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The main technique that has been used to estimate the rate of gravitational wave (gw) bursts is to search for
coincidence among times of arrival of candidate events in different detectors. Coincidences are modelled as
a (possibly non-stationary) random time series background with gw events embedded in it, at random times
but constant average rate. It is critical to test whether the statistics of the coincidence counts is Poisson,
because the counts in a single detector often are not. At some point a number of parameters are tuned to
increase the chance of detection by reducing the expected background: source direction, epoch vetoes based on
sensitivity, goodness-of-fit thresholds, etc. Therefore, the significance of the confidence intervals itself has to be
renormalized. This review is an insight of the state-of-the-art methods employed in the recent search performed
by the International Gravitational Event Collaboration for the worldwide network of resonant bar detectors.

1. INTRODUCTION

When a detector is pushed to its limits in order
to reveal faint sources, every slight deviation of noise
models from ideality can severely jeopardize the ro-
bustness of a detection claim. In fact, when the signal-
to-noise ratio (SNR) is low, most goodness-of-the-fit
tests have poor discrimination power. On the other
hand, in the long run, the outliers add up and consti-
tute a background which can be much larger than the
isolated signals possibly present in the data.

Working with a network of detectors optimized for
coincidence analysis allows to reduce the background
and –most of all– to estimate reliably the background
itself, which is essential to set reliable upper limits.

A gravitational wave (gw) resonant detector is built
around a mechanically isolated massive resonant body.
Cylindric 3m-long 2.3 ton aluminum alloy bars have
been until now a widely adopted solution. Any pla-
nar (transverse) gravitational wave impinging on the
bar with an angle θ relative to its axis excites the
longitudinal mechanical mode, with amplitude pro-
portional to sin2 θ. With respect to burst signals, the
presently working resonant detectors are sensitive in
a narrow (∼ 1 − 10Hz) frequency range near the res-
onance (∼ 900Hz). [3]

A candidate event is defined as the output of an au-
tomated max-hold algorithm based on two adaptive
thresholds: one on the SNR of the peak amplitude (it
has to be great enough to be identified without ambi-
guity, i.e. low timing error) and one on the minimum
delay between consecutive events (in order to generate
independent events it must be greater than a few times
the autocorrelation of the processed data). Even with
no outliers, this algorithm would produce random ac-
cidental events as samples of the extreme distribution
for an (almost) Gaussian stochastic process.

The International Gravitational Events Collabora-
tion (IGEC) [1–3] was founded in order to take up the
task of assessing the detection of gw’s from the candi-
date event lists compiled by the single detectors. The
only requirement for member groups has been that

the exchanged information should include:
i) event amplitudes and times of arrival (along with

their estimated errors)
ii) minimal detectable amplitude –i.e. the sensitiv-

ity threshold of the detector– defined by requirement
of unbiasedness of amplitude estimates and unambigu-
ous timing.

The IGEC analysis is based on time coincidence
search, and in the first 4 year run (1997-2000) the five
detectors of the collaboration were purposely aligned
to be as parallel as possible, in order to maximize the
efficiency of the network. The analysis as it was re-
cently performed is still not optimal in many respects.
Moreover, because the gw source amplitude distribu-
tion and polarization are unknown, the detection ef-
ficiency is not completely determined. However, with
respect to past and recent proposals, this analysis im-
proves the control of probability of false dismissal of
candidate gw signals and provides the detailed com-
putation of the probability of accidental detection.

In the IGEC analysis many selections and tests are
applied to the data, in order to enhance the chances
of gw detection as a function of the amplitude and
direction of target gw signals. The selections may en-
hance accidental detections as well, therefore a record
of all the attempts has to be compiled. When a com-
plete account is given for all the operations on the
data, and assuming that their statistics is known, the
probability that any of the observed results is due to
chance can be well accounted for within the frequen-
tist framework.

2. DATA CUTS AND COINCIDENCE
SEARCH

Hereafter the focus will be a source located in the
direction of the galactic center, as it is likely that the
present sensitivity of bar detectors limits the obser-
vation range to sources within the Milky Way. The
times of arrival are supposed to be already corrected
for the light travel time delay for detectors at differ-
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ent positions. Moreover, as discussed in Fig. 1, the
measured amplitude of events has been corrected for
the angular sensitivity factor.

A (twofold) coincidence is defined when the time of
arrival ti and tj of two events from different detectors
satisfies the inequality

|ti − tj | < k
√
σ2

i + σ2
j (1)

where σi and σj are the standard deviation of the
time error, and k depends on the target false dis-
missal. The timing error is not Gaussian, and its stan-
dard deviation is strongly dependent on the signal-to-
noise ratio of the event amplitude (it ranges from a
second down to milliseconds; see for instance Fig. 1
in Ref. [4]). A conservative value for k is given by
the Bienaymè-Tchebycheff inequality: the probability
that the absolute value of a zero mean random vari-
able is greater than k times its standard deviation σ is
P (|x| > kσ) ≤ k−2. For instance, k ∼ 4.5 guarantees
a false dismissal less than 5%.

In general, an M -fold coincidence is defined as the
simultaneous coincidence in the M(M − 1) distinct
couples out of M detectors. In this case, for a target
false dismissal probability PT , one has to set k = (1−
(1−PT )2/[M(M−1)])−1/2. As for the rate of accidental
coincidences, it is proportional to kM−1 and to the
rate of events in each individual detector[4].

The IGEC adopted the following data selection
scheme (see Fig. 1):
i) fix a common (absolute) threshold Ath;
ii) cut the time spans when the minimal detectable
amplitude of each detector was greater than Ath;
iii) within these periods, include only those events
with amplitude greater than Ath.

We investigated different results from many values
of Ath, and consequently we accounted for the in-
creased probability of false alarm1 (see Sec. 4).

3. BACKGROUND ESTIMATE

The IGEC uses resampling methods to estimate the
rate of uncorrelated background coincidences. Ap-
proximately randomized samples of the coincidence
counts can be obtained by rigidly shifting the times
of arrival of the original event time series of individ-
ual detectors relative to each other. With this new
data set, the whole analysis is repeated: amplitude
modulation, data selection and coincidence search.

1Actually, in Refs. [2, 3] it is a common practice to perform
the analysis separately on disjoint subsets of the data, each one
pertaining to a different configuration of the network –i.e. dif-
ferent combinations of detectors in common operation. Eventu-
ally, the data are re-aggregated per equal amplitude threshold.

The choice of a rigid time shift instead of reshuf-
fling or swapping is due to the presence of structures
in the autocorrelation of the single detector event time
series, with characteristic timescales from a few sec-
onds to one minute (see Fig. 8 in Ref. [3]) –i.e. the
time series are not Poisson. Moreover, the angular
modulation and the common amplitude thresholding
applied to the data conspire to produce further event
clustering (see Fig. 1). A rigid time shift guarantees
that all these structures are not smoothed out when
generating resampled counts.

In order to obtain independent resampled counts,
the time series were always shifted more than the max-
imum time window (i.e. the right side of Eq. 1) ever
used (in practice, few seconds).

To test that the resampled counts come from the
same statistic, and that the latter is Poisson, the his-
tograms of coincidence counts were fitted with a Pois-
son probability density profile. The one-tail χ2-test
has been performed on every network configuration
(provided that at least one degree of freedom was
available), and the histogram of the computed p-levels
was in agreement with uniform density, which is the
expected one if the model of the background statistic
is good.

Strictly speaking, what has been verified is just the
coherence of the resampling approximation –all re-
sampled counts due to the same statistic. This result
holds up to timescales of the order of one hour, which
translates in a few thousands of independent resam-
pled coincidence counts. The statistical error for the
resampled background rate is then about 3%.

However, in order to conclude that the resampled
statistics is also identical to the statistic of the un-
shifted original data, one has to be confident that no
source of correlated background events exists. This
ansatz is assumed without proof.

4. CONFIDENCE INTERVALS

The results of IGEC search are frequentist, i.e. the
quoted confidence level or coverage are meant to be
–at least conservatively– the probability that the con-
fidence interval contains the true value. This approach
is also unified in that it prescribes how to set a confi-
dence interval automatically leading to a claim of de-
tection or an upper limit. The construction of the con-
fidence belt however does not proceed à la Feldman
and Cousins [5], or proposed modifications, where the
coverage is kept as fixed as possible for any source
strength. Instead, the confidence interval bounds are
independently derived from the likelihood function.
This inevitably leads to variable coverage, and we
shall show briefly how the minimum of the coverage
is related to the integral of the likelihood.[6, 7]

Let Nc = Nb +NΛ where Nc are the counted coinci-
dences, Nb those due to background, NΛ those due to
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Figure 1: (above) Example of data selection in a time span of a few hours. The amplitude is given in terms of spectral
density of the gw strain at a frequency about 900Hz, assuming one specific direction (galactic center), and neglecting
polarization. From the original event time series (dots) after angular sensitivity modulation (solid smooth curve) only
those are retained whose amplitude is above a fixed common absolute threshold (dashed line). Correspondingly, the
periods when the local detector threshold (solid crispy curve) is above the common threshold are removed from the
observation time (vertical solid shadows). This generates the “on-source” time series (below, top row). To obtain
resampled (and “off-source”) event selections (below, under the first row), the local time coordinate at the detector site
is shifted by a proper amount (arrows). It is worth noticing that the background event density drops exponentially
toward greater amplitudes. The density of event amplitude relative to the local threshold is more or less the same at all
times, but relative to the fixed common threshold it is highly nonstationary. In fact almost all events are cut out by the
selection mechanism except for when the local threshold approaches closely the common threshold from below –i.e.
near the edges of the live time spans. The angular sensitivity modulation (which is similar in parallel detectors)
enhances this mechanism of artificial clustering, and it generates a remarkable cross-correlation of event rates between
detectors. The described resampling procedure preserves the correlation pattern.

a hypothetical flux of gw’s with mean rate Λ; let also
µc, µb and µΛ be their mean values, respectively. The
probability density function under the hypothesis of a
Poisson statistic for both Nb and NΛ is

f(Nc;µΛ, µb) =
e−(µb+µΛ)

Nc!
(µb + µΛ)Nc (2)

and the likelihood function is defined as usual as
�(µΛ;Nc, µb) ≡ f(Nc;µΛ, µb). Let I be a parameter
from 0 to 1; one has to solve for 0 ≤ Ninf < Nsup the
equations





�(ninf ;Nc, µb) = �(Nsup;Nc, µb)
Ninf = max(ninf , 0)
I =

[∫ ∞
0
�(µ;Nc, µb)dµ

]−1 ∫ Nsup

Ninf
�(ν;Nc, µb)dν

(3)
The interval for µΛ, delimited by Ninf and Nsup,

maximizes the integral of the likelihood in the physical
domain µΛ ≥ 0, hence it belongs to a set which can be
derived by a Bayesian procedure assuming constant
prior for µΛ ≥ 0. However, we would give to this
intervals frequentist interpretation, by computing the
coverage

C(µΛ) ≡
∑

Nc|Ninf<µΛ<Nsup

f(Nc;µΛ, µb) (4)

The sum runs over the possible outcomes Nc for which
the interval Ninf −Nsup covers the given value of µΛ.
The coverage depends on µΛ, hence to be conservative
we refer to the coverage Cmin at the least covered
value of µΛ: Cmin ≡ min

µ>0
C(µ). In Fig. 2 the relation

between I and Cmin has been computed numerically,
for various values of µb.

The choice of this procedure for IGEC analysis was
first announced in Ref. [4], but in that paper the ef-
fective coverage of the procedure is not pointed out.
Ref. [6] describes the same approach, but it also sug-
gests ad hoc modifications to improve the relation be-
tween the coverage and the integral of the likelihood.
We think that this modification could jeopardize ro-
bustness, in particular when errors in the estimated
background are not completely negligible. Fig. 3 in
Ref. [4] shows a sample confidence belt originating
from this method, and the uncertainty on confidence
interval bounds due to uncertainty on Nb.

When Ninf and Nsup have been computed, one di-
vides them by the length of the selected observation
time, obtaining the bounds Λinf and Λsup on the flux
of gw bursts whose measured amplitude is above the
common threshold. This limit is obviously cumula-
tive, as lower flux is expected at higher thresholds.
The details on how to unfold the results in terms of
the true amplitude go beyond the scope of this paper.
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Figure 2: Integral of Poisson likelihood I vs minimum
coverage of µΛ, for various choices of the background:
µb ∈ {0.01, 0.02, 0.05, 0.1, ..., 20, 50}. For any chosen value
of I and µb, each dot was obtained by scanning a range
of source rates, computing the coverage at each one and
then taking the minimum. The relation between I and
µb depends weakly on the background and is
approximately linear.

Many selection thresholds were tried, and all of
these selections happened to be independent, as we
shall say in a moment. As a result, the coverage of a
single confidence interval does not tell the whole story.
On one hand, a confidence interval set at lower selec-
tion threshold reinforces the confidence of the exclu-
sion region resulting from a higher threshold where the
exclusion regions overlap. On the other hand, even if
there are actually no true gw events, after many trials
a confidence interval excluding Λ = 0 will eventually
come out accidentally, as the coverage probability for
µΛ = 0 –i.e. C(0)– is not 1. This would lead to falsely
reject the null hypothesis.

In order to compute correctly the probability of
false claim (defined as at least one interval not con-
taining Λ = 0) two methods were investigated.

First, if one assumes that the measures coming from
different selections are independent random variables,
then the probability of an accidental claim in case the
null hypothesis is true is given by 1−∏

i C
(i)(0), where

the index i runs over all different data selections. No-
tice that in the Poisson case C(i)(0) > C

(i)
min always,

and C(i)(0) depends on the background µ(i)
b .

Another method, which requires less assumptions,
consists in resampling the entire list of results using
the same randomizing procedure described above. In
other words, the confidence intervals are computed
on time-shifted data, for which we do not expect any
genuine disagreement with the null result. From the
resampled population of the would-be claims one can
compute directly the chance of false alarm.

The two methods gave consistent results, which is
in turn an evidence for independence of the different

data selections2.
In this way the interpretation of the measure has

two layers. We start from the bare confidence in-
tervals, and count the ones which individually would
deny the null hypothesis. Then we compare this num-
ber with the expected false claims. In the end, we
get a confidence interval on the number of true claims
–if it includes zero, then we assess that no significant
deviation from the null hypothesis was observed.

As a final remark, one should be aware that the
number of papers quoting “95%” results just in the
gw search field has grown such that it would not be
surprising to find a positive result among them by
chance. If a sequence of negative results has just been
observed, the first false positive is coming from the last
–supposedly better– experiment. It is really tempting
to forget about the many previous null attempts (even
easier if they were not published). However, a similar
configuration can be just accidental (and much more
than 5% likely). This should be kept in mind when
hurrying to claim the first non-null result in a series of
many independent attempts –it is perhaps advisable
to wait until it has been confirmed by successive ex-
periments. Another solution would be to quote “99%”
(or higher) confidence results, which give lower prob-
ability of a false claim. But this is not always possible
because of limitations in the degree of accuracy of the
noise models (in our case, it would require a more
powerful test on the tails of the density function of
Nc).
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