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Preface

It was a privilege for me to work in the last four years with the AURIGA group, a 
team of brilliant, passionate and crazy scientists, who are devoting themselves to a 
research that someone with common sense can well describe desperate. But how 
would any pioneer be described, anyway? Day by day, the intense discussions, critics 
and cheers among us helped to motivate our work, and the willing for an endless 
improving. 

Now I am at a turn, the work is not finished –endless, as I said– but it’s time to 
have a look backward to what has been done up to now. My original intention, as I 
can clearly see now, was probably to write a book, so many and so different topics I 
touched. But time and human resources are limited, so the output is perhaps just a 
humble compendium of what is the usual subject of daily work in the field of 
gravitational wave experimental data analysis. 

Even if there are probably better lectures on the field, I tried to target this paper to 
as many readers as possible, first of all by choosing to write it in English (well, at 
least I tried!). After a brief introduction, I enter the main thread of signal and noise 
separation, which develops in the first two chapters, with a little tail about 
multidetector data analysis, because we are not alone in the Earth, are we?. However 
many interesting specialist (or just too miscellaneus) topics were moved to Chapter 4, 
which you are not expected to read as the last one, neither progressively. 

As to the style of writing, you will see that I often oscillate between the third 
person (which undoubtedly sounds “objective” and “firm”) and the first plural 
(“we”), rather than using the singular (“I”), because ultimately I feel in debt for every 
result –directly or indirectly– with the rest of the team. 

 
 
Legnaro (PD, Italy), 1 Jan 2001 
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Introduction

 
One of the most important conceptual revolutions in this century is without doubt the 

idea of a universe with locally curved geometry, which influences and is influenced by mass 
density distribution. According to Einstein’s theory of General Relativity (GR), the Earth 
doesn’t turn around the Sun because of a direct interaction, but only because it feels the 
curvature in the bulk of space-time induced by the Sun itself. As the curvature field interacts 
with matter only locally, we need a way for this field to propagate at large distance from the 
source. This can be done only at speed equal or less than light, which means that this moving 
field –i.e. gravitational waves (gw)– must survive and be self-sustained after it detaches from 
the source. 

Up to now GR had many important experimental consequences verified to a high degree 
of accuracy, last but not least the production of gravitational waves by observing angular 
momentum loss in binary pulsar system. The next challenge in fundamental physics is the 
direct detection of gravitational waves by an Earth or space based device. First of all, to put 
another brick on the fabric of experimental validation of GR. Second, to use gravitational 
waves as a new probe of cosmic sources. 

Building a gravitational wave detector is one of the frontiers of experimental physics. 
Cryogenic resonant gw detectors are the first and, up to now, only devices sensitive to at 
least the most violent gw emission occurring in the galaxy. Although such events are 
predicted to be extremely rare, still resonant detectors will continue to give at least relevant 
upper limits, if not detection, as they operate now and, after upgrades, in the future. 
Resonant detectors are basically very sensitive oscillators, capable at their “quantum” limit of 
detecting changes in their vibrational amplitude of the order of less than a millionth of the 
diameter of an atom nucleus, or 10-21m, which translates (see below) in gw amplitudes of 
some h~3 10-22. They are designed to detect gravitational waves through the excitation of the 
quadrupole resonant modes of massive cylinders or spheres of high mechanical quality 
factor, cooled at liquid helium temperatures and below to reduce spontaneous noise.  

There are now five bar detectors in long term operation, ALLEGRO [5] at Baton Rouge in 
US, AURIGA[35] at Legnaro in Italy, EXPLORER [3] at CERN, NAUTILUS [4] at Frascati in 
Italy and NIOBE [1] at Perth in Australia, and since 1997 they have joint in a single 
international data exchange and coincidence search community, known as IGEC 
(International Gravitational Event Collaboration). [29][24] 

The five detectors in IGEC have rather similar schemes. The sensitive part of these devices 
is a cylindrical shaped mass of Aluminum or Niobium, few meters long and few tons in 
weight, with high mechanical (‘Q’) factor, of the order of ten million. It is mechanically 
decoupled from the environment noise (seismic, acoustical, and so on), while intrinsic 
thermal vibration of the crystal lattice is kept as low as possible by reaching temperatures 
below liquid Helium, in the range 2÷0.1K. 

A gw impinging transversally to the bar axis changes the amplitude of the first 
longitudinal compression mode of oscillation. To detect this signal, an auxiliary oscillator 
with a mass in the kg range is attached to one of the bar faces, and its resonance frequency 
tuned to that of the sensitive mode of the bar in order to have a strong privileged coupling. 
This transducer is in turn electrically coupled (with a variety of solutions: capacitive, 
inductive, microwave, optical) to the external readout. 
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Even if the experimental setup are not identical, the sensitivity is similar, within a factor 
of four in the energy of a detectable ms gw burst, and corresponds to that delivered in a 
violent emission of >0.01 M-sun in the Galaxy as in the coalescence of neutron star or black 
hole binaries. In amplitude of the metric perturbation at the detector, the present burst 
sensitivity is about h = 5 10-19; the useful bandwidths are of few Hz around the kHz resonant 
frequencies. A factor of at least 10 in sensitivity is expected, after the upgrades under way. 

The five detectors are oriented with their axes parallel one to each other and each locally 
orthogonal to a Earth great circle, which luckily happens to pass very close to each location, 
in order to have all their antenna patterns oriented coherently and thus maximize the 
coincidence probability. 

Even when the sensitivity of detectors enters the range of loudest astrophysical sources, 
the amplitude of detected signals would not be much high. Therefore, the very first 
important issue with data analysis in gravitational wave detectors is that they are dominated 
by noise. This is a simple but important concept to keep in mind while going through the 
reading. 

A background of sharp and clearly time-limited signals characterizes most of other 
experiments, especially in particle physics, with signal amplitude vastly above the level of 
electronic noise. Part of these events originates within the detector itself; part is due to the 
local environment. The latter ones can be somewhat diminished by appropriate shielding of 
the detector, and both can be cured in part by anticoincidence or trigger methods, and where 
possible by other selections based on physics properties of the signal itself (time of flight, 
electrical charge, mass, spin and so on). Similar techniques can be applied to the gw 
detection when performing a multi detector analysis. Time of flight consistency for the time 
of arrivals and tracelessness of the metric tensor are two physical requirements that can be 
used to gain specific gw signal signatures against the background. [6] 

But a signal-to-noise ratio of maybe ten or more is requested, while data exchanged by 
detectors are composed mainly by candidate gw events with SNR equal or less than five. 
Where are they coming from? They are random fluctuations of the background Gaussian 
noise (thermal noise of the bar and of the electromechanical transducer plus white noise of 
the amplifier), which are not negligible with such a low threshold. As such, they are very 
fundamental, and there is nothing that can be done to avoid them (apart from having a 
detector with better sensitivity, of course). In this low SNR region a coincidence analysis 
suffers, because lowering the threshold pays a little gain in sensitivity with a powerful 
increase of the false alarm rate. On the other hand, environmental and internal disturbances 
fill up the higher SNR region, where the present coincidence analysis can do a good cleaning 
job. 

The bulk of the data acquisition and data analysis –from the raw data to selected event 
candidates– was historically developed independently by the different groups that operate 
the detectors. 

This work will describe the data analysis system for the production of candidate events 
for gw bursts, focusing on a particular experiment, the AURIGA detector operating at INFN 
National Laboratories of Legnaro, Italy. This detector joined the community of gw detectors 
with the final (ultracryogenic) experimental setup on June 1997 [35]. 

The AURIGA detector consists of a 2.3tons-3 meters long Al5056 bar hanging on a 
multiple stage pendulum attenuation system (-240db overall at 1kHz). The latter is made by 
three cylindrical heavy copper thermal shields suspended one inside another by Ti cables, 
the inner one supporting the bar by a U-shaped copper cable. The bar and the shields are 
embraced by a large thoroidal liquid He container, and thermally linked to a 3He-4He-
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dilution refrigerator that traverse the shields and keeps the bar at 0.2K. The chief features of 
the outer part of the cryostat are Al-Mylar foils thermal insulations and a high vacuum steel 
container. Lead-rubber piles at room temperature complete the attenuation system. 

A resonant "mushroom" capacitive transducer [8] (0.4kg, 3nF) is coupled to the first 
longitudinal mode of the bar (920 Hz) and charged with a ~106V/m electric field. The 
electrical transduction chain is made by a superconductive transformer and a commercial dc-
SQUID preamplifier equipped with feedback circuit to linearize its output. An high linearity 
(23-bit at about 4.9 kHz) ADC acquires the signal channel after the amplifier. The time tag 
and synchronization with UTC of the acquired data is achieved in hardware well within 1µs 
by dedicated interrupts and triggers between the ADC and a GPS clock with a stabilized 
local oscillator. The full raw data are then fully archived and analyzed on-line. [36] 

Beside the actual implementations, the task to accomplish from this point forward is to 
enhance and detect a rare gw burst that hopefully could be revealed with an amplitude 
signal to noise ratio (SNR) as small as 3 (i.e. 10dB). The online analysis system was 
developed with a stationary and Gaussian noise in mind, so its core is a standard non-
adaptive Wiener-Kolmogorov (WK) linear filter, matched to a δ-like (i.e. of millisecond 
duration) gw burst impinging on the bar. This scheme was slightly modified to track slow 
drifts in the parameters needed to define the WK filter. 

The WK filter is implemented in AURIGA data analysis as a parametric ARMA model, 
therefore, granted that the data are enough clean to be fitted by this simple model, its 9 
fundamental parameters can be computed in a deterministic way by the same number of 
integrated quantities derived from the power spectral density (PSD) estimates. The WK filter 
uses each hour a new set of parameters; therefore slow drifts (like the change in the mode 
frequency due to discharge in the capacitive transducer) are correctly handled. The mode 
frequencies are followed with digital lock-ins in the raw data, while the quality factors of the 
modes are just measured once per acquisition run, as they depend on major setup 
parameters of the detector. The bandwidth of the WK filter is adaptively corrected by a 
feedback on the residual ‘color’ around the modes in the whitened data PSD. 

While the theory behind optimum filtering is well understood, validation of results in 
presence of a non-stationary system is not as straightforward. A subjective decision has to be 
taken to state that our knowledge of the behavior of the system is good or poor. 

We have chosen as a rule of the thumb that for the system to be considered in a quasi-
stationary regime, the typical time of variation should be at least of the order of the 
thermal/mechanical relaxation time. Every other transient is non-modeled, and are tolerable 
as long as they do not produce too many false alarms. A big short-lived excitation that enters 
the system –either gw signal or spurious– spoils the whitened noise PSD estimate, but also 
the histogram of WK filtered data, where huge tails appear outside the bulk of Gaussian 
samples. We take care of this by freezing the parameters estimation when such non-Gaussian 
behavior is detected. 

An important issue about this is that entering a long period of non Gaussian noise means 
“to drive in the fog”, and eventually –if the freezing has lasted a time of the order of the 
drifting time of the parameters, the information on the noise properties are not considered 
reliable any more, and the results of the entire period is discarded. 

It is useful to remark that this coarse solution is probably not the optimum in terms of 
duty cycle. Yet it has the merit of being automatic, deterministic, and need only a fast 
manual check by a supervisor, mainly to take care of ambiguous situations –e.g. a perfectly 
“clean” Gaussian noise when the SQUID amplifier is locked in a fault position. In particular 
we tried to avoid any a posteriori kind of selection of the data.  
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As well as noise filtering, event search is model dependent as well. A candidate δ-like 
event produces a pattern in the WK filter output with a specific mix of an exponential decay, 
a beat modulation between the two modes and a carrier wave. A high precision max-hold 
algorithm determines the amplitude of the event, and the decorrelation delay (i.e. the dead 
time) of the algorithm is at least the time constant of the WK filter, to make sure that the 
event is not counted twice. Once the event parameters are determined, a goodness-of-the-fit 
test checks the compliance of the event with the template, and eventually accepts or rejects it. 

The detection of an event in a single detector is not sufficient to claim any discovery with 
high confidence. That’s why at least a two-detector coincidence search must be performed 
(and this also costs in terms of the duty cycle, unless there is a strong effort to coordinate the 
operative time of the two detectors). One of the main tasks in multi-detector data analysis 
dealing with event lists is how to correctly compute the false alarm/false dismissal 
probabilities in order to compute an upper limit for the incoming amplitude and rate of 
gravitational wave bursts (as it is unlike that any spectacular high signal-to-noise ratio triple 
coincidence is going to show up with the present configuration of the IGEC observatory). 

The main issue within the IGEC is to coordinate the multi-detector data analysis, and with 
the prospect of being capable in the future of spreading news about highly significant claims 
of gw detection with a fast alarm to all interested scientists in the worldwide community. 

AURIGA joined the community of data taking detectors in June 1997 [35], and one month 
after I had my final graduating examination. In the successive three years I was involved in 
the big effort of finishing the complete test of AURIGA data analysis, whose successive 
advanced versions were month-by-month alternating in the online data analysis. In the mean 
time the IGEC (signed in the same June 1997) was urging a protocol for data exchange, that 
started slowly, and became operative only in late 1998, with the first long term data 
exchange between 5 detectors. As a member of the IGEC data analysis task force, I contributed 
to the first version of the data exchange protocol, and I was in charge of its successive critical 
revision along with G.A. Prodi, with whom I provided a theoretical framework for the 
coincidence search data analysis. We eventually proposed a more mature second version of 
the protocol, which after a long discussion was finally approved a few weeks ago for use in 
the IGEC future data exchange, which is going to restart soon. 

In this work I am going to give a fast survey of all the topics about signal and noise 
separation, data validation and conditioning, multi-detector data analysis and exchange to 
which I actively contributed. 

Chapter 1 covers the main theoretical thread, the standard signal analysis for Gaussian 
stochastic noise. When it was possible, a fast derivation of each formula was given, so that 
the text results more self-contained. 

Chapter 2 tries to give a round look to the way this approach does (and sometimes does 
not) apply to real data of the detector. Chapter 3 covers a few topics about multi-detector 
analysis, in particular how to deal with the estimate of false alarms and false dismissals. 

Chapter 4 covers a number of separate bench tests and simulations to check the various 
aspects of the methods and describes in detail a few specific implementations in AURIGA. 
One among the latter is a recent development of AURIGA toolset –an online detection 
efficiency estimator by Monte Carlo techniques– which can prove useful in single as well in 
multi detector methods. 
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The gw strain amplitude is expressed in terms of the metric perturbation h(t) (adimensional 
units), which represents the relative variation in length of measurements in a curved space-
time; for a pair of free falling masses at distance L, the effect of the gw is to change L by ∆L 
such that h~∆L/L. The Fourier spectral component of the gw amplitude is ( )H ω (units of 

1Hz− ). For a gw burst we take 0( ) ( )h t H t= δ . To characterize the noise of the detector, it is 
usually expressed in terms of the spectral power Shh(ω) (units of Hz—1) of the equivalent gw 
amplitude noise h(t), which – through the transfer function of the system – is converted to 
the output noise power spectrum of the detector (e.g. [34]). 
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1 Optimal filtering for well behaved systems
 



8

1.1 Optimal linear Wiener-Kolmogorov filter

A convenient set of hypothesis to build up a consistent filter theory is that the signal is modified 
only through linear systems and additive Gaussian noise, the noise itself is stationary and its 
autocorrelation matrix is known. Under these conditions the Wiener-Kolmogorov (WK) filter is 
the minimum-variance unbiased linear estimator of the signal amplitude. 

Lacking knowledge of the time of arrival, the WK filter is applied continuously to the stream of 
incoming data, and thus it resembles a noncausal time-invariant linear system. An event search 
algorithm is then required to locate the signal in the filtered data. 

 

1.1.1 Introduction: signal and noise
The output of any measurement device, or detector, is a (possibly digitally recorded) signal 

made by two mixed components, one from the physical phenomenon under study, the other 
from different sources –even internal to the detector itself. It is customary to refer to the latter 
as noise, and to the first just as the signal. The purpose of data analysis is, in short, to separate 
the signal from the noise, keeping the first and throwing the second. In fact, this very 
complicated task can be afforded only after some simplifying assumptions –or a model for 
the detector properties– have been chosen. 

In this chapter, we shall restrict ourselves to the following very powerful hypothesis: 
A. The detector is a linear stationary system;  
B. The noise is a stationary stochastic process with zero-mean Gaussian1 statistics that 

linearly superimpose to the signal. 
Let us make these statements more precise by introducing some notation and definitions. 

Unless stated otherwise, a linear system denoted by G  is described by a transfer function 
G( )ω , or equivalently by its impulse response g( )t . The notation f( )G t!  represents the 
function f( )t  composed with the linear system G : 

f( ) g( )f( ) f( ) G( )f( )G t t dt G
+∞

−∞

≡ τ − τ ⇔ ω ≡ ω ω∫ " "! !  

where the Fourier transform (FT) is hereafter defined as 

1f( ) f( ) f( ) f( )
2

i t i tt e dt t e d
+∞ +∞

ω − ω

−∞ −∞

ω ≡ ⇔ = ω ω
π∫ ∫" "  

A random variable (RV) x  takes its values in the set of all possible outcomes of a 
measurement, and it is described by its (first-order) distribution { }= ≤( )xF x P xx  (i.e. the 
probability of the event { }≤ xx ) or equivalently by its derivative, the density function ( )f xx . 

 A Gaussian statistics is characterized by 
( )−−

σ=
πσ

2

22

2

1( )
2

x x

x

x

f x ex

 

                                                      
1 It is the kind of statistic one expects if as the final result of a very large number of independent
contributions of the same order of magnitude (central limit theorem, e.g. [11]).

( 1.1 )

( 1.2 ) 

( 1.3 ) 
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where { }
+∞

−∞
≡ ≡ ≡ ∫ ( )E xf x dxxx x x  is the mean of the RV x, and ( ) ( )σ ≡ = − 22 Varx x x x  is its 

variance. 
A stochastic process is a set ( )tx of RV’s tagged by the time variable t. The correlation 

properties of ( )tx at different times are described either by the autocovariance τ( )Rnn or by the 
corresponding spectral density ω( )Snn : 

 ( )( )τ ≡ − + τ −( ) ( ) ( )R t tnn n n n n  

+∞
ωτ

−∞

ω ≡ τ τ∫( ) ( ) iS R e dnn nn  

where we are assuming that the process ( )tn  is stationary (hence τ( )Rnn  does not depend on 
absolute time coordinate). 

It can be easily derived from ( 1.5 ) that the spectral density of the stochastic process n  
after the linear system T is 

2( ) T( ) ( )T TS Sω = ω ωn n nn! !  

We can restate our working hypothesis. Let f( )t  be the input signal, T  the linear system 
modeling the detector response to an excitation, ( )tn  the noise ( =( ) 0tn ). An interesting 
consequence of linearity is that the net effect of the different noise sources acting at different 
ports of the detector is exactly equivalent to having a noise signal added immediately before 
the digital processing box (see Figure 1). 

Therefore, the acquired signal ( )x t  can be written as 

= +!( ) f( ) ( )t T t tx n  

( )tn  is white noise if τ = δ τ ⇔ ω =0 0( ) ( ) ( )R S S Snn nn . In general, this does not happen.  
However, under certain conditions2, it is possible to represent the acquired noise signal as 
the output of a causal filter ( )L t  fed with a white-noise process (or innovations) ( )ti  (see 
Figure 1). The following relations hold in general when = !( ) ( )t L ti n : 

+∞

−∞

ω = ω ω ⇔ τ ≡ τ − +∫
2

1 2 1 2 1 2S ( ) S ( ) ( ) R ( ) l( ) l( )R ( )L t t t t dt dtnn ii ii nn    

The use of stochastic processes is somewhat unnatural when dealing with the sampled 
output of an analog-to-digital converter (ADC), even if the hypotheses of sampling theorem 
are satisfied and then the two descriptions are exactly equivalent. All our previous 
                                                      
2 Paley-Wiener condition, see [11] p.402.

input signal 
h( ; )t A

white Gaussian
Noise

( )ti

detector
G

correlation
L-1

acquired signal
( )tx optimum filter

W

filtered signal 
( )tA

( )tn

u( ; )t A

event
search

Figure 1 – Schematic of the detector from a point of view of the data analysis system. The boxes 
represent linear systems, the “+” means linear superposition. The digital filter W is the last linear step in 
the analysis, and it is followed by a non-linear threshold-crossing search algorithm (see 1.1.3). 

( 1.4 ) 

( 1.5 ) 

( 1.6 ) 

( 1.7 ) 

( 1.8 ) 
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statements can be easily restated in terms of discrete stochastic processes, i.e. countable 
infinite set of RV in , ix , etc. where the index i is a representation of the time in which the 
ADC acquired the ith sample ≡ ( )i itx x . From now hence, we shall admit that all signals we 
are dealing with are band-limited, and we have correctly dealt with the requirements on the 
minimum sampling frequency. 

1.1.2 The Wiener-Kolmogorov filter
From the previous section, we know that the sampled signal after the ADC stage is 
= +! fi i iTx n , where in  is a zero mean discrete stochastic process ( = 0in ). In a real 

experiment, we are given a finite length stream { } =1...i i Nx , and we are required to develop a 
linear filter W capable of separating in some sense the signal fi  from the noise in . To 
accomplish this task we shall put specific boundaries to our problem. Let us assume that: 

A. The signal template { } =1...ui i N  is known3, and the unique unknown is the amplitude A 
of the signal: ∀ =: f ui ii A . 

B. The autocovariance matrix of in  (and hence of ix ) is known:  

[ ] ( )( ) [ ]≡ = = − − =R R Rij i j i i j iij ijnn xxn n x x x x .  

Let =∑ w j jj
A x  be the output of the filter. The two requirements to this estimate of the 

signal amplitude are: 
C. The estimate is unbiased: 

= ⇔ =∑ w u 1j jj
AA

D. The variance σ2
A  of the estimate is at minimum 

Combining the two requirements it happens that the signal-to-noise ratio (SNR) σAA is 
minimized as well. There is a unique well-known solution to this problem under the stated 
hypothesis, namely the Wiener-Kolmogorov (WK) filter. The coefficients of the filter can be are 
obtained for instance using the Lagrange multipliers method: 

( )

( )

2
2

2 2

1: 0 w u u
2 w 2 w 2 2

w u u u u w u
2 2

j jk k k k kj
k k

j j jjk k k k jk kj j

A A A

R A A R A

∂∂σ λ λ λ∃λ ∈ = + = − + = − + =
∂ ∂

λ λ= + − + = +

∑

∑ ∑

A A
A x x x x

A

#

 
hence, after multiplying by −µ ≡ 1Rij ij  and deploying the boundary condition to get rid of λ, 
we get 

w
u

u ui

ij jj

hk h khk

=
∑

∑
µ

µ
 

The residual of A  off the mean is 

u u

u u u u
ij i j ij i jj j

i
hk h k hk h khk hk

A
µ µ

= − =
µ µ

∑ ∑
∑ ∑

x n
a

 

                                                      
3 We assume that the samples are correctly shifted in time; in Sec. ... we shall extend the method
for the case in which there is a residual uncertainty on the phase or on the time of arrival.

( 1.9 )

( 1.10 ) 

( 1.11 ) 

( 1.12 ) 

( 1.13 ) 
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which is a zero-mean stochastic process with variance 

( )

2

2
2

u 1 1u u
u u u uu u

ij i jij
ij pq i p j qijpq

hk h k hk h khk hkhk h khk

 µ
σ = = µ µ = 

µ µ  µ 

∑
∑∑ ∑∑

a

n
n n

1.1.3 The Wiener filter as a linear system
Up to now the template was always assumed to be in phase with the signal hidden in the 

acquired data. Actually, in most occasions the phase or time of arrival of the signal is 
unknown, and whether a signal is present or not is something that has to be decided on the 
data themselves. 

A straightforward procedure to get this information is to shift in time the template: 

0 0 0 0u ( ) u( ) u( ; ) u( )j t Tj t t t t t≡ − ⇔ ≡ −  

To each value of the time shift 0t  corresponds a different template, and therefore a 
different estimate for A . From this point of view, the WK filter can be thought as a linear 
time-invariant system W, with the data stream x(t) as input and A(t) being its output: 

( )u( ) ( ) ( )u( ) ( )
( ) ( )

( )u( ) ( ) ( )u( )u( )

t t t t t dt dt t t t t t dt dt
t W t

t t t t u t t dt dt t t t t dt dt

′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′′ ′ ′′µ − − µ − − −
= = =

′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′µ − − − µ −
∫∫ ∫∫
∫∫ ∫∫

x x
A x!  

hence 

1 *

21

( )u( ) ( )u ( )w( ) W( )
( )u( )u( ) ( ) u( )

t t t dt St
t t t t dt dt S d

−

−

′ ′ ′µ − − ω ω= ⇔ ω =
′ ′′ ′ ′′ ′ ′′µ − ω ω ω
∫

∫∫ ∫
"
"

 

In the frequency domain, the W filter is a sort of average of the different Fourier 
coefficients weighted by the reciprocal of the noise power spectral density. The transfer 
function W( )ω  admits also an interesting decomposition as a cascade of two subsystems, a 
whitening filter L and the white noise version of the filter itself, the mask M. In fact, recalling 
that ω ≡ ω = ω ωnn

*S( ) S ( ) L( )L ( ) , we can write 

W( ) L( )M( )ω = ω ω  

where 
* * *

2 22
L ( )u ( ) u ( ) u( )M( ) ( )

u uL( )u( )
L L tm t

L Ld
′ω ω ω −ω = = ⇔ =

ω ω ω∫
" "! !
" ! !

 

being the denominator just equal to σ2
a . 

In other words, in the whitened data domain the WK filter is realized by simply 
convolving the input stream with the signal template: ( ) ( )( ) u( ) ( )t L t L t= ∗! !A x . 

It is worth to notice that L is a causal filter, u(t) is a causal signal template, but M is a 
purely anticausal filter. For this reason it can be difficult to implement with analog devices, 
while it is easy with buffered digital signal processing computations. 

Another interesting insight comes by observing that in presence of pure noise 
( ) ( )t W t= !a n , hence 

( ) ( ) ( ) ( )w( )w( )R W t W t R t t t t dt dt′ ′′ ′ ′′ ′ ′′ ′ ′′τ = + τ = τ − −∫aa n n! !
 

( 1.14 ) 

( 1.15 ) 

( 1.16 ) 

( 1.17 ) 

( 1.18 ) 

( 1.19 ) 

( 1.20 ) 
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2
2 2 2 2u( )S ( ) M( ) snr ( )

( )S
ω

⇒ ω = ω = σ ≡ σ ω
ωaa A A

"
 

2snr ( )ω  is the squared SNR per unit frequency. It is an invariant function, because 
whichever linear filter is applied to both the signal and the noise, it cancels out in the their 
ratio. Equation ( 1.20 ) suggests that M is in fact a band-pass filter, that suppresses the 
Fourier components of the incoming data stream where 2snr ( )ω  is low, therefore enhancing 
the SNR of the filtered signal ( )ta . 

Once we have this new stochastic process ( )ta , we apply the definition of WK filter, and 
look for the value of the time t  for which ( )ta  reach an extreme4. The two RV t  and ( )a t  
are the estimates of the time of arrival and amplitude of the signal, respectively. However, 
these are no more linear estimates, because it implies a maximum/minimum search. It can be 
shown however that it is approximately linear at least in the limit of high SNR ( 25> ). 

Finally, a multiple signal presence in the data should be allowed for. If the signals are 
widely spaced in time, the extremes search should just become a local search. In the case two 
or more signals are packed closest than the duration of the signal template in the filtered 
data domain, u( )W t! , than the correct procedure is to change the template from u( )t  to 
v( ; , ) u( ) u( )t t r t r t t∆ ≡ + − ∆ , thus adding the signal separation t∆  and the amplitude ratio r 
as a new parameters. 

To conclude this section, we shall give a formal definition for the bandwidth ∆ω of a 
function ( )S ω : 

2

2

( )

( )

S d

S d

 ω ω ∆ω ≡
ω ω

∫
∫

 

 
 

                                                      
4 We don’t look just for the maximum because, as we shall see, u( )t is an oscillating wave pattern
that can start moving in the alternate direction, that’s why the sign of the amplitude is
important, too. A small error in the time t could even reverse the sign of ( )a t , that’s why we look
for the maximum absolute value. It should be remarked that the WK filter guarantees that the
variance of the noise is minimum, or that the SNR –not the amplitude– is maximum.

( 1.21 )
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1.2 χχχχ2 test

In the hypothesis of strict Gaussian noise the WK filter is a maximum likelihood filter too. The case 
of a diagonal autocorrelation matrix can be generalized to a generic symmetric matrix. The 
logarithm of the likelihood happens to be distributed as a standard χ2 variable, and can be used as a 
test statistic. 

In presence of a signal in the data, if it is matched with the template, than the distribution of the 
log-likelihood is unchanged, otherwise the distribution is a non-centered χ2. The dependence on 
SNR is at first order a quadratic power law. 

 

 

1.2.1 Maximum likelihood and hypothesis testing
Let us return to the original issue of the ‘best’ choice of the estimator for the signal 

amplitude A, assuming all other parameters known. Another approach could have been the 
maximum likelihood method (MLM), which consists in finding the value Â , which maximizes 
the probability …1( , , ; )NP x x A  of having the sequence of samples { } =1...i i Nx  as the outcome of 
an experiment when the amplitude of the input signal was A. 

For the sake of simplicity, we shall deal first with white noise. This is not a restricting 
assumption, as we can apply the whitening filter L to { } =1...i i Nx  thus obtaining the new signal 

fi i i iL L G= = +y x i! ! ! . The expectation value of iy  is f ui iL G A L= ⋅! ! ! . As { } =1...i i Ny  are a 

set of independent RV, and recalling that σ =y
2 1 , the likelihood function is simply 

( ) ∝ − −  ∑… 2
1

1( , , ; ) exp u
2N i ii

P y y A y A  

Taking the minimum of − …1log ( , , ; )NP y y A  as a function of A gives 

( ) 2

uˆ ˆ0 u u
u
i ii

i i ii
kk

y
y A A= − ⇒ =∑∑ ∑

 

We revert now to { } =1...i i Nx , using the following relation for the discrete time version of 

ii( )R t : 

[ ] [ ] 1R R L L L L ijhi kj hk hi kjij hkhk hk
−= ≡ µ = δ∑ ∑ii nn  

The likelihood function becomes 

( )( ) ∝ − µ − − ∑…1
ˆ ˆ( , , ; ) exp u uN ij i i j jij

P x x A x A x A  

and its maximum is found at 
u

ˆ
u u

ij i jij

hk h khk

x
A

µ
µ

=
∑
∑

 

( 1.22 ) 

( 1.23 ) 

( 1.24 ) 

( 1.25 ) 

( 1.26 ) 
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It is not completely surprising that this estimate coincides with the output of the WK 
filter. The MLM is known to be5 a minimum variance too, and we have proved that WK filter 
is the unique possible solution. This can be restated as: 
The parameter that maximizes the probability of an event in the data represent the best
estimate in terms of signal-to-noise ratio, as produced by a linear filter.

As the next step, we shall define a goodness-of-the-fit test of our estimate. As we know 
exactly the variance of the noise, and the statistics is Gaussian, then a χ2-test fits our need. 
We shall therefore define in the whitened data the RV 

( )211
ui ii

L
n

−= −∑X y A !  

where n is the number of degree of freedom, in this case N-1. 
As a function of the ix  variable, the expression of the test statistic X  is 

( ) ( )1
u uij i i j jijn

µ= − −∑X x A x A  

Sometimes it can help also writing down the following equivalent expression: 
2 2

2
2 2
ˆ ˆ

1 1
i ij i ji ij

A A
n n

µ
σ σ

   
= − = −   

      
∑ ∑A A

X y x x  

where the subtraction of the signal contribution has been singled out. 
In presence of a signal matched with the template, this RV should obey a reduced χ2 

statistics: 

( )
222 / 2 1

/ 22

1
( ; , )

2 ( / 2)

nXn
n

f X n X e
n n

σσ
σ

−−=
Γ

x

X x

x

 

This method modifies in a straightforward way in case the time of arrival of the signal, or 
even if other unknown parameters { }

=
ϑ

1...j i P
 enter (in principle non-linearly) in the signal 

template. However, no simple analytic formula provides us with the maximum of 

{ }
=

ϑ…1 0 1...
( , , ; , , )N j i P

P x x A t , thus we should rely instead on numerical methods to maximize 

the likelihood function. It can be proved that χ2-test statistic would be given in this case also 
by the logarithm of the likelihood function evaluated at the estimated values of the 
parameters: 

{ }( )1 1...
, , ; , ,N j i P

P x x
=

=X A t… ϑϑϑϑ  

1.2.2 Power of the method
Let u ( ) u( )′ ≡ !t L t  be the template after the whitening filter, and suppose that a different, 

spurious signal v ( ) v( )′ ≡ !t L t  is present in the data. The event search procedure eventually 
produces an estimate of the amplitude of a gw event that is of course biased (it should have 
been zero!). We shall now derive the statistics of X  in this case. In fact, if we are going to use 
X  as a test statistic, then knowledge of the unbiased estimate statistics allow to compute the 
false dismissal probability, but a decision threshold usually require a balance between the 

                                                      
5 In general, this holds in the large number of sample limit; but as we deal with Gaussian noise, it
is an exact result.

( 1.27 ) 

( 1.28 ) 

( 1.29 )

( 1.30 )

( 1.31 ) 
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latter and false alarm, which depends on the relative rate of the spurious signal and on the 
statistics of X  when it is applied to one of them. 

To proceed, let us make some remarks: 
If the spurious signal has amplitude A, i.e. it is v( )A t , then the mean value of A  is 

u v

u u
ij i jij

hk h khk

A A
µ

= ≡ ρ
µ

∑
∑

A  

• The variance of ai  is still given by ( 1.14 ), and it still true that 2 2σ σ=A a , because 
we are assuming that there is just a spurious signal on the data, but with the same 
noise model. 

• The residuals ( )u′−y Ai i  are biased normal RV, while ( )-1 vi i′− ρy A  are zero-mean 
normal RV, so their squared sum is a χ2-distributed RV. 

Therefore, starting from ( 1.27 ), we obtain 

( )
( ) ( )( ) ( )

( )( )

2-1 -1

22-1 -1 -1 -1

2 -1 -1

v v u

v 2 v v u v u

2 v u v u

i i i ii

i i i i i i i ii i i

ij i i i iij

n

n

 ′ ′ ′= − ρ + ρ − = 

 ′ ′ ′ ′ ′ ′= − ρ + − ρ ρ − + ρ − ≡ 
′≡ + + µ ρ − ρ −

∑
∑ ∑ ∑

∑

X y A A

y A A y A A

X C A

 

where C  is the term in the middle of the second line, and ( )2-11 vi iin
′= − ρ∑X y A . The latter 

follows a reduced χ2 statistic, and whose mean do not depend on A. C  is the product of two 
normal RV, one of which is not zero-mean. It can be split in the sum of a zero-mean normal 
RV and a residual proportional to a χ2 RV. The last term follows a 1-degree-of-freedom χ2 
statistics. 

More than the details of the statistic of this variable, it worth to notice that its mean value 
is 1=X  plus a term proportional to the square of the spurious signal amplitude: 

2
1 λ= +X A  

This means that, at least for high SNR, it is possible to remove effectively the spurious 
events detected in the filtered data. The numerical value of λ –hence how much ‘high’ the 
SNR should be– can be computed once a template for the spurious signals is given. 

Of course, it is natural to ask what happens to a true signal and its test statistic when the 
wrong filter has been applied, either because the noise model is wrong, or the parameters for 
the transfer function of the detector are misestimated. This should not happen! In the next 
Chapter we are going to discuss the methods by which the compliance of the WK filter with 
the noise PSD are tested. Moreover, the transfer function parameters are known to be a 
subset of the noise model parameters. Anyway, a few times a calibration signal was injected 
in the system to verify this assumption (see 4.1.6). 

( 1.32 ) 

( 1.33 )

 ( 1.34 ) 
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1.3 Event search without a trigger

For a multiple mechanical oscillator model, the pulse response after the WK filter shows a 
characteristic dumped oscillating pattern with beat modulation 

A list of candidate events is built by looking for every independent local extreme of the amplitude 
modulation. This task is conveniently performed by a max-hold algorithm, with a characteristic 
time of the order of the Wiener time. To estimate accurately the amplitude and time of arrival A e 
t0 the WK filtered data have to be interpolated. Expected amplitude distribution of candidate events 
in absence of signal is discussed. 

Even neglecting interpolation errors, there are unavoidable peak and phase errors in the time of 
arrival estimate. The first ones depend on WK filter characteristic time or on the beat time between 
the resonating modes for small-bandwidth detectors. Phase errors depend on the carrier frequency. 
Approximate SNR scaling laws for peak and phase errors are derived. 

 

1.3.1 A parametric model for coupled mechanical oscillators
A device that can be modeled as a linear electric network of passive elements, each one 

with simple (algebraic) transfer function, has an overall impulse response whose Laplace 
transform is a rational algebraic function. Its poles are not more than the number of 
topologically independent loops in the network, and their position depends only on the 
choice of the output port, and not on the placement of the external driving signal or internal 
noise sources. We shall give a brief demonstration of this statement. 

No matter how complex the finite element model of a real passive linear system, in the 
frequency domain it is described as a system of algebraic equations, which can be solved 
with a matrix inversion to give the measurable quantities, i.e. output current or voltages. The 
typical steps in this procedure are the following: 

1. write down the measured output voltage Vout as a linear combination of a 
specified set of independent loop currents ( )1 , , Ni i = I%  and loop impedances 

( )1 , , Nz z = Z%  derived from the equivalent electric model of the system: 

outV = ⋅I Z  
2. write the dynamic equations for each loop, and solve the circuit for the currents 

I, as a function of the voltage sources on each loop ( )1 , , Nv v = V% : 

11 det , −⋅ = ⇒ = ⋅ ∆ ≡ =
∆ ∆

NM I V I N V M M  

3. express the output voltage Vout as a function of the voltage sources in the 
network: 

1 ( )
out i ij jij

Q VV Z N V
P

= =
∆∑  

Note that if kp ∈ &  is a zero of the denominator P, then p* is also a zero, as the inverse 
Laplace transform of all these functions is supposed to be a real function. 

( 1.35 )

( 1.36 )

( 1.37 )
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A similar result holds also for the PSD of the noise at the output. The Nyquist theorem 
relates the noise sources of the system to the dissipative (i.e. real) part of the output 
impedances { }nZ  through the temperature T and the Boltzmann constant Bk : 

{ }( ) 2 Re
iZ B iS k T Zω =  

They act as random voltages { }nV  added to the signals. At the output port of the system, 
the spectral density due to each single noise source superimpose, weighted by the square of 
the transfer function of the signals { }nV  (see ( 1.6 )): 

S Z N Sn i ij nout j
( ) ( )ω ω= ∑1

2

2

∆  
Note that each zero p of |∆|2 in the negative real component half-plane comes with the 

corresponding positive real component counterparts − kp : this is a standard feature of a PSD, 
as it is defined as the FT of an even function, see ( 1.4 ) and ( 1.5 ). In the following, whenever 
we refer to the pole p, it will imply also p*, -p, -p*. 

From ( 1.37 ) and  ( 1.39 ) we see that –provided that the transfer function of the basic 
elements of the system are rational polynomial of the complex frequency– the analytical 
models for the both the transfer function and the noise PSD of the whole system are always 
ratio of polynomials. What is more, the poles of the transfer function are a subset of the poles 
of the PSD. 

Each of the poles p corresponds by definition to a resonance of the system. In the usual 
notation 0p i= ω − ∆ , ω0/2π is the frequency of the resonance, ∆/π is the bandwidth (defined 
as full-width-half-maximum of the peak in the energy spectrum). Due to typically small 
bandwidth relative to frequency, ∆<<ω, the resonance frequencies are usually well separate, 
and can be studied individually in a small frequency band. 

As it was briefly explained in the introduction, bar detectors now in operation consist of a 
resonant mass (the bar) coupled to an electromechanical resonant transducer with the same 
free resonance frequency. The output of the detector −after a linear (or linearized) 
amplification stage− is acquired with an ADC, either directly (as in AURIGA) or through a 
band-pass amplifier. To our purposes, two coupled damped harmonic oscillators can 
conveniently model the entire system. The solution of the dynamical equations for the 
normal modes is a doublet of well-separated resonance modes (at least for present working 
detectors setup, ~20Hz at ~1kHz). 

Close to the kth resonance frequency ω =( 1,2)k k , the transfer function of the system 

resembles that of a harmonic oscillator, namely ( ) ( )( )− ∗ ω − ω ω− ω ≡ ω− ω− 
12 2

k

i
Q k k k ki p i p , 

where kQ  is the mechanical quality factor of the kth mode and the pole k k kp i≡ ω − ∆  ( 0k∆ > ) 

outV1v

2v 3v
iv

1iM 2iM 3iM

1i 3i2i

iZ
iZS

outV
1i

Figure 2 – (left) A linear physical device –like a bar detector– can be modeled as a network of linear passive elements, driven 
by voltage sources either deterministic or stochastic.  (center) All the currents circulating inside the network can be 
described in terms of a set of independent loop currents 

ki  driven by the sources 
hv  through the impedances 

hkM  and by 
the Nyquist noise sources (right) linked to the output coupling impedance 

hZ  of each loop.  

( 1.38 )

 ( 1.39 ) 
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is placed in the negative real component half-plane of the complex plane, because the system 
has a causal impulse response. Hence we can model the total transfer function as 

( )( )∏
=

∗−ω−ω
ωα=ω

2

1

)(
k kk pipi

i
G  

where α is a calibration constant to be experimentally determined. 
Each dissipative element has an associated the thermal noise source through the Nyquist 

theorem, whose output power spectral density (PSD) is proportional to 

( )( )( )( )**

222 1

kkkk
kkQ

i

pipipipik +ω−ω+ω−ω
≡ω−ωω−ω

−
 

This is a Lorentzian spectrum, and it can be used in general to fit the PSD in a frequency range 
close to the resonances of the system. 

Along with thermal noise, we should take care of the back action and of the wide band 
noise of the amplifier. In the context of this chapter, with the detector being modeled by 
serial electrical RLC oscillators read by a voltage amplifier, the back action of the amplifier 
itself is modeled by a current noise source acting from the output port of the system. As the 
output admittance of the system shares the same poles kp  of the transfer function, the 
voltage noise induced by the back-action acts just like an additive contribution in excess to 
thermal noise. The total output noise PSD S ( )ωnn  is made by a linear combination of 
Lorentzian terms, one for each resonance, plus a constant wide band noise 0S  due to the 
voltage noise of the electronic amplification stage: 

880 900 920 940 960
Frequency (Hz)  

880 900 920 940 960
Frequency (Hz)  

 

900 910 920 930 940
Frequency (Hz)  

900 910 920 930 940
frequency (Hz)  

Figure 3 – The noise model for a 2-modes resonant detector similar in performance to AURIGA is shown in (a), while (b) 
represent the squared transfer function for the system in energy. Both functions are characterized by the same mechanical 
quality factor; therefore the real bandwidth of the system is much more than the inverse of the relaxation time of the 
mechanical oscillators (~1000 s). (c) The sensitive ‘bandwidth’ is the width of the lorenzian peak at the level of the amplifier 
wide band noise, up to which the two functions superimpose almost perfectly. This shows up promptly in (d), where the 
ratio of (a) over (b) is plotted. This function, once properly calibrated by a constant factor, gives the modelled noise at the 
input of the detector. 

( 1.40 ) 

( 1.41 ) 

d) c) 

b)a) 
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( )( ) ( )( )
2

0
1

( ) k

k k k k k

CS S
i p i p i p i p∗ ∗

=
ω = +

ω− ω+ ω− ω+∑nn  

for suitable kC . Arranging all terms, and using symmetry properties of the noise PSD, we 
conclude that the general expression for S ( )ωnn  is 

( )( )( )( )
( )( )( )( )

∗ ∗

∗ ∗
=

ω − ω+ ω− ω+
ω =

ω− ω + ω− ω +∏
2

0
1

( ) k k k k

k k k k k

i q i q i q i q
S S

i p i p i p i pnn  

The complex zeros can be written as k k kq i≡ ω − δ  where Re k kq = δ π is the effective post-
filtering bandwidth, and ≈ ≡ ωIm Imk k kq p  if the correlation between wide-band noise and 
narrow-band noise is negligible (in particular, if k k∆ δ' ). It is remarkable that these are all 
the parameters we need in order to build the WK filter for an impulsive signal, compared to 
the thousands (or more) involved with a non-parametric estimate of the power spectrum. On 
the other side, this approach gives consistent results only when the real noise PSD of the 
detector reasonably follows the model (e.g. it doesn't exhibits extra noise resonances about 
the normal modes). 

Once the model is established, it is straightforward to build up the optimal WK filter for 
it6, and all we need is to specify the signal template. Unless stated differently, in the 
following we shall focus to the response u ( )tδ  to a δ-like GW signal entering the system (in a 
similar fashion we characterize a linear system with its impulse response). The FT u ( )δ ω"  of 
the signal is simply the total transfer function 

( )( )u ( ) .
k k k

i
i p i pδ ∗

ωω = α
ω− ω−∏"  

It’s worth to remark that the response of the system to any other input signal h(t) can be 
always written as the time convolution u h( )tδ∗ . Therefore, once applied the optimum linear 
filter matched with uδ , we can do WK filtering matched to h simply by convolution of h(t) 
with the data filtered for the impulse response: ( ) ( )h u h uδ δ∗ ∗ = ∗ ∗x x . 

                                                      
6 Though it is handy to describe the effect of the WK filter in the frequency domain, yet the real
implementation is better done in the discrete time domain with an equivalent autoregressive and
moving average (ARMA) type filter implementation, see appendix.

( 1.42 ) 

( 1.43 ) 

( 1.44 ) 

Figure 4. In the time domain, the signal after the WK filter appears as a damped beat between the two modes modulating 
the sinusoidal carrier wave. With a bandwidth of (~1Hz) typical of the present class of operating detectors, the relative 
amplitude of the peaks near the time of arrival is decreasing slowly with a quadratic low, because the beat modulation is 
faster than the exponential decay. 
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A more physical reason to focus on δ-like signals is that astrophysical models of impulsive 
GW sources suggest that duration of the signal component at 1kHz is of the order of ~1 ms. 
When such short burst are detected with the comparatively small bandwidth (~1÷50Hz) of 
resonant detectors, the exact details of the time structure are lost. 

The expression of the WK filter in the frequency domain ( 1.18 ) specialize in 

( )( )
( )( )( )( )

2
2 1

0
1

W( ) .k k

k k k k k

i i p i p
S

i q i q i q i q

∗
−

∗ ∗
=

− ω ω− ω−
ω = σ

ω− ω+ ω− ω+∏a

 
It is rather obvious how to split up the WK filter in the whitening filter (i.e. 

2( ) S ( ) 1L ω ω =nn )   

( ) ( )
( ) ( )

2
1/ 2

0
1

L( ) k k

k k k

i p i p
S

i q i q

∗
−

∗
=

ω− ω−
ω =

ω− ω−∏
 

and the mask: 

( ) ( )
2

2 1/ 2
0

1
M( )

k k k

iS
i q i q

−
∗

=

− ωω = σ
ω+ ω+∏a

 
The latter is clearly a band-pass filter around the frequencies { } 1,2k k=ω . 
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Figure 5 – In this example, a ~10Hz bandwidth per mode detector is examined, which is likely to be the conservative 
minimum achievement of the forthcoming upgraded bar detectors. In (a) the modelled noise is superimposed to the squared 
transfer function, and the equivalent gw noise spectral density is shown in (b). The two mode sensitive bands are no more 
separate, as they merge in a wide, flat bottom in the spectrum. The timescale of the beating is now the same or less of the 
exponential decay. As a consequence the side peaks near the time axis origin decay much faster, improving by a large factor 
the timing accuracy (see 1.3.3). 
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When a GW burst with amplitude A impinges on the bar, the FT of the signal after WK 
filter is 

( ) ( ) ( )( )
22

2 1
0

1
u ( )

k k k k k

W A S
i q i q i q i q

−
δ ∗ ∗

=

ωω = σ
ω− ω+ ω− ω+∏a

"!
 

Comparing ( 1.44 ) and ( 1.48 ) we see that the WK filter changes the pre-detection 
bandwidth ∆ωk≡-Re(pk) of the modes to the post-filter bandwidth ∆ωkopt≡-Re(qk). Moreover, as 
was remarked in 1.1.3, the two poles kq−  and kq∗−  introduce an noncausal component in the 
response. 

1.3.2 Event search
We shall now revert to the time domain the results achieved in the previous section. From 

( 1.48 ), it can be seen that a candidate δ-like event in the WK filter output is7 a pattern with a 
specific mix of an exponential decay both forward and backward in time with time constant 

{ }
1,2

1 max opt
W kk

t
=

≈ ∆ω  (Wiener time), the beat between the two normal modes at the frequency 

[ ]1
2* 2 1ω ≈ ω − ω  and a carrier wave at the frequency [ ]1

20 1 2ω ≈ ω + ω : 

* 0u ( ) cos( )cos( )Wt tW t Ae t t−
δ ≈ ⋅ ω ω!  

                                                      
7 Actually, the exact solution is a superposition of two decay patterns with different decay times.
But if they are almost equal then ( 1.49 ) is a useful approximation.
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Figure 6 – (a) The two modes of a real detector are known to behave quite differently with respect of noise properties, as 
they interact with the other environmental disturbances (see Figure 60). We consider here a pessimistic case of a factor 10 in 
the relative post filtering bandwidth parameter –i.e. 

1 2( ) 10 ( )q qℜ ≈ ℜ . (b) The resultant noise at the input of the detector 

basically shows only one mode is sensitive to gw in comparison with the case of Figure 4. (c,d) The timing accuracy is 
slightly (a factor two) worse at high SNR, when only a few side peaks can play with the noise. At lower SNR, without the 
intervening beating, the exponential decay is much slower. 
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It is obvious that the local extremes of the filtered signal shown in Figure 4 are the minima 
and maxims of the carrier wave, whose coordinates (text,A) can be found accurately by 
interpolating the signal beyond the Nyquist sampling time, as we describe extensively in 
4.1.3. However, only a subset of these extremes is uncorrelated, and we have to take care that 
we do not count the same event more than once. 

A maximum-hold algorithm (see Figure 7) performs a search for local uncorrelated extremes, 
selecting only one of them in a suited interval of time. The Wiener time seems a good choice, 
as represents the decay time of the filtered signal (and also the noise autocorrelation time), 
and it fixes a lower bound on the separability of two temporally close pulses. In other words, 
because of the correlation in the data after the WK filter, we are forced to introduce a “dead 

Estimate of (text,A) for next oscillation
of the carrier wave at frequency ω0

Is it further 
than from last identified 

candidate event? 
 

Last assigned candidate event is confirmed 
and written into the dbase; current extreme 

is the new candidate event 
 

Current extreme substitutes the 
temporary assigned candidate event 

 

Does it have greater
absolute magnitude?

YES YES

NO NO

-3

-2

-1
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3
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time    (s)

S
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Figure 7. Flow chart of the event search algorithm (top) and corresponding pictorial representation (above), using a filtered 
stretch of noise with the same parameters of Figure 3. The extreme of a single beat cycle with amplitude exceeding that of all 
previous ones is marked by a solid filled dot, the others by an empty one (the individual extremes of the carrier wave are not 
visible on this timescale). The search for an event is renewed ∼ 3 Wt  past the last biggest event !!!! –which we call then a 
candidate event–, while in """" and #### the extremes were not hold enough time. It is worth to remark that the event found in 
this way is not a real “signal”, but just a statistical fluctuation of the background stochastic process. There are no explicit 
amplitude thresholds applied in the event search algorithm. 
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time” Wt∼  around each event, because we have to wait that the signal has decayed into the 
noise before looking for next event. We can compute the time needed by the template 

u ( )W tδ!  to decay below SNR=1 using the formula lnWt SNRτ = . For instance, a signal with 
SNR=20 at the maximum needs at least 3 Wt  for its amplitude to decrease under SNR=1. 

Obviously, when a signal has an intrinsic finite duration longer than the decay time of the 
WK filter it is erroneously classified as a sequence of impulsive events (but they are readily 
rejected as spurious by the 2χ  test). 

We should be aware that the event search algorithm described here is going to produce a 
lot of false alarms at low SNR, because it recognizes as a candidate gw signal every single 
fluctuation of the stochastic process ( )W tn!  in a time span of duration τ. This is however 
unavoidable with no high threshold set, and justifies us calling gw detectors “noise 
dominated”, meaning that most of the background comes from a continuous stochastic 
process, while apparently similar devices like particle detectors are most of the time signal 
dominated, i.e. most of the background is due to spurious detection due to transient 
excitations, for instance because of cosmic ray showers. 

It would be interesting to have a prediction for the amplitude density function of this bulk 
of background events. It should be a functional of the autocorrelation function, the SNR and 
of the decorrelation threshold (which in our case is again proportional to the WK filter 
bandwidth). 

Just for sake of discussion, we shall now try to answer directly to the question. 
Let us start with an even subdivision { }0,..., 2kt k N=  of the time interval [ ]1 1

2 20 0;t t− τ − τ  

in 2N parts. Take a normal stochastic process ( )tx  satisfying ( ) 0t =x  and ( ) 1t =2x , with 
autocovariance function R( )τ . Each of the 2N+1 samples ( )k kt≡x x  is a normal RV, and the 
generalized (2N+1)-dimensional density function for the multivariate RV ( ),...,N N−≡x x x  is 

( )2 1

1 1( ,..., ) exp
22

T
N N N

f x x− +

 = − 
 π ∆

x xµx  

where 

{ }1 ; ( ) ; dethk h kR R R R t t−≡ ≡ ≡ − ∆ ≡ Rµ  

The probability that 0x  itself is a local maximum when it assumes the value a is 
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It is convenient to express this formula having the integrand depending on R (which has 
better symmetry properties than µ ); this can be done changing the variable x into the 

Fourier transform conjugate variable ( ),...,N N−Ω = ω ω : 

( 1.50 ) 

( 1.51 ) 
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where 00s a R≡ ⋅  is the SNR of the signal with amplitude a. The solution to the last integral 
in the limit N → ∞  is the density function we are looking for.  

Unfortunately, it seems we have found an integral that has no known solutions. And it is 
difficult to cope with it even numerically! 

There is a cheap alternative to obtain the same result, using a Monte Carlo method. This 
means that we have to simulate the output of a WK filter with the same PSD, for instance by 
feeding an appropriate linear system with a Gaussian white noise generator (this can be done 
efficiently with an ARMA implementation, see 4.1.4). Then using a fast off-line event search 
algorithm we get a large number of events, whose histogram gives a fair estimate of the 
density function we are looking for. The result is shown in  
Figure 8 – (continous line) Histogram of event amplitudes for 10 days of AURIGA data (UTC  12÷÷÷÷21 Jun 1997), and (dashed 
line) the analogous when the analysis is fed by a simulated Gaussian noise. To have a fair comparison, the parameters of the 
simulated noise are non-stationary, and use the parameters estimated hour by hour for the corresponding time span in 
AURIGA data. 
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1.3.3 Timing errors
Looking at Figure 4, it is rather easy to figure out what is the qualitative behavior of the 

timing error. First of all, if the signal has very low amplitude, then the noise alters the 
relative amplitude of the single beatings, and the central lobe actually can be found at lower 
amplitude than the side lobes, through this case is partially suppressed by the exponential 
decay, which of course favors the central lobe. As the SNR increases, the step needed for the 
noise to perform a lobe flipping is greater, until the chances are so low that basically the 
found time of arrival stick to the central lobe. 

The same reasoning can be applied in a finer scale to the single oscillations of the carrier 
wave. Again, if the SNR is low, the noise is able to promote as local maximum any of the 
extremes near the top of the central beating lobe. 

Eventually, at very high SNR, even amplitude flipping between nearby peaks is 
forbidden, and the timing error becomes a fraction of the period 1

0 0T −= ω  of the carrier wave. 
We can summarize what we said writing the timing error as 

T∗= +t t kφφφφ∆ ∆∆ ∆∆ ∆∆ ∆  

where t∆∆∆∆  is the total timing error, which is always (by definition!) less than the 
decorrelation time of the event search algorithm (which in turn is a multiple of the renewal 
time, i.e. the Wiener time Wt ); we call tφφφφ∆∆∆∆  and k  respectively the phase error; and the peak 

error (or peak number). They are defined as the unique solution of ( 1.53 ) such that  
0 02 2T T< <tφφφφ∆∆∆∆  and ∈ )k . 

The problem of finding the joint density function of tφφφφ∆∆∆∆  and k  is not less involved than 
the exact solution we were looking for in the previous paragraph for the sole amplitude 
distribution. However, it turns out that if we are just interested to a solution for large SNR 
(i.e. small timing errors) then it can be proved [10] that there is a linear approximation to the 
problem. The solution is the following: 

• tφφφφ∆∆∆∆  is a normal variable whose standard deviation does not depend on k : 

0

1
SNRφσ =

ω
 

which evaluates to 173 /s SNRφσ ≈ µ  for present AURIGA hardware setup. 
• The probability of selecting the maximum k  depends from the product *Wt ⋅ω :  

0
* 2

0
*

*

1

1

W
W k

W k

tt
SNR

t
SNR

⋅ω⋅ω ⇒ σ =

ω⋅ω ⇒ σ =
πω

'
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These  two cases are illustrated by Figure 4, where the exponential decay is slower than the 
beating time, and by Figure 5, where the opposite case take place. 
 

( 1.53 )

( 1.54 )

( 1.55 )
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2 Adaptive models and the real world
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2.1 The real detector performances

The behavior of gw detectors now in operation can be described by the model presented in the 
previous sections, but only at a first degree of approximation. In fact, in some extreme cases, real 
detectors behave only as a pale shadow of the prototype. A proper data conditioning allows 
removing the unmodeled details in a consistent way. 

 

2.1.1 From raw to WK filtered data
 

The model described in 1.3.1 is more or less likely to be verified in a real detector. In fact, 
the only strong source of wide band noise is certainly a Nyquist white noise source due to 
electronic noise. The other noise sources are narrow band, were “narrow” means 1 Hz at 
most, typically much less than this. Therefore, just by a matter of chance, it is unlikely that 
they directly disturb the narrow frequency band of sensitivity of the detector. 

Of course one may ask what if actually an environmental narrow band noise is tuned to 
one of the sensitive modes: well, that’s the time to take a screw driver and fix the detector 
hardware! Moreover, in the 1kHz region of the spectrum there used to be a lot of unstable 
resonance peaks, whose frequency could span in a daily cycle in a range of more than 10 Hz 
(see 4.2.3 for a closer view of some diagnostic data about AURIGA spectrum). Other peaks 
could appear and disappear during or after cryogenic (1K pot He refill) maintenance 
operations. One of the tasks of part of the group was in fact just to look day by day at the 
spectrum, trying to clean it up somewhat or at least to keep a good point. 

Figure 9 – A sample PSD of AURIGA data (UTC 1h 1 Aug 1999), with an enhanced view of the two normal modes of the 
coupled system 
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During typical operating time, most of the power of unmodeled noise in the AURIGA 
PSD is concentrated far away from the sensitive bandwidth Figure 9. This let us apply the 
theory of WK filtering: as the signal-to-noise ratio function per unit Hz is highly suppressing 
everywhere else, the bias in the amplitude of the samples is negligible, and event search is 
minimally affected. 

There is a third interesting stream of data, other than the raw detector output and the 
signal-enhanced WK filter output: the whitened data. Here we should remark that 
“whitening” we are speaking of refers only to the two fundamental resonant modes. The rest 
of the “whitened” spectrum is exactly as the raw data PSD. As we are not interested to the 
entire 2.4kHz band other than for diagnostic purposes, the data are decimated a factor 70 
after the WK filter and therefore demodulated to a more convenient 70Hz stream before 
passing them to the whitening filter8. This is not a problem for aliasing, as the filtered data 
are narrowband. The whitened decimated data to a good approximation contain really only 
white noise. 

Figure 11c shows a PSD of the data after the whitening filter applied to the decimated 
data. The fact that there are no remnants of the two modes of the system means that the 
model fully describes the noise of the system in the decimated bandwidth, which is a strict 
requirement in the recipe for a good WK filter. 

                                                      
8 Obviously we are speaking of the whitening filter for the filtered data, which is not L but 1L W −!
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2.1.2 Event search and spurious rejection
 
The data are now ready for event search. The X  test statistic is computed using ( 1.29 ), 

and this quantity together with the amplitude, the SNR and ToA are the only information 
pertaining to the events recorded into the AURIGA database for offline consultation. 

The database stores many other periodic data streams not directly related to the events, 
like the first four moments of filtered data distribution, or the residual correlation of the 
whitened data. They are used for diagnostic purposes, to record the status of the detector 
and for data quality validation: as we shall see in 2.2, they form the basic information of the 
veto system for AURIGA event list publication. 

Figure 12 groups the main characters of the event list production for data exchange 
purposes: the events form a time series, which only at this stage is made through an explicit 
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Figure 11 – In the power spectrum density of the raw data (a), enhanced around the 
detector's modes, the only small departures from the model of Eq. ( 1.43 ) are a few 
monochromatic disturbances, due to AC power sources. After the WK filter (b) the 
data are approximately band-limited, hence sub-sampling is allowed without 
aliasing. The power spectrum density estimate of sub-sampled whitened data (c) 
shows that the parameters of the noise model were estimated correctly. 
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threshold in amplitude in order to reduce the number of events to a rate which is useful for 
coincidence search (i.e. which gives raise to a tolerable false alarm rate). In fact, up to this 
point we let the max-hold event search saturate at its natural event rate, which is of the order 
of the reciprocal of Wt  (or many thousands events per day). Keeping only the loudest events, 
with an adaptive threshold above SNR=5 the event rate decrease to about one hundred events 
per day. The event amplitude histogram (see Figure 8) is very steep, and a factor 2 more in 
event threshold would end up in a selection of just a couple of events per day. It is at this 
level that the X  test statistic starts playing a role. In fact, almost all the events with SNR>10 
are rejected, even with a relatively high false dismissal probability, about 10-4 (but this is 
what we expect from the theoretical 2χ statistic, the actual efficiency is somewhat lower 
because the empirical X  test statistic density function broadens somewhat due to SNR 
estimate uncertainty, filter biases and so on). This means that event characterization by 
goodness of-the-fit test is mainly targeted to a sound detection of high confidence level and 
good signal timing events, while it is ineffective at lower SNR, were the Gaussian bulk 
dominates. 
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Figure 12 – The event validation factory at work. (bottom) Event produced by the online analysis are vetoed by their time tag 
agaist interruptions of the normal operation of the detector because of maintence activity (see 2.3). (middle and top) To be 

released as candidate gw, an event is also thresholded in amplitude and its waveform must pass a single tailed 2χ  
goodness of-the-fit test (acceptance set to an of 1-10-4).  
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2.2 Filter parameters estimate

Lock-in’s are useful to estimate the central frequency and bandwidth of narrow spectral lines. An 
approximate feedback adaptiveness of the WK filter bandwidth is based on the whitened data power 
spectrum density. 

Fast transients are the main problem with parameter estimation, but they are almost always 
associated with non-gaussianity of the data. On the other hand, when filtered data follow a 
Gaussian statistics it is likely that any other statistic test (like residual correlation in the whitened 
data) is just showing a mismatch of the estimated parameters with the true ones. 

 

2.2.1 Overview of adaptive techniques
We have seen in 1.3.1 that only a bunch of parameters are needed for a parametric 

description of the detector noise and transfer function. These parameters have to be 
estimated to build the WK filter, but due to the unavoidable non-stationary behavior of the 
system some of their values changes significantly in time. If the non-stationarity is slow, i.e. 
occurs on a time scale longer than the relaxation time of the modes, the data analysis can 
track them by an adaptive algorithm. The parameters for the WK filter are updated with the 
ones from the slow tracking at the beginning of each hour. 

For each parameter, an ad hoc procedure was applied [23]. 
$ Im( ) Im( )k k kp qω = ≈  the resonant mode frequencies are monitored by two 

fully digital lock-ins, implemented into the online data 
analysis software. The WK filter frequencies are 
practically identical to the pre-filtering one, so no new 
independent estimate is actually performed. 

$ Re( )k kp∆ω =  the pre-detection bandwidth is known not to be a critical 
parameter, and is left to the value measured at the 
beginning of a data taking period9. It depends anyway on 
structural characteristics of the experimental setup, 
which cannot change without acknowledge of the 
experimentalist.  

$ Re( )opt
k kq∆ω =  the WK filter (or effective) bandwidth is adapted so to 

keep flat the whitened data spectrum (see below) 
$ 0S  the level of the amplifier's white noise is monitored by a 

lock-in displaced from the detector modes.10 
The parameters are supposed to be slow-drifting, consequently we use moving averages 

to smooth their estimates on time scales of the order of the update schedule, which in turn is 
of the order of the system's proper relaxation time ( ) 1 310k s−∆ω ∼ , much longer than the WK 

                                                      
9 It is also estimated online by fitting in the time domain the exponential decay pattern of the
lock-in autocorrelation function. But this procedure has not been thoroughly tested yet.
10 A recently implemented estimator seems to have greatly reduced variance and is endowed with
a natural goodness-of-the-fit test to check for tilts in the spectrum or remove outliers from the
estimate. You can see in 4.2.2 a preview of its features, and as a preliminary result it seems that

0S is indeed a stable parameter during good operation periods.
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filter characteristic time ( ) 1 310opt
k s

−
∆ω ∼ . A non-stationary behavior faster than ( ) 1

k
−∆ω  does 

not allow estimating correctly the noise parameters, and therefore the analysis put a flag on 
consecutive buffers where this is frequently happens. Finally, a candidate signal would 
instead show up as a very fast variation of the detector output noise, limited in time and 
with a duration of a few times to the Wiener time.  

Let us spend a few more words on the effective bandwidth of the detector, as it is the 
most sensitive and non-stationary parameter of the WK filter [36]. An error in its estimate 
shows up promptly in the whitened noise PSD. We exploit this effect in a feedback algorithm 
that corrects the parameters in order to keep the whitened PSD almost flat [23]. This 
algorithm usually converges in a couple of hours to the correct values (see 4.1.7). 

Even if the algorithm has proved to be efficient in Monte Carlo simulations, it is heavily 
dependent on the assumption that there is only a mismatch in the parameters of the filter, 
and not a more serious problem with the noise model itself. Moreover, it may be useful to 
remark that when the whitening filter acts on a signal it does not whiten it as it does for pure 
noise –and it has to be so, or we would not see any signal at all! For this reason, a fast 
transient due to a large excitation of the system (even a gw event!) could produce in the 
hourly average a distorted whitened PSD, making us to think (wrongly) that an update of 
the effective bandwidth is necessary even if it is correctly estimated. So it is of primary 
importance to check the absence of signal in the data prior to the parameter estimate to avoid 
biases. The data buffers containing transients are selected and removed from the data stream 
used by the parameter-tracking algorithm. 

The procedure is in principle simple, and is based on the observation that a high enough 
amplitude transient capable of sensibly wasting the hourly noise PSD spoils also the 
otherwise Gaussian noise distribution. 

To detect this effect, the data are segmented in buffers about one minute long, and for 
each one the algorithm computes the kurtosis (i.e. the fourth moment of the distribution) for 
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Figure 13 – Dependence of the variance of filtered data signal-to-noise ratio from the ratio of estimated ( ′∆ ) over true  
WK filter bandwidth ( ∆ ). These results are correct in the hypothesis that the variation of S0 are negligible. This point is 
delicate: in fact the bandwidth is determined (as pointed out in Figure 3c) both by the width of the detector resonace and 
by the level of the wide band noise. However, this parameter was monitored for a long time and shows to be constant 
irrespective to any other variation of the spectrum, except for hardware changes in the parameters of the electonics that 
control the amplifier, or because of unrecoverable failures in the electronic itself. 
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both filtered and whitened data, comparing it to the values one expects from a Gaussian 
distribution. The decision threshold we have chosen empirically corresponds to a confidence 
level at least 99% with respect to the fluctuation of the estimates obtained in a Monte Carlo 
simulation with purely Gaussian noise. 

Effective temperature is the variance FLTσ  of the event amplitude estimate, i.e. of the 
filtered data (in the linear regime, see 4.3.2). It is related to the variance WHTσ  of the whitened 
data, and –if the system is following our parametric model– both are functionally dependent 
on the noise power spectrum density parameters: ),()( kkWHTWHT qpgf == σσ . 

Whichever the final choice of the best estimates (our attitude upon inconsistency of the 
different estimates was always to prefer WHTσ ), in order to estimate the standard deviation of 
the noise each buffer is checked for outliers, which are defined as everything in excess to 3 
standard deviations. The procedure iterates recursively, computing again the standard 
deviation on the data left after outlier removal, until eventually the algorithm converges, or 
there are no more data left. This method is known as ‘Chauvenet procedure’, and its 
convergence is guaranteed most of the time for data distributed with Gaussian statistics. This 
gives as a corollary an independent check that the data buffer comes indeed from a Gaussian 
distribution: in case of poor convergence the buffer is not used for parameter estimate. 

We further verify that there is no residual ‘color’ in the whitened data (i.e. its cross-
correlation is not too far from zero). This is in the spirit that we are taking care automatically 
of perturbative corrections to the parameters, while bigger ones could be a symptom of more 
serious malfunctioning, and are usually handled manually. The parameter on which the 
analysis actually performs this test is a sort of derivative of consecutive samples.  

A data buffer is considered to be Gaussian if its kurtosis is compatible with that obtained 
in Monte Carlo simulations within 99.7CL and if the Chauvenet algorithm converges within 
a few steps eliminating at most a few percentage of the data samples. Moreover, we require 
the correlation of the whitened data buffer not to exceed a 99.7CL threshold with respect to 
Monte Carlo simulations. 

Sample pictures of good and bad buffers are reported in Figure 15. Figure 16 shows the 
result of this procedure for four hours of AURIGA operation.  
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1

10

10 2

10 3

-0.2 -0.1 0 0.1 0.2

  60.78    /    32

Teff=1.27  ±0.01mK

Amplitude (H0·1020)

co
un

ts

Versione analisi on-line 1.2

Figure 14 - Amplitude histogram of filtered data after during one day of satisfactory operation of the AURIGA detector. The 
data has been subsampled one per second to get almost independent samples. The small deviations from gaussian statistics 
at high amplitudes are due to the presence of signals ovrimposed on the noise. The variance of these data, expressed as 
effective temperature (Teff), accounts only for the gaussian bulk. This graph is shown only as a teaching exampl. The valuse 
of Teff actually used to estimate the SNR of each event is given for each decimated buffer (~2min), as a moving average of the 
last 10 buffers which passed gaussianity and whitening tests,   
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The discrimination between good and bad data buffers by requiring strict compliance of 
the noise with a parametric model is a cornerstone feature of the AURIGA data analysis. If 
one of the previous tests is not passed for a certain buffer, it is not considered in the 
computation of the parameter correction, and the parameter update is delayed. This doesn’t 
affect the search for candidate gw events, that is performed anyway also in this buffer. 
However, a long sequence of ‘bad’ buffers is considered unreliable also for gw detection, and 
marked for removal from duty cycle. 
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Figure 15 - The filtered data (a) are divided into buffers of 2 minutes. The two ones marked with brackets have quite 
different statistical distributions (resp. b and e), particularly on tails beyond 3 times the Root Mean Square (solid color). The 
non-gaussian buffer is not let enter at all the effective noise temperature estimate (which is a RMS moving average). Notice 
that, for the same ‘bad’ buffer, the whitening filter seems no more working properly (see c and f), in particular it mimics a 
displacement of the real part of the zeros q1 and q2 (see 4.1.7). 
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Two main situations may then arise: either there is a dominant contribution of the 
modeled quasi-stationary noise with short time periods showing unmodeled excess noise 
and/or signals, or the data are dominated by unmodeled excess noise. In the first case, the 
bad buffers are rare enough so that the analysis is able to reliably estimate the noise 
parameters and to adapt the WK filter to any slow non-stationary noise behavior by using 
good buffers only. The estimate of the noise parameters is therefore performed in a reliable 
way by using only the periods when the modeled noise is dominating and disregarding the 
bad buffers, which instead contain some “signals”. 

This is therefore a satisfactory condition for detector operation, corresponding in Figure 
16f to the time periods not covered by the dashed pattern. Figure 14 shows a sample 
amplitude histogram of the filtered data during the satisfactory operation of the detector 
during the same day of Figure 16; the statistics is Gaussian with small excess counts in the 
tails due to the “signals” present in the rare bad buffers. 

The other main operating condition, i.e. that the data are dominated by unmodeled excess 
noise, is identified –as a rule of thumb – when more than 4 buffers within a fixed time 
window 10 buffers long failed the tests. In this condition, the WK filter is badly matched to 
the noise –in fact it could be that WK linear filter theory is not applicable. The analyzed data 
therefore lack of self-consistency and the output data are vetoed, as shown in the bottom 
graph of Figure 16 with dashed areas. Under this condition the detector is not necessarily 
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Figure 16 – An overview of the results of standard statistical tests performed on filtered and whitened data during four 
hours of AURIGA operation (UTC 5h÷÷÷÷9h 1-Jul-1999): kurtosis statistical test for WK-filtered and whitened data (a,c); the 
residual fraction of WK-filtered and whitened data kept after the Chauvenet selection (b,e); the correlation of whitened data 
(d). Thin horizontal lines are the acceptance threshold, equal to three times the outcome of the analysis with pure gaussian 
nose simulated with an ARMA model. (f) The bottom graph shows: 1) the variance of the filtered data buffers (thin line) in 
units of effective temperature; 2) the time periods corresponding to data buffers with bad statistical properties (solid red 
banners); 3) the vetoed periods of operation due to too frequent bad data buffers (dashed areas). 
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blind and with advanced different noise models and/or parameters one could recover some 
of the vetoed observation time. 
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2.3 Duty cycle estimate

A period of ‘good operation’ is defined as one in which detection efficiency is close to 1, and the 
biases on amplitude and time of arrival estimate are negligible. It has to be long enough for the 
estimators of the filter parameters and of the sensitivity to converge. Eventually it should be 
judged on the capabilities of consistent event detection, at least for simulated events. 

 

2.3.1 Statement of the problem
The operative time of the detector –often referred to as duty cycle– is shortened by 

maintenance operations or failures in any of the many aspects of the detector: cryogenics, 
vacuum, electronics. Even seismic activity in Afghanistan or in the central Italy in 1997 was 
registered as series of huge events, which blinded the detector for a few minutes. All these 
kind of disturbances have one common characteristic: they can be well delimited in time and 
their origin is known. So the usual procedure is to create a list of time intervals, with 
duration from 1 minute upwards, and consider the detector not operative inside them. We 
shall call them first level vetoes. 

There is a second kind of more annoying disturbances, that can arise from sources that are 
not monitored even indirectly –e.g. from leakage in the needle valves in the internal liquid 
4He temperature stage of the dilution refrigerator. They show up in the data in a large range 
of behaviors: a series of apparently random short excitations, or non-stationary resonance 
modes near the sensitive frequency range of the detector, or a long lasting non-Gaussian 

Figure 17 – The placement of 1st and 2nd level vetoes on a sample month, with some manual annotations, from the logbook of 
AURIGA data validation. In the line below the graph the orange-red stands for “irrimediable” situation (data that can be 1st 
level vetoed a posteriori), the green for data tagged for manual re-analysis, the yellow for data that could be recovered with 
appropriate advanced analysis tools. Notice the “red” on 29th: the entire day sould have been vetoed, and validated data are 
in fact a perfectly Gaussian... switched off amplifier! This is the most common mistake found in placement of manual 
vetoes. 
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excess noise. 
A big effort has been spent to remove the sources of these phenomena, but the 

investigation has not reached final result, and will eventually be carried on with the help of a 
test facility now being set-up inside the building housing the AURIGA experiment. As 
regards the data already acquired, we have devised a validating procedure to highlight and 
eventually remove all periods in which the noise of the detector is undoubtedly affect by 
unknown disturbances, as we shall describe below. We shall call these removed time 
intervals second level vetoes. Let us summarize the chief characteristics of both two kinds of 
vetoes. 

1st Level vetoes (from logbook of laboratory operations, also on the Web) 
o Definitive (must be checked carefully) 
o Independent from data analysis software release 
o No model 

2nd Level vetoes (automatic: ‘Chauvenet’ criterion, Gaussian tests, residual correlation 
after whitening, …) 
o Depend on the analysis and on the model hypothesis (es: '<3σ') 
o Easy to implement (=automatic) 
o Limited by the efficiency of the parameter-tracking algorithm 

With a rigorous application of all vetoes the final duty cycle is very low (around 30%). 
Three are the main reason for this: 

1. analysis jam: the analysis was running with non up-to date parameters, 
outside the range of the feedback algorithm. This was true in particular in 
the early days, when off-line analysis was let running unattended, without 
manual status check (see Figure 20). There is in fact a major objection with 
the adaptive algorithm described in 2.2: it is not stable for large oscillations 
of the parameters. When the deviation of the parameters from optimal 
configuration is small, the test statistics still agree in confirming that the 
period is good, hence the correction to the parameters is computed and 
applied for the next hour. But there is a critic threshold above which the 
validation test fails only because the mismatch in the filter parameters was 
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Figure 18 – Exercise: Dicember 1997 with ‘wild’ running analysis and after manual correction, and re-analysis of the data. 
The operative time of the detector goes from 8.3% to 25%.  
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too high.  The system enters a vicious loop: without update, the parameter 
drifts are not followed, and as the validation test keep failing, the system 
eventually recovers only if the parameters by chance enter again the allowed 
small deviation range. Exceptions apart (see Figure 18), the typical gain in 
analyzing all data with manual control is about 10÷15% with respect to wild 
running analysis. 

There is another kind of “analysis jam” due to periods during which the 
amplifier is switched off, but the data are anyway acquired and analyzed. 
All Gaussian tests promote these periods to “good operation”. If they last 
too long, eventually the parameters are updated to a no return region: when 
the system recovers, the “colored whitened spectrum” (see below) problem 
prevents any subsequent parameter update. This is a known issue, these 
periods fall in the category of 1st level vetoes, but the present stable version 
of the analysis does not relate parameter update control to the list of vetoes. 

2. colored whitened spectrum: the spectral density of whitened data is corrupted 
by residual unmodeled peaks. It is not unlikely that the sensitive frequency 
interval near the modes is rather clear, which means that the signal 
amplitude, the standard deviation of the noise, and perhaps also the timing 
errors are not completely spoiled, because the unmodeled peaks are 
suppressed in the filtered data. The problem is that the X  test statistic 
(which is computed over the full decimated whitened frequency interval) is 
no more a χ2 test and there is a big chance of false dismissal. Also the 
variance of the whitened data is biased, therefore it cannot be used as an 
alternative estimate for the amplitude variance11. The choice of removing 
from the exchanged data those whose noise PSD is not strictly fitted by the 
ARMA model is responsible for 5÷10% of duty cycle shortage. 

3. popcorn noise: The system is indeed overloaded with unmodeled noise, 
typically as clustered events, from 100 to 4 per hour. This happens for 
20÷30% of duty cycle, and is often associated with cryogenic 
operations/failures. 

                                                      
11 If the constraint on the residual color of the whitened spectrum is relaxed, then another issue
opens, as for consistency also the parameter update should neglect this test.

Figure 19 – Popcorn noise in a one hour buffer of filtered decimated data. 

 Gaussian bulk

popcorn noise

time (s)



42

 

Figure 20 – Chronicle of an unusual analysis jam discovered by manual check. """" The spectral density of the detector near 
the modes indicate that at the beginning of 4th Dec 1997 the system was disturbed, and than it recovered during the rest of 
the day.  #### The mean energy of the two sensitive modes  measured with numerical lock-ins confirm with finer detail this 
fact. The dashed gray shadows represent 2nd level vetoes proposed by the analysis, and they cover the entire day (the clean 
period about UTC 20h is a period with switched-off electronics, whose corresponding 1st level vetoes was not set). !!!! 
Whitened data PSD at each hour the same day; the rather pronounced peak in the correspond to a permanent mismatch in 
the sensitive bandwidth of the “+” mode. %%%% The bandwidth of the two modes, hour by hour, shows clearly that this 
parameter is freezed for the entire day 
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It is possible that part of the vetoed time could be recovered tuning the 
minimum duration of an operative run. In fact, if the problem is to falsify the 
hypothesis of a gw burst in coincidence with a specific trigger, than even 
periods like that depicted in Figure 19 (for instance in the time interval 
around 1000s) are worth a look. But before we can systematically release 
such kind of data a few more investigation has to be performed on the final 
non-Gaussian statistical methods to deal with them. 

 

After this discovery, the automatic offline-analysis had to be stopped, tape rewinded, and the parameters manually set to the 
correct initial values. &&&& The slow drifts of the estimated bandwidth in both modes after UTC 12h is a hint that now the 
engine is working. '''' Temporal plot of the X  test statistic and amplitude for each event above SNR=5 found in the new 
analysis run. About 8 hours appear now unvetoed, within which the background events follows the correct statistics (the red 
stripe shows that the electronic failure was now correctly set as a 1st level veto) (((( A check to the whitened data PSD in the 
new offline analysis run reveals that there is still a peak in correspondence to the “+” mode (the reduced variance of the 
estimate is an artifact due to a different binning). What is happening? Well, checking carefully an enhancement of the 
spectral estimates of the previous run, it is clear that there was a second unmodeled peak next to the “+” mode one. Actually, 
in the new run the whitening filter overcompensate the “+” mode peak, digging a hole near the spurious peak! 
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