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We study gravitational lensing of gravitational waves taking into account the spin of gravita-
tional waves coupled with a dragged spacetime made by a rotating object. We decompose the
phase of gravitational waves into helicity-dependent and independent components with spin op-
tics, analyzing waves whose wavelengths are shorter than the curvature radius of a lens object.
We analytically confirm that the trajectory of gravitational waves splits depending on the helicity,
generating additional time delay and elliptical polarization onto the helicity-independent part. We
exemplify monochromatic gravitational waves lensed by a Kerr black hole and derive the analytical
expressions of corrections in phase and magnification. The corrections are enhanced for longer wave-
lengths, potentially providing a novel probe of rotational properties of lens objects in low-frequency

gravitational-wave observations in the future.
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I. INTRODUCTION

Gravitational waves carry rich information to probe
the Universe and fundamental physics: particle physics,
nuclear physics, and tests for gravity theories. The net-
work of the ground-based interferometry of LIGO-Virgo-
KAGRA has detected gravitational waves from nearly a
hundred of steller-mass binary mergers [I]. Such data
make it possible to examine the physical models of neu-
tron stars and black holes at the extreme blink of coales-
cence. Meanwhile, the planned space-based detectors e.g.
Laser Interferometer Space Antenna (LISA) [2] and the
DECi-hertz Interferometer Gravitational-wave Observa-
tory (DECIGO) [3] (see the current status reported in
[]) explore gravitational waves in low-frequency band,
spanning 1mHz - 1Hz and 0.1Hz - 10Hz respectively, in
order to probe binary evolution, background radiation,
and gravitational-waves propagation. In this paper, we
consider wave propagation in order to understand the
wave nature of gravitational waves.

One of the standard ways to describe gravitational-
wave propagation is to employ the geometrical optics
for the fiducial Einstein’s general relativity, as the wave-
length is well shorter than the size of a lens object in
most of the situations during propagatiorﬂ In geomet-
rical optics, Einstein’s general relativity predicts that
(1) gravitational waves propagate at the speed of light
in a vacuum, (2) gravitational waves are lensed in the
same way as electromagnetic waves are, and (3) gravita-
tional waves possess the two tensorial polarization modes.
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1 The cases where the short-wavelength approximation is no longer
accurate, i.e., wave optics, has been studied in e.g. Ref. [5] [6].
These effects are beyond our scope in this paper.

These predictions are able to be examined with observa-
tions. In fact, the arrival-time difference between grav-
itational waves and electromagnetic waves of the binary
neutron star merger associated with a gamma-ray burst:
GW170817/GRB170817A [7] was measured, confirming
that the gravitational waves propagate at the speed of
light with 10~1° precision. This gives strong constraints
on alternative theories of gravity that potentially explain
cosmic acceleration [8HI3]. The polarization of gravi-
tational waves has been examined by the LIGO-Virgo-
KAGRA network of interferometry, constraining an up-
per bound on non-standard polarization modes [14H20].

We aim to explore further detailed physics of
gravitational-wave propagation in Einstein’s general rel-
ativity, focusing on the coupling between the spin of
gravitational waves and rotational components of the
background spacetime on which waves propagate. Since
this coupling cannot be captured by geometrical optics,
we develop a way to derive the analytic solution in the
regime where the linear perturbation is valid. Provided
the linear perturbation works, one can always decom-
pose a gravitational wave into any basis, such as a set
of monochromatic waves or a set of wave packets, and
then study the propagation of each element of the cho-
sen basis. One can then compute the waveform at the
position of the detector by taking an appropriate linear
combination and the result should of course be indepen-
dent of the choice of basis. In the present paper we study
monochromatic waves, for which the propagation in the
regime of validity of linear perturbation is fully character-
ized by phases and magnifications once the propagation
of polarization tensors is specified.

There are various approaches to describe the propa-
gation around a rotating object taking the spin into ac-
count. One of the approaches is based on the gravita-
tional Faraday rotation [2IH25]. This approach treats
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the gravitational Faraday rotation angle in the phase
so that the equation of motion appropriately determines
the evolution of polarization. The authors of the pa-
pers called this approach “spin optics”. We follow
this jargon throughout this paper. Other approaches
are the Souriau-Saturunini equations [26H29], which are
similar form to the Mathisson-Papapetrou-Dixon equa-
tions [30H33] for massless particles, and the Berry phase
approach [34H38] (see Ref. [39, 40] for the relation be-
tween these approaches). Note that the propagation of
monochromatic gravitational waves is considered in the
spin-optics approach, whereas localized wave packets are
considered in the Souriau-Saturunini equation and Berry
phase approach. As already mentioned above, gravita-
tional waves in the regime of validity of linear perturba-
tion can be decomposed into either a set of monochro-
matic waves or a set of wave packets, the propagation
of each element of the chosen basis can be studied sep-
arately and one can finally take a linear combination to
compute the waveform at the position of the detector.

The effect of spin tends to be more enhanced for longer-
wavelength gravitational waves as pointed out analyti-
cally in [34] and numerically [35H37, [41] [42], although
these papers consider the propagation of wave packet
different from the monochromatic waves we focus on.
Furthermore, a study that investigates the scattering of
gravitational waves by a Kerr black hole using black hole
perturbation theory has shown that the spin effect on
the scattering amplitude becomes more pronounced for
longer wavelengths [43H45]. Thus, the spin effect tends
to be important for long-wavelength gravitational waves
in addition to the wave effects. However, despite their
focus on the wave effect of long-wavelength gravitational
waves, several studies aiming to determine the mass dis-
tribution of lens objects by using the wavy nature of grav-
itational waves [0} [46], [47] have neglected the evolution of
the polarization tensor, i.e., neglected the effect of spin.
In other words, the gravitational waves are treated as
scalar waves following a null geodesic. The treatment
may not be correct and hence its validity needs to be
investigated.

Ideally, one would like to completely incorporate both
wave and spin effects for gravitational waves whose wave-
length is not necessarily shorter than the radius of cur-
vature of a lens object, whilst it is a challenge. In this
paper, as a stepping stone towards the ideal calculation,
we propose a method to calculate the first-order correc-
tion to the phase difference and magnification taking into
account the spin effect induced by dragged components of
spacetime for monochromatic gravitational waves with a
wavelength shorter than the curvature radius of the lens
object. This effect has not been taken into account in a
previous study e.g. Ref. [48], whereas it has recently been
addressed in [49] by using the Walker-Penrose theorem
to compute the gravitational Faraday rotation. We apply
our method to gravitational waves lensed by a Kerr black
hole in spin optics and demonstrate its practical imple-
mentation for future observations. Our results reveal two

new points. One is that there is an arrival time difference
between left- and right-handed gravitational waves. The
other is that linear polarized gravitational waves lensed
by a rotating lens object generally tend to be elliptically
polarized for longer wavelength gravitational waves, sup-
porting the results of the study about the scattering by
a Kerr black hole[43].

The rest of this paper is organized as follows. In § [}
we prepare the way to analytically calculate the phase
and magnification of left- and right-handed gravitational
waves. We demonstrate the application of our method
to the gravitational wave lensed by a Kerr black hole in
§ I Finally, we conclude the paper in § [[V]

Let us introduce the notation that we use throughout
the paper. The indices of tensors a,b,c,d,e, f,g, h run
over 0 to 3, whereas spatial indices ¢, j, k, [ run over 1 to
3. The round and square brackets of indices denote sym-
metrization and antisymmetrization, respectively, that is,
T(ab) = (Tab + Tba)/2! and T[ab] = (Tab - Tba)/2!' Nabed
and €45 denote a 4-dimensional and spatially completely
antisymmetric tensor, respectively. The variables with a
bar denote the helicity-independent part of the variables.
The bold math symbols denote spatial vectors and oper-
ators. We use the unit c =G = 1.

II. FORMALISM

We aim to derive the arrival-time difference and the
elliptical polarization of gravitational waves induced by
the coupling between spin and the rotational component
of the background spacetime. We define the metric as

ds* = g((fgh}')dxada:b ) (2.1)

where gg;hw is decomposed into the background and the
perturbation as

(phy)

9ab = Ggab + hap- (22)

In order to extract the physical degrees of freedom that
correspond to the gravitational waves, we impose the
transverse-traceless gauge i.e. h%, = 0 = V%hg,. Then
the Einstein equation Gab[ggh‘v)

obtain the wave equation as

] = 0 is linearized and

Ohap + 2Racpah® = 0, (2.3)
where O := g%V ,V,. This equation is what we solve in
the whole paper.

We assume that the background spacetime on which
gravitational waves propagate is approximately station-
ary, considering a situation where the rotational motion
of a lens object distorts the background much slower than
the time variation of gravitational waves. The stationary
conditions simplify the discussion without the loss of crit-
ical properties of spin optics i.e. the helicity-dependent
split of gravitational-wave trajectory.



Let the background spacetime be a stationary space-
time throughout this paper. The stationary spacetime
means that there exists a timelike Killing vector fgt) pa-
rameterized by t, i.e.,

€Ly = (01)" st £e, gap = 0 and €0 < 0

&Jtime coordinate ¢ s.t. 0ygqp = 0. (2.4)

The timelike hypersurface with constant ¢, ¥; := M/G
is the orbit space associated with 5&), where M is the
background spacetime manifold and G is the isometry
group of transformations generated by §gt). We express
the metric of the background spacetime as

gapdatda’ = gee(dt — gidaci)2 + ’yijdxidxj, (2.5)
where gy, gi, and 7;; are the functions of the spatial
coordinate z* and independent of the time coordinate .
The components of the inverse of the metric are gt =
1/(gst) + gig%, g** = ¢*, and g% = «%. The determinant
is det(gap) = guedet(vij). We introduce a normalized
Killing vector u® as

g0
= —. 2.6

VGt (2:6)

By definition, u®u, = —1. We define the induced metric
Yab by using u® as

a

Yab ‘= Jab + UqUp- (2.7)

We also define the covariant derivative D, associated
with v, as
DaSblbz‘”bk

cica ey

e A Ca € e er b1 by, didz---d
=1, ,yCllryC22 . .fycllfy dy " Y dkaS ! 26162].6..61’ (28)

where Sblbi‘l”cb;“cl is a spatial tensor, and V, is the co-
variant derivative associated with gqp.

We employ the spin optics and the diffraction formula
allowed to analytically calculate the phase of gravita-
tional waves along the trajectory. Spin optics is avail-
able in situations where the wavelength is shorter than
the curvature radius of the lens object, whereas not cap-
turing all the wave effects. However, it is interesting to
consider such situations because the time delay and the
elliptical polarization generated from the rotational drag-
ging by a lens object are analytically understood.

A. spin optics

As conventionally known in the context of gravita-
tional Faraday rotation [23| 24, H0H53], the polariza-
tion vectors are revolved through the coupling between
the polarization vectors and the rotational dragging of
the background spacetime, generating a rotational an-
gle. Spin optics treats the rotational angle as a helicity-
dependent additional phase shift. Following the previous

Path

Lie transport
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FIG. 1. Transportation of the orthonormal base vectors.

studies 21, 22 25| [54], we employ the polarization base
tensor extended by the Fermi-Walker parallel transport.

In this section, we define the basis as the circular polar-
ization vectors, the Fermi-Walker parallel transport, and
the modified dispersion relation in § and §
respectively. In § [TA2] we analytically solve the dis-
persion relation for the modified phase. In § we
supply an alternative explanation of the spin effect in the
language of the gravito-electromagnetism.

1. Clircular polarization basis

We introduce a tetrad {u®, e;®, es% e3?} associated
with the trajectory of the gravitational waves (see Fig.
which satisfy the unit orthogonal conditions,

eiaeja = 61‘]‘; eiaua =0. (29)
As depicted in Fig. (I} we extend the base vectors e;% in
the time direction by the Lie transport along the integral

curve of 5&) as

£§(t)€ia =0. (210)
We extend the base tensors in the spatial direction by the
spatial Fermi-Walker parallel transport. The projected
path of the non-geodesic path generally is not spatial
geodesic, i.e. egDaegb # 0, then the base tensor trans-
ported by the spatial standard parallel transport does
not point in the tangent direction of the spatial path. To
get around this problem, we extend the base vectors e;*
in the space direction by spatial Fermi-Walker parallel
transport along the spatial path as

DEWe;e = 0,

€3

(2.11)

where Dgw) denotes the spatial Fermi-Walker deriva-



tive P| defined by

FW a.__ ¢ a a c
Dé3 )ei =e3Dee;* + F%ce;,

Fab :=€340p — €3p0q, (2.12)

and a® := e3’Dyes® is the acceleration for es®. The base

tensor transported by the spatial Fermi-Walker parallel

transport is tangent to the spatial path (see App. .
Next, we define the circular polarization base vector

using the tetrad. The circular base vector m® is defined
by

m® = \%(ela +iex?). (2.13)
By definition, the circular base vector satisfies
mam*™ =1, mem" =mge3” =myu* =0, (2.14)
and
mom® = —ieloel ¢ Liesel 4 esel).  (2.15)

2

Here, the asterisk denotes the complex conjugate. The
condition m%m, = 0 yields
magVem® = 0. (2.16)

The circular polarization tensor is transported in the
same way as the tetrad base tensors,

(2.17)
(2.18)

fg(t)ma ZO,

Dgw) m® =0.

Note that the above extension of the base vectors is
valid for stationary spacetime. The extensions for the
arbitrary asymptotically-flat spacetime are discussed in
Ref. [55].

2. Dispersion relation

We introduce the dispersion relation in spin optics
which incorporates the effect of spin on the trajectory.
We compute the dispersion relation only for the right-
handed gravitational waves for the brevity of presenta-
tion. Performing complex conjugate in the following dis-
cussion gives us a discussion for a left-handed gravita-
tional waves.

Considering the path away from the lens, we neglect
the second term in the left-hand side of Eq. through-
out this paper. Provided that |[VA/A|, |Vmap/map| <

2 Note that the sign of F,; oppositely flips between space-like and
time-like Fermi-Walker parallel transport so that making inner
products of Fermi-Walker parallel transport vectors invariant.

4

|[VS/S], the right-handed metric perturbation can be de-
composed into the amplitude Ag, the polarization base
tensor mgyp := mymyp, and the phase Si as

hRab = ARmabeiSR~ (219)

The indices “R” and “L” denote right- and left-handed,
respectively. We use these indices only for polarization-
specific discussion and omit them when the polarization
is not specific.

Under the geometrical optics assumption, the equation

of motion (2.3 becomes
(ARmabVCSRVCSR — 20 ARV SRV map

i Armay VOV oS — 2imabvcsvaAR) iR

+0((VSr)?) =0 (2.20)
In the standard geometrical optics, one collects the term
with O((VSr)?) and hence obtains the standard disper-
sion relation V,SrV*Sg = 0 from the leading order of
Eq. . In spin optics, on the other hand, the next-
to-leading order term —2iAg VSRV .myy is regarded as
the correction to the dispersion relation. This term phys-
ically describes the modulation of polarization tensor
along the trajectory, namely the gravitational Faraday
rotation. Note that this term flips its signature on the
left-handed mode. Contracting Eq. with m*?, the
dispersion relation and the Hamiltonian in spin optics are
given by

H:= %gab (VoS —0B,) (VS — alBy) =~ 0.
where the helicity o take 42 for the right- and —2 for the
left-handed gravitational waves. “~” denotes the equal-
ity up to the first order of B where B, is defined by

(2.21)

B, = im**V amy,. (2.22)

The key is to use this dispersion relation instead of the
standard dispersion relation for massless particles in or-
der to take into account the spin effect. The next leading
order of Eq. yields the conservation of the energy
of gravitational waves as in the same as standard geo-
metrical optics approximation [22].

We define the wave vector and velocity as

kq :=V45, (2.23)
-a _aH _ La __ a
i =g = k= 0B, (2.24)

Here, we take the e3® as the direction of the spatial part
of the velocity. The explicit expression of e3® is given by

@, = V9% ja_ e (2.25)

o 7£€t)xb

€3

The coefficient of % is determined so that the approxi-
mate null condition Eq. (2.21]) is satisfied.



Because of stationarity, we impose

Lo, =0i" =0, (2.26)

indicating that the phase velocity stays constant in time.
Since B, consists of the circular base vector which is Lie
transported along the Killing vector 5&)7 B, is also Lie
transported, i.e., £¢, B* = 0. Indeed, we immediately
show £¢, B* = 0, because the Lie derivative along any
Killing vector commutes with any covariant derivative,
ie., [£¢,V] =0, (See App.[B). It means

Le,B* = 0B = 0. (2.27)
This equation and Egs. (2.26) (2.24]) lead to
Le k" =0k = 0. (2.28)

We define the frequency of gravitational waves w as
w = €& ka. (2.29)
Using Eq. (2.28)) and 8,55&) = 0, the derivative of the

frequency is
Oaw = —E{y Oaky — kp0alyy = 0.

Thus we obtain

(2.30)

w = constant.

(2.31)

This is the consequence of the temporal isometry of the
background spacetime. We can separate the phase into
the time-dependent part —wt and space-dependent part
S(z?) as

S(t,z') = —wt + S(z?). (2.32)

To analytically solve the dispersion relation , we
additionally assume that the frequency is larger than
|Bal, ie., |Ba| < |ka| on the path. Let set S = S + ox
where S and oy are the zeroth and first-order solutions
of B, respectively, where S is the helicity-independent
part of the S. Note that the helicity-dependent part ox
is contained in the spatial part of the phase S.

The zeroth order of B of Eq. yields
V.SVeS = k*V,S ~ 0, (2.33)

where k, := V,5. The covariant derivative of this equa-
tion yields the geodesic equation,

E°Vyk® ~ 0. (2.34)
Eq. (2.33) means S is constant along the curve tangent

to k,. Thus, the spatial part of S is associated with the
time part as

S(xg) - S(x;) = w(to —tg).

to — ts is the time between the source and observer which
can be obtained by solving the geodesic equation (2.34]).
The first order of B of Eq. (2.21]) yields

ia VY A BB

(2.35)

(2.36)

The right-hand side can be rewritten in terms of the lan-
guage of gravito-electromagnetism and will be shown in
the next section.

8. Alternative description with Gravito-electromagnetism

Recall that the spin optics is equivalent to the grav-
itational Faraday rotation in the context of gravito-
electromagnetism [51]. The right-hand side Eq. ,
which is the result of spin optics, can be better under-
stood and simply described with the gravito-electric field
FE and gravito-magnetic field B defined as

1D
E:=—Dlny/—gu=—= Qtt, (2.37)
2 gu
B :=curlg. (2.38)
The operator curl is defined by
curlg' := €% D, g1, = €7%0; gy, (2.39)
where we use ¢/*G)T!; = 0 in the second equality.
€7k = €liik] ig the spatial anti-symmetric tensor with

€2 = 1/\/7 and €123 = /7, where v := det(v;;). In
stationary spacetime, the Einstein equation and Bianchi
identities can be rewritten in the quasi-Maxwell form [56]

div B =0, (2.
curl E =0, (2.

divE = — B (v=9u B)? +E2}

0)

4
A1)

1
— 167 gy <Ttt - QgttT) ) (2.42)
curl (v=guB) =2E x (v/=gt B) + 167v/=gu: T,
(2.43)

©RY =D'E + |(vV=gu B') (V=g B)
— (V=9u B)Q’Y”} +E'E’

— 87T (T” — % g”T) , (2.44)
where ®)R% is the spatial Ricci tensor associated with
Vij> Tab is the stress energy tensor of a matter, Jti=T4,
and div E := D;E’. The gravito-electric field is sourced
by the gravitational self energy and the matter energy.
The gravito-magnetic field is sourced by these currents.

We rewrite the right-hand side of Eq. in terms
of the gravito-magnetic component B.

Eo B =im* £V ymy
€5\ @
®)7C  xb a a
=— ————m""(e3® +u*)Vomy
VvV —Gtt ( ’ )
1£6,\ T, 1E6.\ T
= 2 e ymy, + — 0 Cm*bfgt)vamb

vV — Gt it

3 Taking the spatial metric as Yij = ij/(—gtt), the final expres-
sion consistent with Eq. (102) in Ref. [21].
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We have used Eq. (2.25)) in the second equality, Eq. .
in the third equahty7 Egs. (2.14) (2.18) in the fourth
equality, Eq. ( in the fourth to fifth line, Eq. ( -
and el{elvcg(t)b = 0 due to the anti-symmetry V &), =
—Vp€)e which is found from the Killing equation

£ep9ay = 0 in the sixth equality, Ny es, =

ua€3pV c&()d
bcdvcud

(2.45)

26[1 6’2] and Vabeas = 0 in the seventh equality,
Eqgs. ), (2.25)f* and 7)‘“’Cdu up = 0 in the eighth equal-
ity, and un PN g = /—gru’n,¢40, (ud/\/—gtt)
V=9u7%i€9%0; (uk//—git) = —guti€F0iq =
V—9u7°: Bt Therefore the gravitational Faraday rota-
tion angle can be written in a similar form to the Faraday
rotation in electromagnetism as

~ V9u
2

A VALY T - B. (2.46)
T,V® means the directional derivative in the direction of

the velocity.

B. Diffraction theory

We have analytically obtained the phase incorporating
the spin effect. In this section, we plug the solution of the
phase in the diffraction formula, and evaluate the arrival
time and the magnification.

First, we introduce the diffraction formula, based on
Ref.[57]. Next, we evaluate the integral in the diffrac-
tion formula on the lens plane in the diffraction for-
mula using the stationary phase approximation
which can be applied to the gravitational wave with a
wavelength shorter than the typical length scale of the
lens. In this paper, we configure the position of the
source, lens, and observer shown in Fig. [2| so that the
spin effect is at maximum. We also assume that the back-
ground spacetime is asymptotically flat in the region far
from the lens and the source is not too far from z-axis,
ie, nSE

4 b,c,d __
Nabeduejeses =

{u,e1,e2,e3}.

1 because of g = —1 for the tetrad

-
-

FIG. 2. Lens geometry on the ¢ = const. hypersurfaces. The
true source position is at  with respect to the z-axis. The
intersection point between the lens plane and the gravitational
waves path at £. E is lens plane. E’ is intermediate plane. rg
is the distance of the source from the lens plane E. r, and 7/,
are the distance of the observer from the lens plane E and the
intermediate plane E’, respectively. The lens plane E is close
to the intermediate plane E’ in the meaning of r, — 1), < 7o.

1. Diffraction formula

The diffraction theory of gravitational lensing is well
organized in §4.7 of Ref. [57]. In this book, the authors
applied the diffraction theory to the intermediate plane
E’ to the observer in which the background space-time
is approximately flat. The lens configuration and the
spin effect which originated from the dragged component
of the background spacetime do not change the deriva-
tion of the diffraction formula of gravitational lensing.
Therefore, the standard diffraction formula of gravita-
tional lensing [48], [57, 58] can be applied to the case in
this paper, which is given by

5obs(77ag) _ TS + TO / d2 iS(€,m)

2TirgTy

(2.47)

gunlens

where Eqps and Eunlens are the amplitude at the observer
with and without the lens, respectively. The effect of
spacetime distortion is imprinted only in the phase S.

2. stationary phase approximation

We evaluate the integral of Eq. using station-
ary phase approximation. In the stationary approxima-
tion, the third or higher-order Taylor expansion of the
phase S at the stationary point =, which is the solu-
tion of 9¢S(E) = 0, is assumed to be much smaller than
the second-order Taylor expansion and hence neglect the
higher-order terms. This assumption is quantitatively
translated into /7 < Mw [5]. In such a situation, the



integrals around two stationary points &, which consist
of the minimum point E,,;;, and the saddle point Eg,q,
are dominant. Performing the multiple Gauss integral,
the result which is the sum of the contribution from the
two stationary points (see e.g. Ref. [57]) is written as

gobs _ Z

(rs + ro)w exp(iS(E;) — imn;/2)

gunlens j=sud,min TsTo \/|det(V X VS(EJ)N ’
(2.48)
where npin = 0, ngaa = 1, ® denotes tensor product

and V denotes the two-dimensional derivative on the lens
plane. V®VS(E;) is the Hesse matrix at the stationary
points.

IIT. EXAMPLE: KERR BLACK HOLE

We apply our formalism to gravitational waves lensed
by a Kerr black hole as an example. Part of the calcu-
lation follows Ref. [48]. We consider the lens geometry
drawn in Fig. [2| First, we introduce the phase. Next, we
put the phase into the diffraction formula . Finally,
we evaluate the integration using the stationary phase
approximation and estimate the arrival time delay and
magnification difference between left- and right-handed
gravitational waves.

Here we introduce a bookkeeping parameter € as

(3.1)

where £ is typically in the same order as the Einstein
radius defined by

4Mrgr,
re + 7o

fE = (32)

We assume the angular momentum per mass a ,i.e. a
Kerr parameter, is in the same order as M, then

(3.3)

In addition, we assume rg is also in the same order as 7.
Then Eq. (3.2)) yield

£ &
= ~ = =0(e). 3.4
2= 00 (3.4
To summarize, we assume the relation
M
Mo S8 oo, (3.5)

¢ ¢ Ts To

Because the x ~ O(€3), we calculate it up to the third
order of e. Hereafter, “~” denotes equality up to the
third order of e.

A. magnetic component

The explicit expression of the gravito-magnetic compo-
nents for Kerr metric in the Boyer-Lindquist coordinate
is

2aMrAsin(26)
VAR —2Mr2 T

2aM (r? — a? cos? ) sin? 0
T AR -2

and its infinitesimal circulation is

8,  (3.6)

4aM?
curl(y/—guB) = P 3/28¢,
p3 (p* —2Mr)

(3.7)

where p and A 1s deﬁned in Eq. ( and Eq (A3 .7 re-
spectively. Eq. ( is satisfied Eq - Since the
charge of the grav1tat10nal field is the energy, the gravito-
magnetic field sourced by circular energy current is anal-
ogous to the gravito-magnetic field sourced by circular
electric current.

B. phase

We calculate the phase separating the helicity-
independent and helicity-dependent parts based on the
procedure described in § [TA2]

First, we get the helicity-independent part of the
phase. The covariant derivative Eq. (2.33)) leads to the
geometric equation

E'Vyk® =0, (3.8)
where k, := V,S. Thus, S is given by the time from the
source to the observer multiplied by the frequene

B obs
S = w/ dt = w(tobs — tsou)- (3.9)
sou
Using the null geodesic equations (A15)-(AL17]),
/ / (r —|—a)+2aM7’(a—L/E)d
- T
sgn(k")AVR
obs 29
I Y (3.10)

sou V

where F and L are defined in Eq. (A1l)) and Eq. (A12)),
respectively. The time is obtained in Ref. [59] up to

O(€?). Because the contribution of the rotation of the

5 Setting k% = the null condition k%k, = 42-9,5

wdt = dS.

du s = 0 imply



Kerr black hole in the time is O(€?) [48], the time is the
same as in Schwarzschild black hole up to O(e!). The
time up to O(e!) is given by the summation of the Eu-
clidean part and the Shapiro time delay. Therefore, the
eikonal is written as

S(x,y) ~ [const} +w {2M|:c —y|* —4M log(x)}

+ {S(”] - {S“’)} (3.11)

where x and y are the dimensionless distance normalized
the Einstein radius g which are defined by

4Mrorg
e+ 7o

:é ‘:2 T‘O
fE’ §E Ts +7’07

The orders in the € expansion of each square bracket are
different and the square brackets are listed in lower or-
der from the left. S® and S®) are not written down
because they are not relevant to the main results in this
paper, although they can be computed by performing the
procedure described in Ref. [59].

Next, we calculate the helicity-independent part of the
phase. It is the first-order solution ox in B of the dis-

J

X :

{g = (3.12)

1 _
Xoin = [2 (VP +1+y) ’ﬂ + [Xffil} + [

-Y o (2)
( y2+4—y) y} + |:X§ad

where

- 1
X0 =2 (\/y2+4iy). (3.17)
The sign is +/— for the minimum/saddle point. X and
X®) are not calculated in this paper. The final term in

Eqgs. (3.15) (3.16) is helicity-dependent part due to the
spin effect. The stationary points (see also Fig. |3]) are
shifted from that of scalar waves by

1 3raM
X@)2 (X(1)2 + 1) 4wEd

0% = |X — X|ég = (3.18)

D. arrival time difference

The gravitational Faraday rotation which is the last
term in Eq. induces the arrival time difference be-
tween left- and right-handed gravitational waves. Substi-
tuting the stationary points into the last term, we evalu-
ate the arrival time delay between left- and right-handed

persion relation. . x is the gravitational Faraday
rotation angle which is the solution of Eq. . The
gravitational Faraday rotation angle for a Kerr black hole
is calculated in App. [D] (see also Ref. [51]), which is given
by

ralM?

X =

Finally, we sum them to obtain the solution of the
dispersion relation. ([2.21]), which is given by

S(x,y) ~ {const} +w {2M|m —y|? —4M log(x)}

2
5(2) s3) _ maM
]

(3.14)

The last term is an important result led by spin optics.

C. stationary point

The stationary points & = X such that 9,5 = 0 are
given by

X0 4 ! small y (3.15)
"R (e ) e )
= 1 3raM —y
+ {XS& R ] (3.16)
| X (R0 1) T8
[
gravitational waves
e, ISR~ 81(X)
1 -
1 2maM?
~ Tar. (3.19)

X3 263

Since dtr.1, x 1/w, the arrival time difference is large for
long-wavelength waves. The arrival difference between
left-handed wave packet and right-handed wave packet
calculated in Ref. [3640] is 6tr_1, o 1/w?, which is differ-
ent from the order in Eq. . However, Ref. [36] 40], in
which the author considers that a wave packet propagates
near the Kerr black hole, is not an appropriate compari-
son since the situation is different from what we consider,
i.e. the propagation of monochromatic waves. Therefore,
it is not a problem if the frequency dependence is different
from its result. As stated in introduction, gravitational
waves in the regime of validity of linear perturbation can
be decomposed into either a set of monochromatic waves
or a set of wave packets, and the propagation of each el-
ement of the chosen basis can be studied separately. For



source
n
o-J<0 o-J>0
i J
lens
1
|0=] |0Z] observer

FIG. 3. Schematic illustration of the trajectory of the spin-0
particle (black) and the gravitational waves with o -J > 0
(red) and o - J < 0 (blue).

a given astrophysical source of gravitational waves, the
waveform at the position of the detector can be computed

J

by taking an appropriate linear combination and should
be independent of the choice of basis. Confirming this
explicitly is, however, beyond the scope of the present
paper and is left as a future work.

We estimate the arrival time difference for a hypothet-
ical lens with the mass M = 10'2M, and the Kerr pa-
rameter a = M at the distance ry = ry = D = Gpc. The
factor aM? /&3 is O(107%) and X is O(1). Consider-
ing gravitational waves with the frequency f = w/(27) =
mHz in the LISA band, the arrival time difference is es-
timated to be

6 a M 3
Otrr ~ 1077 sec <1012 km) <1012 km>
DN\ i/ o\
. ( Gpc> ( mHZ> . (3.20)

E. magnification

The normalized magnification defined by

B (4AMw)?
Y e (Vevsx,y)

(3.21)

)

where V denotes the derivative with respect to the lens
plane coordinate . Those at the stationary points are
explicitly

1 y242 @) 3 X0 6xU2 1) 3raM

‘,umin| = ‘,U(ern)l = |: + :| + l::umin + [ Hin T 02 o = ’ (322)
2 2/ (K = DX+ 1)? 100
1 y2 + 2 _(2) _(3) X(l()i(?)X(l()iZ +1) 3raM

ol = 1K) = 5 - [ ]+ {2+ oS L G
2 2yt ! TG - DL ey

(3.24)

where 7i(?) and ® are not calculated in this paper. Only
the final term depends on the helicity. The magnification
of gravitational waves with o +2 is more enhanced
than that of scalar waves. Intuitively, this is because
gravitational waves with ¢ = 42 propagate over shorter
distances than scalar waves (See Fig. |3).

The magnification difference between left- and right-
handed gravitational waves is

Spr-L =[pr(X) — pr(X)|

XWEX®H241) 1 3raM?
(XM2 Z1)(XM2 4 1)3 Mw 463

(3.25)

Since dur.;, x 1/w, the magnification difference is also
large for long-wavelength waves. This means that when

(

the source emits gravitational waves with pure plus-
mode, i.e., |Er| = |€L] at the source, the observer
receives the elliptically polarized gravitational waves.
It is more elliptical for longer-wavelength gravitational
waves. However, since the factor aM?/&} is very small
< O(1079) for wavelength shorter than the radius of cur-
vature of a lens object, dug.1, is also small, where we as-
sume a hypothetical lens with a mass M = 102M, and
the Kerr parameter a = M at the distance r = rs = Gpec.
The total amplitude is given by

2
:ll-}'min‘ + |/~]/sad|

+ 2 V |,umin/flfsad Sin(Ssad - Smin)~

8obs

Eunlcns

(3.26)



where Sgaq = S(Xsaa) and Spin := S(Xmin)-

IV. CONCLUSION

We have developed the method to study the gravita-
tional lensing of gravitational waves taking into account
part of the spin effect of gravitational waves. Combin-
ing the computational techniques developed in the lit-
erature for the spin effect of gravitational waves as well
as the ones for gravitational lensing, we have developed
for the first time a consistent computation for gravita-
tional lensing incorporating the spin effect of the gravi-
tational waves by using the diffraction formula. We ap-
plied our formalism to the case of monochromatic grav-
itational waves lensed by a Kerr black hole conditioned
by Mw > 1, illuminated potential signatures of the spin-
induced gravitational time delay and the elliptical polar-
izations for future gravitational-wave observations. We
have shown in the case of a Kerr black hole the time de-
lay between left- and right-handed gravitational
waves is more enhanced for longer-wavelength gravita-
tional waves. Furthermore, our results have also shown
that the magnification depends on both the fre-
quency and the helicity of gravitational waves. For exam-
ple, the magnification of gravitational waves with o = +2
is larger than that of scalar waves in the lens geometry in
Fig |2l Notably, we have found that the difference of mag-
nification between the left- and the right-handed gravita-
tional waves is larger for longer wavelength gravitational
waves. Our predictions for the differences in phase and
magnification could be observed in future gravitational-
wave detectors, potentially giving new information on the
rotation properties of a lens object and a dragged space-
time.

In this paper, we focus on gravitational waves only for
Mw 2 1. To investigate the regime Mw < 1, we need to
calculate the diffraction integral without relying on the
stationary phase approximation. Alternatively, one can
employ the path integral method [5], utilize the Teukol-
sky equation, or numerically solve Einstein equation [60].
These approaches are able to be extended to the range
of Mw > 1, making it worth comparing to our results of
spin optics. In conclusion, studying the theoretical com-
putation of wave scattering by a spinning object is still
desirable in the future.
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Appendix A: Basic materials of Kerr spacetime

We write down the basic equations in the Kerr space-
time based on [6I]. The Kerr metric in the Boyer-
Lindquist coordinate is given by

2M 4 Mar sin®
dsQ::—-(l—— zr)(hz——ad?n9d¢dt
p p

2
by
+%whw%¢+?@ﬁw&, (A1)
where
0% = 1%+ a”cos? 0, (A2)
A:=1r%—2Mr +ad?, (A3)
Y= (r? +a%)? — a*Asin? 6. (A4)
The components of the inverse of the metric are
t r 6 10)
by 2Mar
— 0
2A A P2A
g = 0 = 0 0 (A5)
p
1
0 0 2 0
2Mar A —a?sin®0
P2 p2Asin® 0

In the Kerr spacetime, there are two Killing vectors
and one Killing tensor (See e.g. [62]) given by

fgt) :(at)a = (1703070)7 (AG)
E?gﬁ) :(a¢)a = (O? 07 Oa 1)7 (A7)
Eab :2A2[(anb) + T29ab7 (AS)
where [ and n is defined by
[ ::(7"2 +a?, A,0,a)/A, (A9)
n :=(r* +a* —A,0,a)/A. (A10)

The constants of motion such as the energy F, azimuthal
angular momentum L, and Carter constant 2, corre-
sponding to each Killing vector and tensor exist as

E = —{{)Pa = —pt, (A11)
L :={4)Pa = Py, (A12)
2 :=Eappp’ — (L — aE)? (A13)

In the case of monochromatic wave scattering that we
consider in the paper, F = w. For a null geodesic with a



tangent vector p® = da®/dv, writing Eqs. (A11)-(A13)

and p®*p, = 0 explicitly, we can obtain

dt P
2d0 S 2 2, nt
r L, a(aEsin®0 — L)+ (r* +a )A7 (A14)
pQQ =+ EVR, (A15)
dv
,do
Py =% EVO, (A16)
do L aP
2d¢ s at’
L <aE - 9) + A (A17)
where
P(r) :=E(r* 4+ a*®) — aL, (A18)
R(r)E* :=P? - A((L - aE)* + 2), (A19)
2
O(H)E? :=2 + cos? 0 <c12E2 - .LZ ) . (A20)
sin” 0

The signs in Eqs. (A15) (Al6]) are positive for dr/dv >
0,df/dv > 0, and negative for dr/dv < 0,df/dv < 0,

respectively.

Appendix B: Commutation relation

We show that any Lie derivative along any Killing vec-
tor is commutative with any covariant derivative for any
vector V. V£V, and £V, V), can be written as

VadeVp =(Val) (VW) +EVaVeVy

+ (vavc)(vbgc) + chavbgcv (Bl)
£§vaVb chvcvaVb + (Vagc)(vc‘/b)
+ (VaVe) (Vo). (B2)

Here, we use the property of the Killing vector (see App.
C.3 in Ref. [63]),

vavbgc = _Rbcad£d~ (B3)

Using Eq. , one can show that the Riemann tensor
that comes out when exchanging the covariant derivative
of the second term on the right-hand side of Eq.
cancels with that of the fourth term. Then the right-
hand side of and Eq. are equivalent. Therefore

we obtain
[£¢,Va]Vs = 0. (B4)

Performing the same procedure for any rank tensor,
one can show any Lie derivative along any Killing vector
is commutative with the covariant derivative.

Appendix C: Fermi-Walker parallel transport

We explain the Fermi-Walker parallel transport follow-
ing [64, [65]. The guiding principle of parallel transport
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is that the inner product of vectors transported along a
curve is invariant. Standard parallel transport of a vec-
tor V¢ along the integral curve of unit normal vector U®
is the transport that satisfies

UV, Ve =0. (C1)

The standard parallel transported tangent vector along
its geodesic curve is the tangent vector of the destination.
However, the standard parallel transported tangent vec-
tor along the non-geodesic curve does not coincide with
the tangent vector of the destination. The Fermi-Walker
parallel transport is the transport such that (a) the inner
product of transported vectors is invariant and (b) the
transported tangent vector along the non-geodesic curve
coincides with the tangent vector at the destination.

The Fermi-Walker parallel transport is the transport
with satisfying

viVve .= Ubv,ve + F4 Vb =0, (C2)
where

.7:@(, :sgn(UcUC) (UaAb — Aan) s
A =U*V,U?, (C3)

where |U?U,| = 1. Indeed, VEWU® = 0 and the deriva-
tive of the inner product between the tangent vector U¢
and Fermi-Walker transported vector V? along the curve
is
d a b a b a b
—T(U Vo) =UVL(UV,) = AV, — UF,°V,

=AY, —sgn(U°U, ) U U, AV, =0, (C4)

where we have used U%A, = 0. The first term of Eq.
is not necessary for the inner product with the tan-
gent vector to be invariant but is necessary for the inner
product between non-tangent vectors. The two trans-
port for the geodesic curve, i.e. A* oc U®, are equivalent
because of F,, = 0.

Appendix D: Gravitational Faraday rotation angle
in the Kerr spacetime

Following Ref. [51], we calculate the gravitational Fara-
day rotation angle y in Kerr spacetime, which is defined

by Eq. (2.46),

vV —Gtt B,i® = —Jit Bl-rbi.

P
T Vax 2 2

(D1)

Taking the parameter along the spatial path as A such
that ' D, := d/d\, Eq. (D1) yields

1
dx = §B - eswdA, (D2)



Upt||Urwr

E‘r+d7‘

non-geodesic curve

FIG. 4. Standard parallel transported vector Ugr and Fermi-
Walker parallel transported vector Ugyyr of the tangent vector
U® along the non-geodesic curve UPV,U® = A®.

where e} ~ \/—gu it /w. %, ~ 0 (2.21]) leads to

S ()
—gu \d\/ "’
where (dl)? ~ ~,;;dz'dz’ along the spatial path. This

means egwd\ ~ \/—giesdl =: \/—gudl, then Eq. (D2) is

rewritten in the form

1
X 25/\/—91% B -dl.

(D3)

(D4)

Since this expression is similar to the Faraday rotation
angle in electromagnetic (see e.g. [60]), this is called
“gravitational Faraday rotation”.

First, we calculate x for the case n = 0. Eq. into
the surface integrate form for simplicity of calculation,
we take close path C = C1 4 C2 drawn in Fig. El The
distance between the lens and the point on the path C2
is taken to be O(rs). The path CI routes near the lens,
whereas path C2 is away from the lens. Using the Stokes
theorem, Eq. leads to

1

1
s ]{c (V=guB)-dl = | /S cwrl(yv=giB)-dS, (D5)

where S denotes the area enclosed by the closed path C.
curl(y/—guB) for the Kerr spacetime is

daM?
curl(v=guB) = — a 8. (D6)

p3 (p? — 2M7)*/?

Because rcurl(y/—guB) — 0 as r — oo, the integral
along the path C2 is negligible ﬂ Therefore Eq. (D5)

6 The path C2 is different from one of Ref. [51]
7 The integral along the path C2 is O(aM/r2)
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mediator o: Kerr BH

b observer

FIG. 5. Path of integration.

becomes

X =~ %/(JJ@B) -dl = %/Scurl(\/%B) -dA,
(D7)

where dA* = —y¥¢;,gdrdf o< —(d4)* is the infinitesimal
area of S. The path C1 is bending due to gravity. How-
ever, we can neglect the bending and the path C1 approx-
imate with the straight line since the order of the inte-
grand curl(y/—guB) ~ O(€®) is the highest order which

we focus on. Then Egs. (D7) yield

) 1 TC2 1
X =~ —2aM du dr—
-1 Torb (H) r
1

2 o !
~ ——aM dp——
Sa -1 ‘urgrb

where 1 := cosf and rc2 is the distance to the path C2.
Since rgo is the same order as rg, we have neglected the
term with aM?/rg, = O(e%) in the second equality. The
relation between 7o, and p in the leading is

Tmin (Dg)

Torb ™~ \/Tﬁ

Thus, the gravitational Faraday rotation angle for Kerr
spacetime is

TaM?
4r3 .

min

X~ (D9)



source e
n

T's

Tmin

\ y

§ lens
FIG. 6. Flat geometry. r} is the distance from the lens to the

intersection point between z axis and the line extending the
path.

This expression is consistent with Refs. [51]. For the case
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¢ # 0, x is multiplied by the additional factor cos 65 [51].
However, since cos s = 1+ O(e?), the contribution of the
additional factor is higher order and hence we neglect it.

Since the variable of integration in the diffraction for-
mula is &, we rewrite Eq. in terms of . Let us
estimate the order of the difference between r.;, and
&. Here, we consider the path on the plane on which
the source, lens, and observer are since the gravitational
waves we focus on propagates on the plane in the lead-
ing order. The contribution of the distortion of space-
time in the length of 7, and £ is higher order than the
Euclidean part. Thus, we estimate it for the flat space-
time (Fig. [6)) in which the path is straight and we can
use the Pythagorean theorem. The Pythagorean theo-

rem yields &/rmin = \/712 4+ €21, = 1+ €2/(2r)%) +- - .
Using r. > rs and Eq. (8.5)), we have &/rmim — 1 < O(€2).
Since the order of y is O(e®), we can replace rpi, in
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