ICRR, 6/7/2011

Energy spectrum of proton and helium measured by PAMELA and acceleration of cosmic rays in the galaxy M. Casolino, RIKEN, ASI, Japan

INFN & University of Roma Tor Vergata

on behalf of the PAMELA collaboration

39

Past, present and future experiment

Pamela Physics objectives in the Hillas Plot

The PAMELA apparatus

ND p/e separation capabilities >10 above 10 GeV/c, increasing with energy Spatial Resolution • \cong 2.8 µm bending view • \cong 13.1 µm non-bending view

MDR from test beam data \cong 1 TV

Calorimeter Performances: • p/e⁺ selection eff. ~ 90% • p rejection factor ~ 10⁵ • e⁻ rejection factor > 10⁴

PHYSICAL QUANTITIES MEASURED BY PAMELA

1. DEDX (scintillators, tracker, calo) \rightarrow Z of the particle 2. DEFLECTION = 1/Rigidity \rightarrow Impulse (4-6 planes) 3. Time of flight = 1/Beta(12 betas) 4.Shower (No, Hadronic, Electromagnetic) \rightarrow lepton/hadron 5. Number of neutrons \rightarrow lepton/hadron

5% to 10% precision

e+ 0.171 GV Bending view

e- 0.169 GV Bending view

ND

Selection of galactic component according to geomagnetic cutoff

Particle selection criteria

•Montecarlo efficency for cuts

- •Trigger efficiency
- Tracking efficiency
- •Multiple Scattering
- •Correction for energy loss in det
- •Back scattering...

•Systematics under close investigation, currently about 1-2% uncertainty on abs flux.

Selection criteria

Fitted, single track High lever arm, Nx Rigidity R>0 Beta>.2 No anti

High precision charged cosmic ray measurement in Low Earth Orbit

Dark Matter Searches

•Cosmology Detection, not identification

1E 0657-56 - Bullet Cluster

•LHC Search

Supersymmetry, not necessarily DM

•Direct Detection

Local structure and nature

•Indirect Detection Various galactic scales

Antiprotons: Galactic average

positrons: Local galactic 1kpc

Different approaches to search for Dark Matter

Antiproton/proton ratio

Confirms charge dependent solar modulation Consistent with models (galprop, donato...) at high energy

PRL. 105, 121101, September 13,2010)
PRL 102:051101,2009

Antiproton absolute flux

PRL. 105, 121101, September 13,2010) PRL 102:051101,2009

Pamela positron fraction

Secondary production

Dark Matter Decay

2. Example of DM solution: SUSY with internal bremsstrahlung and large boost factors, or Winos with unusual propagation parameters can give the right spectrum:

However, does not explain new electron plus positron data (see later)

Astrophysical sources, SNR...

From Fermi Symposium

- The Fermi-LAT has measured the cosmic-ray positron and electron spectra separately, between 20 – 130 GeV, using the Earth's magnetic field as a charge discriminator
- The two independent methods of background subtraction, Fit-Based and MC-Based, produce consistent results
- The observed positron fraction is consistent with the one measured by PAMELA

PAMELA e- spectrum

Solid line GALPROP calculation for a diffusion reacceleration model; the dotted line is a single power-law fit to the data above 30 GeV; the dashed-dotted line is a **GALPROP** calculation including a component from additional cosmicray electron sources. Bottom: the PAMELA positron fraction [28] compared with the previous **GALPROP** calculations with no (solid line) and with additional e- and e+ components (dasheddotted line).

Electron spectrum

FIG. 1. The negatively charged electron spectrum measured by PAMELA with two independent approaches: energy derived from the rigidity (full circles); energy derived from the calorimeter information (open circles). The error bars are statistical only.

Debate on the origin of cosmic rays is still open

- Experimental evidence of Supernova acceleration is mounting
 - HESS TeV emision from SNR RX J1713.7-3946 → hadronic inter. Of cr. E>10^14eV F. Aharonian, et al., Astron. Astrophys. 464, 235 (2007).
 - X-ray measurements of the same SNR \rightarrow evidence that protons and nuclei can be accelerated E>10^15 eV in young SNR Uchiyama, et al., Nature 449, 576 (2007).
 - AGILE: diffuse gamma-ray (100 MeV 1 GeV) SNR IC 443 outer shock → hadronic acceleration *M. Tavani, et al., ApJL 710, L151 (2010).*
 - Fermi: Shell of SNR W44 have \rightarrow decay of pi0 produced in the interaction of hadrons accelerated in the shock region with the interstellar medium *A. Abdo, et al., Science 327, 1103 (2010).*
 - Starburst galaxies (SG), where the SN rate in the galactic center is much higher than in our own, the density of cosmic rays in TeV gamma-rays (H.E.S.S infers cosmic rays density in SG NGC 253 three orders of magnitude higher than in our galaxy *F*. *Acero, et al., Science 326, 1080 (2009).*
 - VERITAS: SG M82 cosmic rays density is reported to be 500 times higher than in the Milky Way VERITAS Collaboration, et al., Nature 462, 770 (2009)

However, supernova-only model has been challenged many times

- Multiple origin of cosmic rays:
 - SN explosions of various sizes in either the interstellar medium or in a pre-existing stellar wind, WR stars P. L. Biermann, Space Science Reviews 74, 385 (1995); L. Biermann, Astron. Astrophys. 271, 649 (1993)
- Nova stars and explosions in superbubbles, V. I. Zatsepin, N. V. Sokolskaya, Astron. Astrophys. 458, 1 (2006))
- Different acceleration processes such as nonlinear shock acceleration
 - D. C. Ellison, International Cosmic Ray Conference (1993), vol. 2 of International Cosmic Ray Conference, pp. 219
 - DSA, diffusive shock acceleration, V. I. Zatsepin, N. V. Sokolskaya, Astron. Astrophys. 458, 1 (2006).
 - M. Ahlers, P. Mertsch, S. Sarkar, Physical Review D 80, 123017 (2009).

Wolfendale et al, (ICRC 2009) one source cause of knee

Fig. 1. Proton and He spectra. Dashed lines are described in Sect. 3, solid lines are described in Sect. 5.

Pamela galactic p and he

2006-2008

Note the different (lower) values for the spectral indexes in kinetic energy:

$$\gamma_{30-1000GeV, p} = 2.782 + 0.003 \text{ (stat)} + 0.004 \text{ (syst)}$$

$$\gamma_{15-6\ 00 \text{GeV/n, he}} = 2.71 + 0.01 \text{ (stat)} + 0.007 \text{ (syst)}$$

$$\gamma_T = \frac{dlog(\phi_T)}{logT} = (\gamma_R - 1)\frac{T^2 + Tmc^2}{T^2 + 2Tmc^2} + \frac{T}{T + mc^2}$$

Comparison with previous experiments

Fitting p and He spectra

P/HE RATIO: KINETIC ENERGY/NUCLEON

Ratio has lower systematic

Less dependent from solar modulation

Ratio P/He: Rigidity

Fitting the p/he ratio

Deviations from the power law: >230-240 GV

Deviations from the power law: a) 30-240 GV

- Additional source(s) above 240 GV
 Fisher and T
- student test reject single power law to better than 99.7 CL

Deviations from the power law: b) 30-240 GV

Proton spectral indexes

Helium spectral indexes

Proton and helium comparison

At higher energies: CREAM balloon data

Figure 5. Broken power-law fit to helium and heavier nuclei data. The lines for helium represent a power-law fit to AMS (open stars) and CREAM (filled circles) data, respectively. Also shown are helium data from other experiments: BESS (open squares), ATIC-2 (open diamonds), JACEE (X), and RUNJOB (open inverted triangles). Some of the overlapping BESS and AMS data points are not shown to achieve better clarity. The lines for C-Fe data represent a broken power-law fit to the CREAM heavy nuclei data: carbon (open circles), oxygen (filled squares), neon (open crosses), magnesium (open triangles), silicon (filled diamonds), and iron (asterisks).

Figure 3. Measured energy spectra of cosmic-ray protons and helium nuclei. The CREAM-I spectra are compared with selected previous measurements (Alcaraz et al. 2000; Haino et al. 2004; Boezio et al. 2003) using open symbols for protons and filled symbols for helium: CREAM (circles), AMS (stars), BESS (squares), CAPRICE (inverted triangles). The error bars represent one standard deviation, which is not visible when smaller than the symbol size. The lines represent power-law fits to the CREAM data.

ApJL 2010 200 GeV/n: Indirect p, He Direct C-Fe

Forbush decrease

Forbush decrease: comparison with e-

PAMELA data challenge the mechanisms and processes of acceleration and propagation in the galaxy
Complex, structured features are present also in the GV – TV range.
They hint to additional sources/phenomena

http://pamela.roma2.infn.it

PAMELA has survived five years up to now, under discussion a possible extension

Most of the collaboration in Italy is part of the JEM-EUSO experiment (Picozza, PI of Pamela is now PI of JEM-EUSO)

Current work involves calibration tests of JE detector module in TA site in Utah.

