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Abstract
We report on our experience gained in the signal processing of the resonant
GW detector AURIGA. Signal amplitude and arrival time are estimated by
means of a matched-adaptive Wiener filter. The detector noise, entering in the
filter set-up, is modelled as a parametric ARMA process; to account for slow
non-stationarity of the noise, the ARMA parameters are estimated on an hourly
basis. A requirement of the set-up of an unbiased Wiener filter is the separation
of time spans with ‘almost Gaussian’ noise from non-Gaussian and/or strongly
non-stationary time spans. The separation algorithm consists basically of a
variance estimate with the Chauvenet convergence method and a threshold on
the Curtosis index. The subsequent validation of data is strictly connected with
the separation procedure: in fact, by injecting a large number of artificial GW
signals into the ‘almost Gaussian’ part of the AURIGA data stream, we have
demonstrated that the effective probability distributions of the signal-to-noise
ratio χ2 and the time of arrival are those that are expected.

PACS numbers: 0480N, 9585S

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cryogenic and ultracryogenic gravitational wave (GW) detectors have been in operation for
the last few years, and in 1997 they joined in the IGEC to search for impulsive GW events
[1], working as an observatory able to detect, in the present configuration of detectors, violent
events in the Galaxy, such as SN explosions or NS/BH mergers [2]. The operation of the
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AURIGA detector [3] in a world-wide community imposes demanding requests on its daq
and data analysis systems, namely (i) synchronization with the UTC within 1 µs; (ii) fault
tolerance to ensure continuous data taking; (iii) robust and efficient data analysis to search for
rare, impulsive GW events; (iv) I/O of daq and data analysis in a common format for data
exchange (currently the agreed format for a complete exchange of data is the VIRGO/LIGO
frame format [4], widely accepted by the GW community).

Signal processing plays a central role in the search for GW since the detector performances
are limited by the ability to extract small signals buried in the detector noise. The detection of
a GW burst at low signal-to-noise ratio (e.g. SNR > 3– 4, i.e. ∼10 dB) challenged us to face up
to a two-fold problem: (1) the correct description of noise properties (stationarity, Gaussianity,
correlation function, etc) and (2) the choice of the template suitable for the incoming GW
signal.

In fact, in the framework of optimal Wiener filtering theory, a signal can be fully
reconstructed from its samples and its parameters correctly estimated without biases only if
(1) and (2) are met; a remarkable example for the AURIGA data analysis is the reconstruction
of the candidate GW signals by sample interpolation to allow the estimate of their arrival time
up to µs accuracy [5].

The basic idea behind the set-up of the correct filters is the separation of the almost
Gaussian noise from the (spurious) excitations, which continuously occur in the data stream.
It is clear that these fast transients might lead to a mis-estimate of the filter, thereby
inducing systematic errors in amplitude and/or arrival time of GW signals. For the AURIGA
detector, it turns out to be convenient to completely freeze the parameter values during
transients [6].

On the other hand, to cope with the problem of biases in signal estimation, we can resort
to the maximum likelihood criterion; it is equivalent, in the presence of Gaussian noise, to the
standard Wiener filtering together with the χ2-test of the goodness of the fit [6]. The χ2-value
(which is statistically independent of the amplitude for signals which pass the test) is used, in
the framework of the AURIGA data analysis, to test the consistency of our a priori hypothesis
on the signal template; some noise parameters (not the noise statistics) can also be checked:
for instance, systematic deviations of mean reduced χ2 from 1 are hints of biased estimation of
the noise variance. A ‘near-optimal’ data analysis is able to recognize GW signals and extract
the signal parameters without distortion of their probability distributions (e.g. mass, orbit
phase and orientation, GW amplitude, polarization and arrival time for a coalescing binary
system). To test the data analysis performances, artificial signals can be injected into the
data stream either by a calibration procedure or by the addition of signal samples (generated
via software) to the detector noise. When the number of inserted waveforms is very large
(>104), the latter procedure becomes a sort of Monte Carlo which characterizes the entire
data analysis process with the properties of real noise; with the help of the Monte Carlo, we
are also able to estimate the detection efficiency ε (required by any GW search performed
having a priori no idea when signals are likely to arrive) and to assess the ‘effective probability
distributions’ of the time of arrival, amplitude, χ2 and any other set of signal parameters, in
the presence of real noise, rather than the simple model of stationary and Gaussian noise. The
Monte Carlo can also give a quantitative definition of ‘almost Gaussian’ and ‘quasi-stationary’
properties of the real noise as it also gives a measure of the detection efficiency. We may
then allow the outliers of the expected distribution of signal parameters to be less than, say, a
few per cent, meanwhile retaining a given value for the detection efficiency. The plan of the
paper is as follows. In section 2 we give some details of the AURIGA acquisition system.
Section 3 is devoted to illustrating some features of the AURIGA data analysis, including
the set-up of the noise model, the set-up of the signal template and the data quality and data
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validation procedures to avoid biases in signal estimation. Some results of the AURIGA data
analysis, with an implementation of the Monte Carlo for impulsive signals, are discussed in
section 4. Finally, our conclusions are presented in section 5.

2. Data acquisition

The AURIGA daq system, hardware and software architecture, is described in detail elsewhere
[7]; here we report only its main features and current upgrades. An ADC with high resolution
(18 equivalent bits, 110 dB fs) and low distortion (<110 dB fs) digitizes the detector output after
the dc-SQUID amplifier with a sample rate of 5 kHz. A second multiplexed ADC (24 channels)
acquires the data from the accessory instrumentation to monitor the detector environmental
noise (e.g. seismic and electromagnetic noise). The sample rate and resolution of the second
ADC are, respectively, 200 Hz and 16 bits. Both ADCs (HP1430A and HP1413A) are housed
in the same VXI crate which is connected to a dedicated acquisition PC (Linux OS) through
the MXI interface. The synchronization of the acquired data with the universal time (UTC) is
achieved by the GPS100/S80 apparatus which provides the time stamps to date the triggers of
the daq system. We gained high-time accuracy (<1 µs) in tagging the data buffers using the
hardware interrupts (IRQs) generated by the ADCs when a data buffer is ready for acquisition.
In the upgraded version of the daq, which will be ready for the second AURIGA run (late
2001), the acquired data are collected and formatted according to the VIRGO/LIGO frame
format [4] and fed to removable 70 GB hard disks for definitive storage. To avoid unwanted
losses of data, disks are also backed up in 35 GB DLT cassettes. A C++ library for the daq,
the process control library (PCL), has been developed for the control of process interfaces and
for interprocess communication. It is worth noting that, in the case of malfunctions of ADCs
or PCs, we are able to restart the acquisition process quickly as the acquisition chain (ADCs,
VXI crate and PC) has been completely duplicated.

3. Data analysis

The AURIGA data analysis has been developed with the aim of recognizing characteristic
gravitational waveforms in a noisy detector output. This complicated task can be successfully
dealt with using some simplifying assumptions of noise and transfer function of the detector:
(i) the dynamics of the system can be described (within the frequency band useful for the GW
detection) by linear differential equations; (ii) the noise can be represented by a zero-mean,
Gaussian, stochastic process. The stationarity assumption, which is implicitly contained in
(i) and (ii), can be relaxed in the quasi-stationary assumption, in the sense that the timescale of
variation of model parameters is much greater than the relaxation times (fixed by mechanical
dissipations) of the systems. Within this quite general hypothesis, the whitening filter L(iω)
and the δ-matched filter Mδ(iω) (i.e. matched to the δ(t − ta) GW template) have a simple
representation as a pole–zero system; therefore, in the time discrete domain, they can be recast
into ARMA processes with a significant decrease of computational costs [7]. The δ-matched
filter provides a natural separation between the detector characterization (noise correlations
and transfer function) and the search for physical waveforms, which can be conveniently
performed off-line after this filter.

3.1. Adaptive filter: set-up of the noise model

Within the reduced bandwidth RB ≈ (800–1000) Hz useful for GW detection, a suitable model
of the power spectrum of the AURIGA noise is the complex zeroes–poles function derived in [7]
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where S0 is a constant representing the wideband noise level, NP is the number of resonances
and pk and qk are, respectively, the zeroes and the poles of S(ω). The physical meaning of
poles and zeroes, the reason for their variations and the precision required in their estimate are
reported in [7]; here we would like to discuss the adaptive algorithms devised to estimate the qk

which are the most sensitive parameters to noise variations, in particular, the ratio between the
narrowband and wideband noise levels which enters in the SNR and arrival time [9]; the problem
of the pk estimation, being common to the set-up of the δ-matched filter, will be discussed in
the next section. The adaptive algorithm must check the compliance of the data stream with
the noise model; in order to select the appropriate time spans for the qk estimation. In fact, the
presence of environmental disturbances worsens both the power spectrum and the cumulative
distribution of samples, clearly introducing biases, as the set-up of matched filters depends on
L(ω). For instance, the AURIGA output often contains clustered signals that mimic the effect
of an increase of narrowband noise or electric spikes that jeopardize an increase of wideband
noise [9]. The Gaussianity and quasi-stationarity of the AURIGA output is monitored over
buffers of 4096 samples corresponding to ∼90 s. The Gaussianity algorithm consists of a
variance estimate with the Chauvenet convergencemethod (i.e. a recursive estimate of variance
by discarding at each step the data exceeding three times the variance of the previous iteration)
and a threshold on the curtosis index (fourth connected moment). This algorithm is applied to
whitened data buffers and a data buffer is considered Gaussian if its kurtosis does not exceed
0.15 and the Chauvenet convergence method has discarded less than 2% of data; in addition,
a whitened data buffer should have a correlation index not larger than 0.04. These figures
are three times the values we found by feeding to our analysis the simulated output of the
AURIGA detector, assuming that the noise is Gaussian and stationary. The choice of the
factor 3 is empirical and it is based on experimental feedback on the results of the validation
procedures. We apply the test on the correlation of whitened data to make sure that our model
for the noise spectral density is close enough to the real model, even if few spectral peaks
(50 Hz harmonics or sinusoidal components arising from mechanical vibrations of the
suspension wires) are present in the reduced bandwidth.

The buffers of data which fail the Gaussianity tests (Chauvenet and threshold on kurtosis
index) are dropped from the data stream before applying the qk tracking algorithm that
converges using 1 h of data to the correct values of noise parameters [9]. This selection
procedure allows the filter parameters to be adjusted for drifts on a timescale longer than
the mechanical relaxation time of the system (several seconds), while ignoring changes due
to disturbances on the smaller timescales. Of course, the incorrect modelling of the noise
produces unpredictable effects on the signal search and biases on estimated signal parameters:
for instance, if the estimate of noise variance fails, the reduced χ2-statistics no longer have a
unitary mean.

3.2. Matched filter: set-up of the signal template

The set-up of the δ-matched filter Mδ(iω) ≡ H(−iω)/L(−iω) requires the accurate
measurement of detector transfer function H(ω). Systematic errors on amplitude and phase
part of H(ω) translate directly to biases of signal amplitude and arrival time. For a resonant
detector, at least within the RB, we can write

H(iω) = H0(iω)
(−iω)NP +2

∏NP

k=1(pk − iω)(p∗
k − iω)

(2)
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Figure 1. The Monte Carlo of 3600 impulsive signals, i.e. with flat Fourier transform over the
detector bandwidth, spread over 1 h of AURIGA noise. On the left: histograms of the detected
deviates of event amplitudes, when the amplitude of random injected events is set to SNR = 1, 2,
4 and 8. At high SNR (SNR > 4 is enough for the present bandwidth of the AURIGA detector)
the histograms reproduce the zero-mean normal density function of the underlying stochastic
process, as predicted by linear estimate theory of signal amplitude. At SNR < 4 the max-hold
algorithm is manifestly no longer linear, and a bias towards greater amplitudes appears. On the
right: histograms of the phase error relative to the above example. The phase error is defined as
mod(td − ta, T0), where td and ta are, respectively, the detected and true time of arrival and T0 is
the half period of oscillations in the filtered data [7]. The Gaussian behaviour of deviates of phase
error is recovered asymptotically at high SNR as expected from theory.

where H0(iω) (calibration function) must be provided by the detector calibration procedures at
the start-up of a run and monitored during data taking [8]. The poles pk entering in equations (1)
and (2) are subject to slow drifts, mainly caused by discharges of the capacitive transducer or
variations of the thermodynamic temperature (usually less than few mHz per month). We set
up a simple pole tracking algorithm by measuring the phase shifts of N digital lock-ins tuned
to the poles frequency.

Trigger search (i.e. the identification of candidate events) is performed in the time domain
by a max-hold algorithm, which identifies the time and the amplitude of the extremes of
filtered data separated by at least a time span about three times the reciprocal of the effective
bandwidth of the system (i.e. of the order of 1 s) [7]. The actual timing accuracy depends on
the SNR, defined as the ratio between the maximum of the output of the filter Mδ(iω) and the
relative standard deviation in the absence of signals. For signals with SNR > 20 it is given
approximately by 170 µs/SNR. There is no amplitude threshold in the max-hold algorithm.
An adaptive threshold SNRthr = 5 is applied to the exchanged list of candidate events to
perform the coincidence analysis with the other IGEC members. The reason for a threshold
on exchanged candidate events is two-fold: (i) as one can easily recognize in figure 1, the
trigger search algorithm has a strong bias in amplitude and arrival time at least up to SNR =
4–5; and (ii) for SNR > 5 the false alarm rate falls to acceptable levels for GW detections [2].
The bias at low SNR originates due to our lack of knowledge about the true time of arrival of
the GW signal. The max-hold algorithm looks to the nearest local fluctuation of noise without
any phase relation with the injected waveform. As the SNR grows, there is less chance for the
noise fluctuation to reach such a SNR level and the max-hold locks to the real trigger. In this
case, the estimated amplitude becomes unbiased and the time of arrival error strongly peaks
around zero. It should be noted that such a bias is unavoidable as the arrival time estimate
is, in principle, a non-linear algorithm, which can be linearized at high SNR around the true
arrival time [10].
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3.3. Data quality and data validation

The thorough study of the AURIGA noise with the help of refined releases of the data
analysis leads us to a better knowledge of the behaviour of our detector. An important
achievement for the noise estimation has been the separation of time spans with almost
Gaussian noise from those with non-Gaussian and/or heavily non-stationary noise. Now
we settle down to discuss the criteria for the data quality, i.e. how close are the data in a
given time span to the modelled noise, and for the data validation, i.e. which time spans
are suitable for GW search. Regarding data quality, we realized that the non-modelled
noise can be further separated into disturbances with known origin (e.g. detector maintenance
activities) and other disturbances arising from sources that are beyond our control. In order
to remove these excess noise sources and to form unbiased candidate event lists for the IGEC
exchanges we set up a simple two-level tagging procedure which either accepts or removes
long standing time intervals (vetoes), where the noise is unmodellable, from the duty-cycle
of the detector. We have devised a two-level vetoing system: (i) the first-level vetoes are
set by the experimentalist and represent time intervals, with duration larger than 1 min, in
which the detector is not operative due to maintenance activities or electronic malfunctioning;
(ii) the second-level vetoes are automatically produced by the Gaussianity tests on whitened
and filtered data. To determine the time spans corresponding to the second-level vetoes,we first
assign the flag ON or OFF, respectively, to data buffers which satisfy or fail the tests and then
form the sequence of the ON and OFF; if during 15 min (10 buffers) there are more than four
OFF flags the period is considered not compliant with the modelled noise and therefore vetoed.
The number of buffers was chosen to ensure enough ON buffers in a validated time span for
tracking changes in detector noise (remember that the noise parameters are frozen within
OFF buffers). In addition, we have imposed the validated time spans to last at least 20 min
to avoid a fine grained structure in the AURIGA duty cycle.

4. Results and discussions

As already stated, to avoid biases in the estimate of signal parameters (e.g. amplitude, timing,
χ2, SNR for an impulsive waveform), the noise must be compliant with the adopted model
and the template must match the incoming signal waveform. For a GW detector, hypothesis
testing, maximum likelihood and χ2-test are the basic statistical tools for GW detection
or for the assessment of upper limits and confidence levels; in fact, we can obtain indications
about the correct estimation of noise (success of adaptive filtering procedures) and the matching
of the candidate GW signal with the proper waveform (template matching).

The injection of artificial GW signals into the real noise of AURIGA is a powerful
tool to study the estimation biases in fuzzy condition for the noise or template choices. In
fact, we are able to measure the real detection efficiency and the statistical distributions of
any signal observable (e.g. amplitude, arrival time) and, by means of the χ2-statistics, any
mismatch between the detector noise and/or transfer function with the injected waveform. In
addition, we will be able to study the effect of template mismatching, which is crucial for
the determination of tolerances on filter parameters in the case of matching with a family
of templates (e.g. coalescing binaries) which depends on many parameters. In figure 2 the
results we get by injecting 5 × 103 impulsive waveforms are summarized, at random time and
fixed SNR = 12, on 10 days of AURIGA data; the data were taken during February 1999.
It is clear that the estimated parameters of the injected signals are recovered (and the
corresponding parameters correctly estimated) within the validated time spans while in the
vetoed intervals the outcomes of the event search procedures are strongly biased. Of course,
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Figure 2. From left-bottom clockwise: histograms of the detected deviates of time of arrivals
(phase part), SNR and χ2 are obtained by superimposing, at random times, 5 × 103 impulsive events
of SNR = 12 over 10 days of the AURIGA output. The hatched part of histograms represents all
the measured deviates while the solid part represents the measured deviates within the validated
time spans (see text). The fits of the solid histograms agree with the prediction of signal estimate
in Gaussian noise. The last figure shows the daily duty cycle in per cent units of the AURIGA
detector during February 1999; hatched: vetoed time spans due to maintenance (first-level vetoes);
grey: vetoed time spans as the noise is non-compliant with the model (second-level vetoes); dark
grey: validated time span.

this result only demonstrates that the empirical vetoing procedures based on Gaussianity tests
are strong enough to check the compliance of the AURIGA noise with our model. Much work
has still to be done to investigate the data quality problems and to implement robust procedures
which both maximize the duty cycle and validate the estimated parameters of detected GW
signals.

5. Conclusions

The relevant parts of GW data analysis, such as the estimate of the AURIGA duty cycle, the
vetoing procedures, the detection efficiency, the estimate of the noise properties (Gaussianity
and stationarity) and the filter set-up and effective probability of signal observables, are tightly
entangled. The AURIGA data analysis is a first but robust step towards the identification of
candidate GW signals (triggers) and the assessment of the probability of the corresponding
observables, and the false alarm and false dismissal probabilities for threshold-crossing
searches. The separation of time spans where the noise is compliant with specific models is
possible but costly in terms of duty cycle, as only 1/3 of the data-taking time in the AURIGA
runs 1997–1999 is left. The statistics of the injected artificial GW signals demonstrate that
the vetoing procedure is a sufficient algorithm but an improved data analysis will be able
to reduce the vetoed time spans, for instance, relaxing some requirements on Gaussianity or
stationarity, maybe at a cost of a lower detection efficiency and different false alarm and false
dismissal probabilities. The current upgrades in the hardware (suspensions and transduction
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chain) [11] and software (daq and data analysis) sectors of the AURIGA experiments and the
choice of the frame format for daq and data analysis I/O are intended to set up a new run of
a detector with observatory capabilities, i.e. with high duty cycle and with a sensitivity better
than S

1/2
h � 10−21 Hz−1/2 in a bandwidth �80 Hz useful to join the network of interferometric

GW detectors under construction.
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