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Abstract
The standard IGEC approach to detection of gravitational waves with many
detectors is a simple time coincidence search. We discuss the problems of
false alarm and false dismissal assessment, in the case of both stationary and
non-stationary noise. The significance of any cumulative excess of found
coincidences over the background is determined by maximum likelihood
methods.

PACS number: 0480N

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gravitational wave (GW) resonant detectors operating so far are narrow band detectors and
their typical bandwidths are no more than a few Hz with a central frequency of about 900 Hz
[1]. Therefore, they are insensitive to any structure present in the waveform of the impinging
GW, they just sample the amplitude of the Fourier component of the signal at a few discrete
frequencies. The impulse response template is routinely used as a first approximation to
describe all burst classes whose duration is of the order of 1 ms.

The search for bursts is performed by threshold crossing (the signal overcomes a certain
amplitude threshold) [2–4] or maximum hold (the signal is locally at maximum amplitude)
[5] methods. This search usually allows very low (∼3–5) signal-to-noise ratios (SNRs).
Estimating false alarms by relying on the nominal probability of local fluctuation of a Gaussian
stochastic process is often not viable, because outliers (for instance, due to environmental
transient noise) are unavoidable and they mimic the effect of GW signals. The puzzle can
be solved when two or more detectors work at comparable sensitivity. Given that the delay
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between successive triggers is much longer than the time uncertainty on the arrival time of
the burst, the chances of an accidental coincidence are proportionally low; the more detectors
there are the better.

A fundamental step before performing a coincidence search is to make uniform the
sensitivity of the detectors by restricting their periods of operation such that they overlap and
they all work with minimum detectable amplitudes below a common search threshold. We
assume that this step has already been done (further details can be found in [6]). Also, we
will not discuss here the synthesis of the information on the GW burst provided by different
detectors once a coincidence is found.

In this paper we report on coincidence search analysis as carried on within the International
Gravitational Event Collaboration (IGEC) [1–6]. First we give an operative definition of
coincidence and explain how the choice of a time window is linked to estimates of timing
uncertainty through the requirement of a minimum detection efficiency. We will describe how
the accidental coincidences are estimated in section 3. The maximum likelihood criterion will
eventually guide us to the assessment of detection confidence (section 4). The procedure we
propose avoids unphysical (i.e. negative) values for the GW rate and estimates the correct non-
Bayesian confidence intervals for any number of found and expected coincidences,overcoming
the criticisms of previous analyses of upper limits for GW rate (recently raised, for instance,
by [7]).

2. Triggers, coincidences and time windows

The basic ingredients of the IGEC GW search recipe are the self-consistent ‘event files’,
which are temporally ordered records of every event (or trigger) selected by each group of the
Collaboration as candidate GW signals [1]. It is understood that, before the event search, the
data are processed by a Wiener filter matched to the impulse response of the system, what we
call a δ-like GW. The parameters that fully describe such a signal are just the estimated time of
arrival (ETA) and amplitude together with their error statistics, and—when available—a test
statistic to assess compliance of the signal with the template. Bundled in the same exchanged
files, there is asynchronous information about amplitude precision and accuracy and the values
of the amplitude selection threshold.

The sequence of ETA in an event list can be described by a (possibly non-homogeneous)
Poisson point series, which requires the triggers to be rare and independent. All search
algorithms associate with every found trigger a dead time of the order of the reciprocal of the
Wiener filter bandwidth, yet, as it is much shorter than the average delay between events, it
does not significantly affect ETA statistics.

A coincidence is defined as a Mtuple of triggers, one for each detector, with ETA such
that there is a common overlap between their time windows. More precisely, if t(m) is the set of
ETAs from the detector labelled m, the following relation defines the set of all coincidences,{
cn = (t1, t2, . . . , tM)| tm ∈ t(m)&∀h, k: |th − tk + �thk| < (�th + �tk)

}
n=1,2,...

(1)

where �tm is half the length of the time window associated with the event occurring at time
tm in the mth detector and �thk corrects for time delay in signal propagation at the speed
of light. �tm is a function of the probability density of the timing error once a minimum
confidence level (or a maximum false dismissal probability) has been fixed. This function is
non-analytical and depends on the implementation of trigger selection and on the SNR of the
signal, and has to be determined by Monte Carlo methods. Figure 1 shows a typical scaling
of the time error standard deviation σ with respect to SNR. The exact relation between σm

and �tm depends on the robustness of the model for the statistics of the noise. The Gaussian
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Figure 1. Standard deviation of the time error versus SNR for triggers exchanged within IGEC
by the AURIGA Collaboration (courtesy of the AURIGA Group). The continuous line is the
asymptotic scaling of the standard deviation as 1/SNR expected at high SNR, the dashed horizontal
line represents the lower bound due to present systematic calibration errors. Note that 88% of the
events have SNR between 5 and 6. Spreading at low SNR is due to variations of the Wiener filter
bandwidth.

model would give �tm = 1.96 σm (for a confidence level c = 95%) but in general this model
does not apply. Using the very general Bienaymè–Tchebicheff inequality, c � 95% when
�tm = σm/

√
1 − c ≈ 4.5 σm. This relation can be refined by including moments of higher

order [8].
If the source direction is not available, its determination and consistency tests on the ETA

sequence are deferred to a later analysis, and the relation |th − tk + �thk| < (�th + �tk) in
(1) is substituted by |th − tk| <

(
�th + �tk + �tMAX

hk

)
, where �tMAX

hk is the light travel time
between the labelled pair of detectors.

3. False alarm estimates

A simple analytical formula for the expected background rate of accidental coincidences with
the definition (1) is viable only by fixing for each detector the value of the standard deviation
of the timing noise.

If the background triggers can be modelled as a homogeneous Poisson point process, and
λ(k) and �tk being, respectively, the background rate and time window of the kth (over M )
detector, the expected false alarm rate λb is given by5

λb = CM(�t1, . . . ,�tM) ×
M∏

k=1

λ(k) (2)

5 To figure out how this formula can be derived, the reader should refer to figure 2, where the cases M = 2 and
M = 3 are depicted. The measure of the fiducial volume is the product of its transverse section and length. The
first factor is given by the measure of the (M − 1)-dimensional surface obtained by projecting the M-dimensional
error box in the plane transverse to the bisector. This means multiplying 1/

√
M by the measure

∏
h 
=k 2�th of each

hyperface and summing over all directions k = 1, . . . ,M.
The second factor is equal to the common observation time of the M detectors divided by the same quantity 1/

√
M,

which then cancels out in the product. In order to get the number of accidental coincidences, the measure of the
fiducial volume has to be multiplied by the density of the lattice nodes representing each possible coincidence, which
is given by

∏M
k=1 λ(k). Dividing by the common observation time at last gives (2).
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Figure 2. (Left) The set of all possible pairings between two triggers in a two-detector
configuration can be represented with a lattice in a two-dimensional plane, obtained by the tensor
product of the original single detector event lists. In the simplified case when every trigger of one
detector has the same time window, coincidence search can be seen as a particular selection of
events in a stripe ( fiducial volume) along the bisector, which corresponds to synchronous detector
timescales. A time-shifted search means counting trigger pairs that fall inside a new translated
stripe. (Right) In a similar way, in a three-detector configuration, the geometrical representation of
the fiducial volume for coincidence search is a tube obtained when developing the three-dimensional
error box along the bisector.

where

CM(�t1, . . . ,�tM) ≡
M∑

k=1

∏
h
=k

2�th. (3)

Equation (2) also holds as an instantaneous background rate predictor when λb is a function
of time. The average rate λ̄b in the total observation time Tobs is given by

λb(t) = CM(t) ×
M∏

k=1

λ(k)(t) ⇔ λ̄b = 1

Tobs

∫
dt CM(t)

M∏
k=1

λ(k)(t). (4)

In practical use of this result, the observation time is divided into smaller time intervals where
the background process can be considered stationary, but long enough to estimate the statistics
of the detector noise parameters. We remark that if the statistics of false alarms in each time
interval are Poisson, then the total number of false alarms is again a Poisson random variable
(RV), because it results from linear operations (like integrals). An issue still undecided with
(4) is the implementation of a robust unbiased estimator of λ(k)(t) capable of dealing with low
event rates.

A different well-known numerical method to estimate the false alarms probability is a
time-shifted search strategy. It consists in generating independent detector configurations by
adding small delays dt to the ETA of all but one detector trigger lists. These configurations
are supposed to be independent when the delay is applied in steps longer than the maximum
total time coincidence window: ergodicity of the system is then required. In fact, referring
to figure 2, the counts of coincidences inside each translated stripe are, in principle, different
RV, but we use them as independent instantiations of the counts inside the synchronous stripe.
This is correct only if detector performances at shifted times are on average the same as at
zero delay. More precisely, the longest time shift should be shorter than the timescale of the
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structures of the cross-correlation between λ(h)(t) and λ(k)(t + dt) as a function of dt. The
variations of the measured observation time Tobs itself are less critical, as they are easily taken
into account by proper normalization of the results.

The time shift analysis is computationally heavier than simply using (4), but allows
estimatation of the false alarm rate even when the value of the coincidence window varies from
trigger to trigger, dealing with variations of SNR and the Wiener filter bandwidth (see figure 1).
Moreover, it naturally takes care of the non-homogeneous character of the trigger rate. Finally,
we remark that, by repeated independent time shifts, the Poisson statistics of the coincidence
counts can be directly tested, instead of being blindly assumed. For these reasons, the number
of accidental coincidences is presently estimated within IGEC by time shift analysis, though
the analytical approach is perhaps worth a further thought.

Note that either method (analytical or numerical) is biased by the assumption that the
event list contains no real signal, yet since the latter is supposed to be rarer, this effect is
negligible.

4. Computation of average GW burst rate

Finally, when the number of predicted and found coincidences has been determined, a decision
has to be made about the presence among the latter of GW signals. In the usual non-Bayesian
approach, a straightforward result in terms of confidence intervals is obtained by maximum
likelihood methods.

Given the mean number of expected background coincidences N̄b ≡ E {Nb} over a time
Tobs, let � be the unknown mean rate of triggers produced by random (and rare) sources,
which is natural to the model with a Poisson point process. Even if it happens to be non-
homogeneous, the number of coincidences Nc counted in a typical experiment is a statistical
sample of a Poisson RV Nc with mean N̄c = N̄b + Tobs�. Let N� ≡ Tobs�. The probability
density function of Nc computed at the observed value is

PNc
(N̄b + N�) ≡ 1

Nc!
(N̄b + N�)Nce−(N̄b+N�) (5)

and the corresponding likelihood function is

�(N�; Nc, N̄b) ≡ PNc
(N� + N̄b) (6)

with the obvious bound N� � 0. The most likely value of N� supported by the
observations is obtained when � is maximum, and for any confidence level (CL) c ∈ [0, 1],
its associated confidence interval [Ninf, Nsup] is defined by �(Ninf) = �(Nsup) and c =[∫ ∞

0 �(N) dN
]−1 ∫ Nsup

Ninf
�(N) dN . We will say that the number of found coincidences Nc

‘agrees at confidence level c with a rate � between Ninf/Tobs and Nsup/Tobs’. In the case
Ninf = 0 the null hypothesis is not ruled out by the experiment, and we shall say ‘Nsup/Tobs

is the upper limit at confidence level c’. The non-Bayesian interpretation of this statement is
that the actual outcome is c/(1 − c) times more likely to be observed over many repetitions of
the experiment if the value of N� is inside the interval [Ninf, Nsup], rather than outside.

Figurs 3 shows an example of confidence intervals set as a function of the number of
found coincidences for the case N̄b = 7.0. Assuming that 1000 time shifts were performed
(a typical figure for M = 2 in the current IGEC analysis), the standard deviation of the estimate
of N̄b is 0.083, which propagates to the confidence intervals as depicted in figure 3. Up to
Nc = 12, no positive detection claim is allowed at 95% CL, but only upper limits.

This procedure can be retraced with a different density function in the case of known
deviations of the data from the Poisson statistics.



1546 L Baggio et al

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

coincidence counts Nc

T
ob

s
Λ

0

1

2

3

4

5

6

7

8

9

10

99%

99%

95%

95%

99.9%

99.9%
50%

50%

Figure 3. Example of CL contour plot for a background N̄b = 7.0. For each possible integer
value of Nc in the abscissa, the corresponding confidence interval can be determined by finding
along the vertical real axis the intercepts with a pair of contours enclosing the desired CL. In this
example, the 50%, 95%, 99% and 99.9% CL contours are plotted, along with the most likely value
(darkest color). The dashed regions show the amount of fluctuation of the contours when the
estimate of N̄b falls within 6.83 and 7.17, corresponding to four times the standard deviation after
1000 independent shifts. Note that when Nc < N̄b , the likelihood function becomes single-tailed
and the most likely value is zero.

5. Conclusions

Within IGEC, the presently used coincidence search method varies the time window aperture
in order to guarantee a specific maximum false dismissal. The corresponding false alarm
statistics are then empirically investigated by assuming the ergodic approximation and taking
time-shifted configurations of the observatory as independent instantiations of the observations
at zero time delay. Finally, by feeding the standard maximum likelihood with the estimated
false alarm rates, the significance of the estimated GW average burst rate can be assessed.
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