ, T ) ' λ

4
(|Φ|2 − η2)2 +

λ

6
T 2|Φ|2 − π2

45
T 4. (B.36)

From this expression, we find that the scalar field has a temperature-dependent mass

m2(T ) =
λ

3
(T 2 − 3η2). (B.37)

When the temperature is sufficiently high, the mass squared m2(T ) is positive, and the
scalar field takes the equilibrium value |〈Φ〉| = 0. After T falls below the critical tempera-
ture

Tc =
√

3η, (B.38)

m2(T ) becomes negative, and the equilibrium field value is given by

|〈Φ〉|(T ) =
1√
3
(T 2

c − T 2)1/2. (B.39)

In axion models, we identify Eq. (B.36) as the potential for PQ field which induces
the spontaneous breaking of the global U(1) symmetry. Since the field value vanishes for
T > Tc, the global symmetry is restored at high temperature. Then, at T = Tc this global
symmetry is broken, and the magnitude of the scalar field takes a finite value (B.39). Such
transition is called the second-order phase transition, as the order parameter |〈Φ〉| grows
continuously from zero.

Although the magnitude of Φ is determined by Eq. (B.39), the phase α of Φ is undeter-
mined solely from the dynamics described by the effective potential (B.36). Just after the
phase transition, α takes different values in different positions in space. However, since the
free energy of the system is minimized by the configuration where Φ takes a homogeneous
value, these spatial fluctuations in α will eventually die out as the temperature decreases.

The amplitude of the field fluctuations can be estimated from the following naive ar-
guments [24]. Let us define the correlation length lc above which the values of α are
different. We estimate that lc is given by the typical microscopic scale at the epoch of the
phase transition, which is comparable to the inverse of the effective mass of Φ

lc ∼ |m(T )|−1 ∼ |λ1/2〈Φ〉(T )|−1, (B.40)

where |〈Φ〉|(T ) is given by Eq. (B.39). Since the fluctuation in the energy induced by the
fluctuation of the scalar field δΦ is comparable to m2(T )|ΦδΦ|, the typical energy of the
fluctuation in the region with the length scale lc is estimated as

l3cm
2(T )|ΦδΦ| ∼ T. (B.41)

From Eqs. (B.40) and (B.41), we find∣∣∣∣δΦΦ
∣∣∣∣ ∼ λT

m(T )
. (B.42)
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Therefore, the amplitude of fluctuations of Φ becomes less than the equilibrium value when
λT/|m(T )| < 1 is satisfied. The temperature TG at which λT/|m(T )| ∼ 1 is satisfied is
called the Ginzburg temperature. From Eq. (B.37) we find

Tc − TG ∼ λTc. (B.43)

Below the Ginzburg temperature TG, the fluctuations of Φ do not have enough kinetic
energy to go up the potential between different minima, and hence the field configurations
“freeze-out”. Afterwards the correlation length lc begins to grow with time. However, the
causality requires that lc must not exceed the horizon scale

lc(t) . dH(t) ∼ t, (B.44)

where we assumed a power law expansion in which dH ∼ t [see Eq. (A.30)]. This fact
indicates that the values of Φ are uncorrelated above the horizon scale of the universe, and
that there exist regions on which the value of Φ (or α) transits from one minimum to another
minimum. Topological defects are expected to form around such regions. Since the causal
region is bound inside the finite length scale in the universe, the formation of topological
defects is inevitable consequence of cosmological phase transitions. Such an unavoidable
production mechanism of topological defects is called the Kibble mechanism [184].

B.4 Cosmic strings
When a continuous symmetry G is spontaneously broken into its subgroup H , formation
of strings occurs if π1(G/H) 6= I is satisfied. Such configurations are considered as finite
energy solutions in a field theory with D = 2 spatial dimensions. In the actual (3+1)-
dimensional spacetime, they are tube-like configurations, which correspond to sequences
of field configurations localized in 2-dimensional slice.

In Sec. B.1 we see that there is no stable localized finite energy solution for D = 2 field
theory in the absence of the gauge field, but such a solution still exists in the field theory
which contains both scalar and gauge fields. A well known example is the abelian-Higgs
model, which describes a spontaneous breaking of a local U(1) symmetry, and contains
a gauge field Aµ and a complex scalar field Φ. In such a model, finite energy solutions
correspond to the configurations which satisfy DµΦ → 0 and Fµν → 0 in the spatial
infinity, where Fµν = ∂µAν − ∂νAµ is the gauge field strength, and DµΦ is the gauge
covariant derivative. It is necessary to include the gauge field in order to guaranteeDµΦ →
0, since the contribution from Aµ cancels the positive contribution which comes from the
spatial derivative of Φ.

In the axion models, there is no gauge field which compensates the spatial variation of
Φ, since the U(1)PQ symmetry is global symmetry. However, it is known that stable string
solutions exist even in the model which describes a spontaneous breaking of a global U(1)
symmetry. This does not conflict with the above discussion on the local U(1) symmetry
based on Derrick’s theorem, since such configurations are global in the sense that their
energy is logarithmically divergent, as we will see below, and they evade the condition of
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locality which we assumed in the proof of Derrick’s theorem. Such non-localized solutions
are called global strings.

Let us consider the model with the complex scalar field (the PQ field) Φ whose potential
is given by Eq. (B.34). To describe the global string solution, we take an ansatz

Φ = Φ(r, ϕ), (B.45)

which represents a straight string lying along the z-axis in the cylindrical coordinates
(r, ϕ, z). Equation of motion for Φ in the flat Minkowski background becomes

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂ϕ2
− λΦ(|Φ|2 − η2) = 0. (B.46)

Assuming the form of the solution

Φ(r, ϕ) = ηf(r)eiϕ, (B.47)

Eq. (B.46) reduces to
∂2f

∂y2
+

1

y

∂f

∂y
− f

y2
− f(f 2 − 1) = 0, (B.48)

where y =
√
ληr. We seek the solution which satisfies the boundary condition

f(y) →
{

1, y → ∞
0, y → 0

. (B.49)

Explicit form for f which satisfies (B.49) is not known. However, we can find approximate
solution in the limit r → 0 by linearizing Eq. (B.48)

f(y) ' J1(y) = J1(
√
ληr) for y � 1, (B.50)

where Jn(y) is the Bessel function of the first kind. We see that f(r) deviates from zero
for a length scale r ' (

√
λη)−1, which can be interpreted as the core width of the string

δs ' (
√
λη)−1. (B.51)

Also, the numerical solution of Eq. (B.48) shows that 1 − f(r) decays with a power law
for large r [24].

For length scales much larger than the core width δs of strings, we can ignore the
internal structure of the string. In such cases, we can define an effective energy-momentum
tensor for a straight string lying along the z-axis in the Cartesian coordinates (x, y, z),

T̃ ν
µ = δ(x)δ(y)

∫
T ν

µdxdy. (B.52)

It can be shown that all components of T̃ ν
µ vanishes except for T̃ 0

0 = T̃ 3
3 from the re-

quirement of symmetry and the conservation law of T ν
µ [40]. Then, the energy-momentum

tensor of the string takes the form

T̃ µ
ν = −µstringδ(x)δ(y)diag(1, 0, 0, 1), (B.53)
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where
µstring = −

∫
dxdyT 0

0 =

∫
dxdyT00 (B.54)

is the mass energy of the string per unit length.5 Note that the magnitude of the pressure
T̃33 on the string is equal to the energy density, but its sign is negative. This implies that
the string has a large tension.

Substituting the solution (B.47) and assuming that f(r) suddenly changes from 0 to 1
at r ∼ δs, we find

µstring = −
∫
rdrdϕL =

∫ R

0

∫ 2π

0

rdrdϕ

[
1

2

∣∣∣∣∂Φ

∂r

∣∣∣∣2 +
1

2

∣∣∣∣1r ∂Φ

∂ϕ

∣∣∣∣2 + V (Φ)

]

≈ π

4
η2 +

∫ R

δs

1

2

∣∣∣∣1r ∂Φ

∂ϕ

∣∣∣∣2 2πrdr

≈ πη2 ln

(
R

δs

)
, (B.55)

where R is a cutoff radius, and in the third line we neglected the contribution from the core
πη2/4 assuming that ln(R/δs) � 1. We see that the energy of the string is logarithmically
divergent at large distance R → ∞. This logarithmic factor arises due to the long-range
force between strings mediated by the Goldstone boson field. As a consequence, the energy
of global strings does not localize around the core, but extends over a long distanceR. This
does not occur in the case of local string, since the existence of the gauge field screens the
contribution of the gradient energy of the scalar field.

The cutoff radius R is not infinity, but it is given by the curvature radius of the string
or by the distance between neighboring strings. As shown in Eq. (B.44), we expect that
the distance R is comparable to the horizon scale of the universe R ∼ t. Indeed, various
numerical studies indicate there is the scaling regime where R takes the value comparable
to the horizon radius t [57, 160, 185, 164, 161, 162, 58]. Therefore, we estimate the mass
energy of the string per unit length as

µstring ' πη2 ln

(
t/
√
ξ

δs

)
, (B.56)

where ξ is a numerical factor of O(1) [see Eq. (4.50)].

B.5 Domain walls
Domain walls arise when a discrete symmetry is spontaneously broken. This corresponds
to the condition π0(G/H) 6= I . The simplest example is given by the (1+1)-dimensional
scalar field theory defined by Eqs. (B.1) and (B.2). Although this example describes a
field theory with one spatial dimension, it is possible to consider the theory with the same

5The sign of Eq. (B.53) is different from that of [40] since we use different sign conventions with ηµν =
(−, +, +,+).
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scalar potential in the actual (3+1)-dimensional spacetime. In this case, the kink-like solu-
tion (B.3) represents a planar wall orthogonal to one coordinate axis (say z-axis)

φ(z) = η tanh

[√
λ

2
ηz

]
. (B.57)

From this form of the solution, the thickness of the wall is estimated as

δw '
(√

λ/2η
)−1

. (B.58)

For a planer solution φ = φ(z), the equation of motion yields

1

2

(
dφ

dz

)2

− V (φ) = 0. (B.59)

With this relation, the energy-momentum tensor of the wall takes the form

Tµν = ∂µφ∂νφ+ gµνL

=

(
dφ

dz

)2

diag(+1,−1,−1, 0). (B.60)

The surface mass density of the wall is given by

σwall =

∫ ∞

−∞
dzT00 =

∫
dz

(
dφ

dz

)2

=
4

3

√
λ

2
η3. (B.61)

From Eq. (B.60), we find that the magnitude of the pressure in the two tangental directions
is identical to its surface mass density∫

dzT11 =

∫
dzT22 = −σwall, (B.62)

where the minus sign indicates that this pressure force is the tension, which straightens the
wall up to the horizon scale.

Next, let us consider the axionic model with the PQ field Φ whose potential is given by
Eq. (4.52). If we restrict ourselves to low energy configurations at the QCD scale, we can
put Φ = ηeiα, which gives the effective potential for α

Lα =
η2

2
(∂µα)2 +

m2
aη

2

N2
DW

(1 − cosNDWα). (B.63)

In this model, the discrete ZNDW
symmetry is spontaneously broken, and the classical field

equation in the Minkowski background again yields a planner solution perpendicular to the
z-axis

α(z) =
2πk

NDW

+
4

NDW

tan−1 exp(maz), k = 0, 1, . . . , NDW − 1. (B.64)
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From this form of the solution, the thickness of the wall is estimated as

δw ' m−1
a . (B.65)

Integrating out the energy density, we obtain the surface mass density of the domain wall

σwall =

∫ ∞

−∞
dzη2

(
dα

dz

)2

=
8maη

2

N2
DW

. (B.66)

Comparing Eqs. (B.61) and (B.66), the values of σwall coincide between these two
models if we set λ → 4m2

a/3η
2, η → (3/2)1/2η, and NDW = 2. Also, the width of

domain walls becomes the same order δw ' (λ/2)−1/2η−1 → m−1
a . Substituting these

replacements of λ and η into Eq. (B.2), we obtain the potential given by Eq. (4.64).
We note that the surface mass density of axionic domain wall, given by Eq. (B.66)

should be modified if we include the structure of the neutral pion field which varies inside
the wall. In this case, the surface mass density is given by [186]

σwall = 4.32Fπmπη/NDW ' 9.23maη
2/N2

DW, (B.67)

where Fπ is the pion decay constant, andmπ is the mass of the pion. In the second equality,
we used mu/md ' 0.48 [14], where mu and md are the mass of up quark and down quark,
respectively.



Appendix C

Lattice simulation

In chapter 4, we see that axions produced by the decay of topological defects give a signif-
icant contribution to the dark matter abundance. Since topological defects obey non-linear
evolution equations, we must investigate the process numerically in order to study how they
evolve with time and how they produce particle radiations. In this appendix, we describe
the analysis method to compute the spectrum of axions produced by topological defects.
Our numerical code is the combined version of that used in [58, 187].

C.1 Formulation

Consider the following equation of motion for a real scalar field φ in FRW background

φ̈+ 3Hφ̇− ∇2

R2(t)
φ+

∂V

∂φ
= 0. (C.1)

If we use the conformal time τ [dτ = dt/R(t)], the above equation becomes

f ′′ −∇2f +R3(τ)
∂V

∂φ
= 0, (C.2)

where f ≡ Rφ, and a prime denotes a derivative with respect to the conformal time τ .
Here, we assume R′′ = 0 which is satisfied in the radiation dominated background.

We would like to ask how the classical field configuration φ(x, t) evolve with time,
given an initial configuration φini(x, t0) at some fixed time t0. If the scalar potential V (φ)
contains non-linear terms, it cannot be solved analytically and we are forced to use numer-
ical analysis. We solve it numerically by imposing discrete spatial coordinates

x → (i, j, k),

f(x) → fi,j,k, (C.3)

where i, j, k = 0, 1, 2, . . . , N − 1 and N is the total number of grids. The Laplacian is
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given by using the finite difference approximation

(∇2f)i,j,k =
1

12(∆x)2
[16(fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k + fi,j,k+1 + fi,j,k−1)

−(fi+2,j,k + fi−2,j,k + fi,j+2,k + fi,j−2,k + fi,j,k+2 + fi,j,k−2) − 90fi,j,k] ,
(C.4)

where ∆x = L/N is the grid spacing, and L is the comoving size of the simulation box.
This formula has fourth-order accuracy in ∆x. Here, we imposed the periodic boundary
condition on the boundaries of the simulation box (i.e. fN,j,k = f0,j,k, etc.).

To execute the time evolution which follows from Eq. (C.2), we used the symplectic
integration scheme developed in [188]. In this numerical scheme the (implicit) Hamiltonian
of the system is exactly conserved and there is no secular growth of the conserved quantity.
In practice, we compute the following sequence of mappings,

f(τ,x) → f(τ + cr∆τ,x) = f(τ,x) + cr∆τf
′(τ,x), (C.5)

f ′(τ,x) → f ′(τ + dr∆τ,x) = f ′(τ,x) + dr∆τf
′′(τ,x), (C.6)

from r = 1 to r = 4, in each time step. The values of coefficients cr and dr are given
by [188]

c1 = c4 =
1

2(2 − 21/3)
, c2 = c3 =

1 − 21/3

2(2 − 21/3)
,

d1 = d3 =
1

2 − 21/3
, d2 = − 21/3

2 − 21/3
, d4 = 0. (C.7)

It turns out that this integration scheme has fourth-order accuracy in time.
Here, our aim is to follow the cosmological evolution of a complex scalar field Φ (the

Peccei-Quinn field). The evolution equation for Φ can be obtained by varying the La-
grangian density given by

L = −1

2
|∂µΦ|2 − V (Φ).

We decompose the complex scalar field into its real and imaginary part, such that

Φ = φ1 + iφ2, (C.8)

where φ1 and φ2 are real variables. From the equation of motion for Φ, we can obtain two
equations of motion for two real scalar fields φ1 and φ2. Then, we follow the evolution of
Φ by applying the numerical formulation described above to each of two real scalar fields
φ1 and φ2.

C.2 Identification of topological defects
Using the lattice algorithm described in the previous section, we can solve the time evolu-
tion of two real scalar fields φ1(t,x) and φ2(t,x) in the comoving simulation box. From
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these data of scalar fields, we estimate various physical quantities, such as the length of
strings, the area of domain walls, and the spectra of axions and gravitational waves radi-
ated by defect networks. In order to calculate such physical quantities, we have to identify
the position of topological defects in the simulation box. Here we summarize our identifi-
cation method of topological defects, and describe how to calculate scaling parameters of
strings ξ and domain walls A defined in Eqs. (4.50) and (4.51).

C.2.1 Identification of strings

We used the method developed in [58] to identify the position of strings. Consider a
quadrate which consists of four neighboring grids in the simulation box (see points A,
B, C, and D in Fig. C.1). At each vertex point, we estimate the phase of the complex
scalar field α from the data of two real scalar fields φ1 and φ2. Then, we obtain a mapping
from the quadrate in the real space to the phase distribution in the field space, as shown in
Fig. C.1. Let us denote the minimum range of the phase which contains all the images of
four vertices as ∆α. The string exists within the quadrate if ∆α > π is satisfied, as long as
the value of the phase changes continuously around the core of strings.

We can also determine the position at which a sting penetrates the quadrate. At the
boundary of the quadrate, we determine the positions of points on which φ1 = 0 or φ2 = 0
is satisfied, by using linear interpolation of the values of φ1 and φ2. If the string correctly
penetrate the quadrate, there are two points with φ1 = 0 and two points with φ2 = 0 on
the boundary of the quadrate. Then we determine the position of the string as the point at
which the line connecting two points with φ1 = 0 intersects with the line connecting two
points with φ2 = 0 (see left-hand panel of Fig. C.1).

This simple criterion breaks down when the quadrate is penetrated by more than two
strings. However, we observed that such region is at most 1% of the whole simulation
box when the system relaxes into the scaling regime. Therefore, this scheme enables us to
determine the position of strings with at least 99% accuracy.

C.2.2 Identification of domain walls

The identification of domain walls is simpler than that of strings. We separate the region
of the phase of Φ, 0 ≤ α < 2π, into NDW domains. For example, if NDW = 3, we obtain
three domains with 0 ≤ α < π/3 and 5π/3 ≤ α < 2π (vac. 1), π/3 ≤ α < π (vac. 2),
and π ≤ α < 5π/3 (vac. 3), as shown in Fig. C.1. At each grid point, we compute the
phase of the scalar field and assign the number of the vacuum domain (i.e. vac. 1, vac. 2,
or vac. 3) which contains that point. Let us call the neighboring grid points that differ by a
unit lattice spacing ∆x = L/N as the “link”. We identify that the domain wall intersects
the link if the number of vacuum is different between the two ends of the link.
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Figure C.1: Schematics of the identification method of topological defects. Left panel
shows a quadrate with four vertex points (A, B, C, and D) penetrated by a string and
domain walls in the real space. Right panel shows a mapping of them in the field space.
In this figure, we assume the model with NDW = 3. Hence, there are three domain walls
attached to the string. The blue (wall 1), pink (wall 2), and yellow (wall 3) lines represent
the locations of the center of domain walls, which correspond to α = π/3, α = π, and
α = 5π/3, respectively, in the field space. The region is separated into three domains,
vac. 1, vac. 2, and vac. 3, which are surrounded by domain walls on the boundaries. The
dashed lines correspond to the loci of φ1 = 0 and φ2 = 0, which intersect on the core of the
string. In the field space, we define ∆α as the minimum range of the phase which contains
all the images of four vertices. A string penetrates the quadrate if the condition ∆α > π is
satisfied.
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C.2.3 Calculation of scaling parameters
The scaling parameters of strings and domain walls are given by

ξ =
ρstring

µstring

t2 and A =
ρwall

σwall

t, (C.9)

where ρstring is the energy density of strings, ρwall is the energy density of domain walls,
µstring is the mass energy of strings per unit length, and σwall is the surface mass density
of domain walls. It might be difficult to determine the values of µstring and σwall directly
from the data of scalar fields since they are quantities obtained by integrating ρstring and
ρwall over the coordinates which are perpendicular to the direction along which the defects
extend. Instead of estimating µstring and σwall, we calculate the length l of strings and area
A of domain walls in the comoving coordinates, such that

ρstring =
µstringl

R2(t)V
and ρwall =

σwallA

R(t)V
, (C.10)

where V = L3 is the comoving volume of the simulation box. Then, the scaling parameters
are given by

ξ =
lt2

R2(t)V
and A =

At

R(t)V
. (C.11)

The length of strings l can be computed by connecting the loci of strings identified by
the method described in the previous subsection. The computation of the area of domain
walls A is not so straightforward, since it depends on the way how we define the segment
of A in each lattice. Here, we use the simple algorithm introduced by Press, Ryden, and
Spergel [146]. Define the quantity δ± which takes the value 1 if the number of vacuum is
different between the two ends of the link, and the value 0 otherwise. We sum up δ± for
each of the links with the weighting factor

A = ∆A
∑
links

δ±
|∇α|

|α,x| + |α,y| + |α,z|
, (C.12)

where ∆A = (∆x)2 is the area of one grid surface, and α,x, etc. is a derivative of α(x) with
respect to x. The weighting factor given by the function of ∇α gives the average number
of links per area segment. This method takes account of the orientation of the surface of
walls in the lattice. See [146] for details.

C.3 Calculation of power spectrum of radiated axions
In this section, we describe the method to calculate the spectrum of axions produced by
the string-wall networks. Our aim is to extract the pure component of the axion field pro-
duced by collapse of the networks, from simulated data of the scalar field Φ. In general, the
data of Φ contain other components, that are regarded as contamination on the spectrum of
radiated axions. One of such contaminations is the initial fluctuation of the scalar fields.
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In numerical simulations, we give the initial conditions as Gaussian random fluctuations.
These fluctuations are diluted away by the cosmic expansion, but might not be completely
negligible even at the final time of the simulation, since the dynamical range of the numer-
ical simulation is short. Therefore, they can contaminate the final form of the spectrum
of radiated axions. Another kind of the contamination is the core of topological defects.
In the core of defects, the energy density of the scalar field is higher than that of free ax-
ions. Hence we would overestimate the amplitude of the power spectrum if we include the
contribution of the field near the core of defects.

To remove the contaminations from the core of defects, we mask the region near the
position of the core of strings or domain walls, and estimate the power spectrum which
contains only the contribution from free radiations. Also, in order to remove the contribu-
tions which come from initial fluctuations, we calculate the power spectrum in two time
slices tA and tB, and subtract the spectrum evaluated at tA from that evaluated at tB. We
will give a more detailed description of these procedures in the following subsections.

C.3.1 Energy spectrum of axions
We calculate the power spectrum of axion radiations P (k, t) defined by

1

2
〈ȧ(t,k)∗ȧ(t,k′)〉 =

(2π)3

k2
δ(3)(k − k′)P (k, t), (C.13)

where 〈. . . 〉 represents an ensemble average and ȧ(t,k) is the Fourier component of the
time derivative of the axion field

ȧ(t,k) =

∫
d3xeik·xȧ(t,x). (C.14)

The value of ȧ(t,x) can be obtained from the simulated data of Φ and Φ̇

ȧ(t,x) = Im

[
Φ̇

Φ
(t,x)

]
. (C.15)

The averaged kinetic energy of axions can be written as

ρa,kin(t) =

〈
1

2
ȧ(t,x)2

〉
=

∫
dk

2π2
P (k, t). (C.16)

On the other hand, the total energy density of axions is given by

ρa,tot(t) = ρa,kin(t) + ρa,grad(t) + ρa,mass(t), (C.17)

where ρa,grad(t) is the averaged gradient energy of axions and ρa,mass(t) is the averaged
mass energy of axions

ρa,grad(t) =

〈
1

2
|∇a(t,x)|2

〉
, ρa,mass(t) =

〈
1

2
m2

aa(t,x)2

〉
. (C.18)
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One can easily show that, if a(t,x) is a free field,

ρa,kin(t) = ρa,grad(t) + ρa,mass(t). (C.19)

Therefore, P (k, t) can be regarded as the energy spectrum of axions

ρa,tot(t) = 2ρa,kin(t) = 2

∫
dk

2π2
P (k, t). (C.20)

C.3.2 Pseudo-power spectrum estimator
If strings or domain walls exist, the data of ȧ(t,x) obtained by numerical simulations con-
tain field values around moving defects,

ȧ(t,x) = ȧfree(t,x) + (contamination from defects), (C.21)

where ȧfree(t,x) is the contribution from free axion radiations. This moving defect con-
tribution can contaminate the spectrum of the axion radiations. In order to subtract the
contamination from the core of defects, we use the pseudo power spectrum estimator
(PPSE) [189] introduced in [58].

We mask the contribution from the axion field near defects by introducing a window
function

W (x) =

{
0 (near defects)
1 (elsewhere)

. (C.22)

Here, we mask the field data over grid points within a distance dwidth from the position of
the core of defects which we identified by using the methods described in Appendix C.2.
The critical distance is chosen as dwidth = nwidthδs = nwidthλ

−1/2η−1 for strings and
dwidth = nwidthδw = nwidthm

−1
a for walls, where δs and δw are widths of strings and

domain walls, respectively, and nwidth is an arbitrary number which we will specify later.
Multiplying W (x), we obtain the masked axion field

˜̇a(x) ≡ W (x)ȧ(x) = W (x)ȧfree(x), (C.23)

or, in the Fourier space,

˜̇a(k) =

∫
d3k′

(2π)3
W (k − k′)ȧ(k′). (C.24)

We can compute the power spectrum by using the masked field in a simulation box,

P̃ (k) ≡ k2

V

∫
dΩk

4π

1

2
|˜̇a(k)|2, (C.25)

where V is the comoving volume of the simulation box and Ωk is a unit vector representing
the direction of k. However, this masked spectrum is not equivalent to the spectrum of
radiated axions, 〈P̃ (k)〉 6= Pfree, where Pfree(k) is defined by

1

2
〈ȧfree(t,k)∗ȧfree(t,k

′)〉 =
(2π)3

k2
δ(3)(k − k′)Pfree(k, t). (C.26)
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We can resolve this discrepancy by introducing a window weight matrix,

M(k, k′) ≡ 1

V 2

∫
dΩk

4π

dΩk′

4π
|W (k − k′)|2, (C.27)

and defining the PPSE of Pfree(k),

PPPSE(k) ≡ k2

V

∫
dk′

2π2
M−1(k, k′)P̃ (k′), (C.28)

with M−1(k, k′) satisfying∫
k′2dk′

2π2
M−1(k, k′)M(k′, k′′) =

2π2

k2
δ(k − k′′). (C.29)

Then, it can be shown that 〈PPPSE(k)〉 = Pfree(k) [58].
In the actual numerical calculation, we divide the domain of the comoving wavenumber

k into plural bins, which is defined by

Fi =
{
k
∣∣∣k(min)

i ≤ |k| < k
(max)
i

}
, for i = 1, 2, . . . , nbin, (C.30)

where k(min)
1 = 0, k(max)

nbin = k(max) ≡ πN/L, k(max)
i = (i/nbin)k

(max), and nbin is number
of bins. Then, the masked power spectrum (C.25) is replaced with the average over i-th bin

P̃i =
1

V

∑
k∈Fi

k2

2
|˜̇a(k)|2

Ni

, (C.31)

where
Ni ≡

∑
k∈Fi

1. (C.32)

The window weight matrix (C.27) is also replaced with1

Mij =
1

V 2

∑
k∈Fi

∑
k′∈Fj

|W (k − k′)|2∑
k∈Fi

∑
k′∈Fj

1
. (C.33)

The final form of the power spectrum (C.28) is obtained as

PPPSE,i =
1

Ni

∑
j

M−1
ij P̃j. (C.34)

1It takes quite a lot of time to compute double integral in Mij . However, we can improve the arithmetics
by using some approximations for M(k, k′) [see Ref. [144]].
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C.3.3 Subtraction of preexisting radiations
The power spectrum PPPSE(k, t) contains the contributions of axions produced before the
time t. This means that it contains the contributions of axions radiated at initial epoch,
which can be regarded as a contamination on the spectrum of radiated axions. In order to
extract the spectrum of axions radiated from the decay of string-wall networks, we must
subtract the contribution of these preexisting radiations. This can be achieved by evaluat-
ing the power spectra for selected time steps tA and tB > tA, and subtracting the spectrum
obtained at tB from that obtained at tA [143]. The radiations created at tA are diluted due
to the cosmic expansion, and we evaluate this redshift factor before we perform the sub-
traction. Note that the axion mass becomes non-negligible around the time of the decay of
domain walls. Hence, we cannot subtract the spectrum simply assuming that the spectrum
is diluted as R−4, which is only applicable to massless particles.

From Eq. (C.20), the total energy density of axions can be written as

ρa(t) =

∫
d3k

(2π)3
ωa(k, t)na(k, t), (C.35)

where
ωa(k, t) =

√
m2

a + k2/R(t)2 (C.36)

is the energy of axions with momentum k/R(t), and we define

na(k, t) ≡ 2
P (k, t)

ωa(k, t)k2
. (C.37)

We can regard na(k, t)d
3k/(2π)3 as the number density of axions which have comoving

momentum within the range from k to k + dk. Therefore, we expect that na(k, t) scales as
R(t)−3, if there are no changes in the number of axions. By using the fact that na(k, t) ∝
R(t)−3 and Eq. (C.37), we find the form of the spectrum of pre-existing radiations produced
before tA, at the time tB,

Ppre(k, tB) = P (k, tA)
ωa(k, tB)

ωa(k, tA)

(
R(tA)

R(tB)

)3

, (C.38)

where P (k, tA) is the spectrum evaluated at tA. Subtracting the contribution Ppre(k, tB)
from the whole spectrum P (k, tB) evaluated at tB, we obtain the spectrum of radiations
produced after tA

∆P (k, tB) = P (k, tB) − Ppre(k, tB). (C.39)

In the simulation for the short-lived networks (NDW = 1), we choose τA = τ1 and
τB = τd, where τ1 is given by Eq. (4.46) and τd is the decay time of domain walls described
in Sec. 4.4. In the simulation for the long-lived networks (NDW > 1), we use τA = 14 as
the subtraction time, at which the system begins to follow the scaling regime, and vary the
value of τB.

Figure C.2 shows the effect of this subtraction procedure. We see that the position
of the peak is falsified, and the amplitude of the spectrum is overestimated if we do not
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Figure C.2: The power spectrum of axions evaluated at the time τB = 40 for the case
NDW = 3. The red plot shows the spectrum evaluated with masking the contamination of
the core of topological defects and subtracting the contribution of axions produced at initial
stage (τ ≤ 14). The green plot shows the spectrum obtained by the same model without
masking the contamination of defects. The blue plot shows the spectrum evaluated without
masking and subtraction.
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perform the subtraction. Figure C.2 also shows that the spectrum is overestimated at higher
momentum scale when we do not mask the data near the position of topological defects.

We note that the form of the power spectrum is affected by the choice of the region
where the masking takes place. The masked region is determined such that the grid points
within the distance dwidth from the core of defects are excised, where dwidth = nwidthδs for
strings and dwidth = nwidthδw for domain walls. Figure C.3 shows the power spectrum for
various values of nwidth. We see that the power spectrum in large k is overestimated when
we use the smaller value of nwidth. Since the spectra agree within the error bars for the
results with nwidth ≥ 2, we use nwidth = 2 for numerical analysis presented in the text.
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Figure C.3: The spectra of axions for various values of nwidth. In these plots, we used the
same parameters as those used in Fig. 4.19 for NDW = 3.

C.4 Calculation of gravitational waves
For the model with long-lived domain walls, we also investigate the production of gravita-
tional waves from defect networks. To calculate the spectrum of gravitational waves, we
use the method introduced in [190]. The evolution of gravitational waves is described by
spatial metric perturbations hij around the FRW background

ds2 = −dt2 +R2(t)(δij + hij)dx
idxj. (C.40)

Let us define the proper fluctuations as

χij(x, τ) ≡ R(τ)hij(x, τ), (C.41)
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and denote their Fourier components as

χ̃ij(k, τ) =

∫
d3xeik·xχij(x, τ). (C.42)

In the Fourier space, the equations of motion for metric perturbations reduce to the form [169][
∂2

∂y2
+ 1

]
χ̃ij =

Sij

k2
, (C.43)

where we defined the variable y ≡ kτ and the source

Sij(k, τ) ≡ 16πGR(τ)TTT
ij (k, τ). (C.44)

The transverse traceless (TT) part of the stress-energy tensor is computed by applying the
projection operator

TTT
ij (k, τ) = Λij,kl(k̂)Tij(k, τ)

= Λij,kl(k̂){∂kΦ
∗∂lΦ}(k, τ), (C.45)

Λij,kl(k̂) = Pik(k̂)Pjl(k̂) −
1

2
Pij(k̂)Pkl(k̂), (C.46)

Pij(k̂) = δij − k̂ik̂j, (C.47)

where k̂ = k/|k|, and {∂kΦ
∗∂lΦ}(k, τ) is the Fourier transform of ∂kΦ

∗(x, τ)∂lΦ(x, τ).
There are two homogeneous solutions of Eq. (C.43), cos y and sin y. The special so-

lution is given by the time integral of the source term convoluted with two homogeneous
solutions

χ̃ij(k, τ) = C
(1)
ij (k, τ) cos kτ + C

(2)
ij (k, τ) sin kτ, (C.48)

where

C
(1)
ij (k, τ) = −

∫ y

yi

dy′ sin kτ ′
Sij(k, τ

′)

k2
≡ 16πG

k2
C̄

(1)
ij (k, τ), (C.49)

and

C
(2)
ij (k, τ) =

∫ y

yi

dy′ cos kτ
Sij(k, τ

′)

k2
≡ 16πG

k2
C̄

(2)
ij (k, τ). (C.50)

The energy density of the gravitational waves is given by

ρgw(τ) =
1

32πGR4
〈χ′

ij(x, τ)χ
′
ij(x, τ)〉, (C.51)

where a prime denotes a derivative with respect to conformal time τ . We replace the en-
semble average in Eq. (C.51) by an average over a volume V of the comoving simulation
box,

ρgw(τ) =
1

32πGR4

1

V

∫
d3k

(2π)3
χ′

ij(k, τ)χ
′∗
ij(k, τ). (C.52)
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Substituting the solution given by Eq. (C.48), and ignoring the terms with higher order in
RH , we obtain

ρgw(τ) =
4πG

R4V

∫
d3k

(2π)3

1

k2

∑
ij

(∣∣∣C̄(1)
ij

∣∣∣2 +
∣∣∣C̄(2)

ij

∣∣∣2) , (C.53)

where we averaged over a period of the oscillation of χij(k, τ) with time. The spectrum of
gravitational waves is given by

dρgw

d ln k
=

Gk

2π2V R4

∫
dΩk

∑
ij

(∣∣∣C̄(1)
ij

∣∣∣2 +
∣∣∣C̄(2)

ij

∣∣∣2) . (C.54)

We define the dimensionless energy spectrum of gravitational waves

Ωgw(k, τ) ≡ dρgw/d ln k

ρc(τ)
=

4

3πV

G2

R4H2
Sk(τ), (C.55)

where

Sk(τ) ≡ k

∫
dΩk

∑
ij

(∣∣∣C̄(1)
ij

∣∣∣2 +
∣∣∣C̄(2)

ij

∣∣∣2) , (C.56)

and ρc(τ) is the critical density of the universe at conformal time τ

ρc(τ) =
3H2

8πG
. (C.57)

In radiation dominated background, we expect that Ωgw(k, τ) ∝ Sk(τ), since R4H2 re-
mains constant. Therefore, we calculate Sk(τ) in the numerical studies. Note that Ωgw(k, τ)
given by Eq. (C.55) does not correspond to the spectrum observed today. The spectrum of
gravitational waves observed today is obtained by multiplying Ωgw(k, τ) with a damping
factor which arises from the following matter-dominated epoch.

We subtract the contribution of gravitational waves produced at the initial epoch where
the defects do not relax into the scaling regime. This subtraction can be executed as follows.
Since the energy density of gravitational waves shifts as ∝ R−4, the quantity Sk(τ) ∝
R(τ)4dρgw(τ)/d ln k is proportional to the number of gravitons with the momentum k per
comoving volume. Therefore, the difference of the spectral function

∆Sk(τ) ≡ Sk(τ) − Sk(τg) (C.58)

gives the spectrum of gravitational waves produced during the time interval [τg, τ ]. Here
τg is a reference time which we treat as a free parameter in the numerical simulations.
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