Interaction Models: Ultra-High Energy Cosmic Rays & LH Sergey Ostapchenko (NTNU, Trondheim) ICRR (Tokyo), October 11, 2011

Tunning

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)

◆□> ◆□> ◆□> ◆□> ●

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions

<ロ> (四) (四) (三) (三)

- qualitative picture
- CR interaction models

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions

<ロ> (四) (四) (三) (三)

- qualitative picture
- CR interaction models

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions

<ロ> (四) (四) (三) (三)

- qualitative picture
- CR interaction models

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions
 - qualitative picture
 - CR interaction models
- LHC data: impact on UHECR studies
 - comparison with model predictions
 - model retuning: impact on EAS predictions

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions
 - qualitative picture
 - CR interaction models
- LHC data: impact on UHECR studies
 - comparison with model predictions
 - model retuning: impact on EAS predictions

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions
 - qualitative picture
 - CR interaction models
- LHC data: impact on UHECR studies
 - comparison with model predictions
 - model retuning: impact on EAS predictions

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions
 - qualitative picture
 - CR interaction models
- LHC data: impact on UHECR studies
 - comparison with model predictions
 - model retuning: impact on EAS predictions
- UHECR composition puzzles

- (Ultra-)High Energy Cosmic Rays
 - CR spectrum
 - potential UHECR sources
 - detection methods: extensive air showers (EAS)
- Air shower simulation procedures & hadronic interactions
 - qualitative picture
 - CR interaction models
- LHC data: impact on UHECR studies
 - comparison with model predictions
 - model retuning: impact on EAS predictions
- UHECR composition puzzles
- Summary & prospects

• CR spectrum: over >10 orders in energy

 CR spectrum: over >10 orders in energy

'knee' at ~ 3 × 10¹⁵
 eV (effect of galactic acceleration / propagation)

_∢≣≯

- CR spectrum: over >10 orders in energy
- 'knee' at $\sim 3 \times 10^{15}$ eV (effect of galactic acceleration / propagation)
- 'ankle' at few × 10¹⁸
 eV (galactic / extragalactic transition?)

- CR spectrum: over >10 orders in energy
- 'knee' at $\sim 3 \times 10^{15}$ eV (effect of galactic acceleration / propagation)
- 'ankle' at few × 10¹⁸ eV (galactic / extragalactic transition?)
- cutoff at $\sim 10^{20}$ eV (interaction with background γ s?)

Potential UHECR sources – Hillas's condition: CRs to be retained in the source for sufficiently long time $\Rightarrow E_{\text{max}} \propto B_{\text{source}} R_{\text{source}}$

<ロ> (四) (四) (三) (三)

3

nearest to us AGN - Centaurus A:

- additional constaints

 from energy losses
 in the source
- → UHECR sources most likely extragalactic
- favorable option Active Galactic Nuclei (AGN)

nearest to us AGN - Centaurus A:

- additional constaints

 from energy losses
 in the source
- → UHECR sources most likely extragalactic
- favorable option Active Galactic Nuclei (AGN)
- CR acceleration possible near the black hole or in a jet/lobe

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3^o) - consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3^o) - consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3^o) - consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

- however: correlation signal weakened for larger event sample
- now: 2σ deviation from isotropic distribution

- however: correlation signal weakened for larger event sample
- now: 2σ deviation from isotropic distribution

< 🗇 🕨

Telescope Array Collaboration: 8 events out of 20 correlate with AGNs [Sagawa, talk at TeVPA-2011]

- TA SD data beyond 57 EeV
- Veron catalog 12th edition AGN
- Correlations of data with AGN within 3.1°

Telescope Array Collaboration: 8 events out of 20 correlate with AGNs [Sagawa, talk at TeVPA-2011]

- TA SD data beyond 57 EeV
- Veron catalog 12th edition AGN
- Correlations of data with AGN within 3.1°

 ⇒ consistent both with the isotropy and with the AGN
 correlation hypothesis

• why restrict oneself with nearby sources?

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- → UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{
m CMB}
ightarrow \left\{ egin{array}{c} p + \pi^0 \ n + \pi^+ \end{array}
ight.$$

 \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- → UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{
m CMB}
ightarrow \left\{ egin{array}{c} p + \pi^0 \ n + \pi^+ \end{array}
ight.$$

 \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR

• for a uniform distribution of extragalactic CR sources results in a spectral cutoff at $E \sim 5 \times 10^{19}$ eV (GZK-cutoff)

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- → UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{
m CMB}
ightarrow \left\{ egin{array}{c} p + \pi^0 \ n + \pi^+ \end{array}
ight.$$

 \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR

- for a uniform distribution of extragalactic CR sources results in a spectral cutoff at $E \sim 5 \times 10^{19}$ eV (GZK-cutoff)
- in turn, UHE nuclei loose energy via photodisintegration on IR photons: $A + \gamma \rightarrow (A 1) + p/n \Rightarrow$ similar cutoff

Trans-GZK events & physics beyond the Standard Model?

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Now: UHECR cutoff - observed by 3 independent collaborations

Now: UHECR cutoff – observed by 3 independent collaborations

Now: UHECR cutoff - observed by 3 independent collaborations

- HiRes Collaboration [PRL 100 (2008)]: GZK-cutoff observed with 5σ significance
- Pierre Auger Collab. [PRL 101 (2008)]: cutoff observed with 6σ significance

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

Now: UHECR cutoff - observed by 3 independent collaborations

 3.9σ significance

(4回) (4回) (4回)

Now: UHECR cutoff - observed by 3 independent collaborations

trans-GZK story - finally over

 3.9σ significance

• UHECR also loose energy via e^+e^- -pair production on CMB:

$$p + \gamma \rightarrow p + e^+ + e^-$$

イロン イヨン イヨン ・

• UHECR also loose energy via e^+e^- -pair production on CMB:

$$p + \gamma \rightarrow p + e^+ + e^-$$

| 4 同 🕨 🛛 🖃 🕨

• if UHECR are protons: spectral 'dip' will be produced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 - well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- \Rightarrow galactic-extragalactic transition at the 'ankle'

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- \Rightarrow galactic-extragalactic transition at the 'ankle'

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- ullet \Rightarrow galactic-extragalactic transition at the 'ankle'
- \Rightarrow measurements of CR composition key to the UHECR puzzle

observations of nuclear-e/m cascades induced by CR particles:

ground-based observations (= thick target experiments)

- primary CR energy \leftarrow charged particle density at ground
- CR composition \iff muon density at ground

ground-based observations (= thick target experiments)

- primary CR energy \(\low \constraint charged particle density at ground text)
- CR composition \iff muon density at ground

ground-based observations (= thick target experiments)

- primary CR energy \leftarrow charged particle density at ground
- CR composition \iff muon density at ground

ground-based observations (= thick target experiments)

- primary CR energy \leftarrow charged particle density at ground

- primary CR energy \(\leftarrow integrated light)
- CR composition \iff shower maximum position X_{max}

ground-based observations (= thick target experiments)

- primary CR energy \leftarrow charged particle density at ground
- CR composition muon density at ground

- primary CR energy \(\leftarrow integrated light)
- CR composition \iff shower maximum position X_{max}

ground-based observations (= thick target experiments)

- primary CR energy \leftarrow charged particle density at ground
- CR composition muon density at ground

- primary CR energy \(\leftarrow integrated light)
- CR composition \iff shower maximum position X_{max}

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max}: to σ^{inel}_{p-air} and to 'inelasticity' K^{inel}_{p-air}
 N_μ: to N^{ch}_{π-air} |_{E ∼ √E0}

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max}: to σ^{inel}_{p-air} and to 'inelasticity' K^{inel}_{p-air}
- N_{μ} : to $N_{\pi-\mathrm{air}}^{\mathrm{ch}}|_{E \sim \sqrt{E_0}}$ = 990

- most sensitive to primary particle interactions (via X_{max})
- \Rightarrow suffer from uncertainties of $\sigma_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$, $K_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~{\rm eV})$

・ロト ・同ト ・ヨト ・ヨト

- most sensitive to primary particle interactions (via X_{max})
- \Rightarrow suffer from uncertainties of $\sigma_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$, $K_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~{\rm eV})$

- most sensitive to primary particle interactions (via X_{max})
- \Rightarrow suffer from uncertainties of $\sigma_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$, $K_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~{\rm eV})$

◆□→ ◆圖→ ◆三→ ◆三→

- most sensitive to primary particle interactions (via X_{max})
- \Rightarrow suffer from uncertainties of $\sigma_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$, $K_{p-\text{air}}^{\text{inel}}\Big|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~{\rm eV})$

CR composition studies with ground-based detectors (SD)

• most sensitive to interactions of secondary pions (also kaons & (anti-)nucleons) at intermediate energies $(E \sim \sqrt{E_0})$

Nucleus-induced air showers & superposition model

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

(□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{\mathit{p-air}}^{inel}/\sigma_{\mathit{A-air}}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{\mathit{p-air}}^{inel}/\sigma_{\mathit{A-air}}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-ain}^{inel}}{\sigma_{a-ain}^{inel}}$

(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-\text{air}}^{\text{inter}}}{\sigma_{p-\text{air}}^{\text{inter}}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-ain}^{inel}}{\sigma_{m-ain}^{inel}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X_{\max}^{p}(E) \rangle \simeq \text{const} + ER \ln E, \ ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$ $\langle N_{e/\mu}^{p}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \ \alpha_{e} \simeq 1.1, \ \alpha_{\mu} \simeq 0.9$

For average (only!) air shower characteristics: A-induced EAS of energy E – equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- \bullet nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{A-air}^{inel}}$

•
$$\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$$

•
$$\langle X_{\max}^{p}(E) \rangle \simeq \operatorname{const} + ER \ln E, \ ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$$

 $\langle N_{e/\mu}^{p}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \ \alpha_{e} \simeq 1.1, \ \alpha_{\mu} \simeq 0.9$

•
$$\Rightarrow \langle X_{\max}^A(E) \rangle \simeq \langle X_{\max}^p(E) \rangle - ER \ln A$$

 $\langle N_e^A(E) \rangle \simeq \langle N_e^p(E) \rangle A^{0.1}; \quad \langle N_\mu^A(E) \rangle \simeq \langle N_\mu^p(E) \rangle A^{-0.1}$
- nucleus-induced air showers reach their maxima earlier,
have less e^{\pm} and more muons

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
- strong support for the 'dip' model: transition from galactic *Fe* to extragalactic *p* component at 10¹⁷ eV

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
- strong support for the 'dip' model: transition from galactic *Fe* to extragalactic *p* component at 10¹⁷ eV

EAS maximum position X_{max} – the key to the UHECR composition

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
- supported by data of Telescope Array Collab. [Tameda, ICRC-2011]

A (1) > A (2)

EAS maximum position X_{max} – the key to the UHECR composition

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!

<ロ> (四) (四) (四) (四) (四)

EAS maximum position X_{max} – the key to the UHECR composition

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!

<ロ> (四) (四) (四) (四) (四)

EAS maximum position X_{max} – the key to the UHECR composition

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

• is it possible to reduce model-dependence?!

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!
- is it possible to reduce model-dependence?!
- yes, by studying shower fluctuations, e.g. RMS(X_{max}) [Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008)]

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (*K*_{inel}) for small *b*, small *K*_{inel} for large *b*

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS(X_{max}) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS(X_{max}) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS(X_{max}) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-air}^{inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS(X_{max}) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- RMS(X_{max}) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
- but: almost pure *Fe* at the highest energies?!

Image: A mathematical states of the state

- RMS(X_{max}) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
- but: almost pure *Fe* at the highest energies?!

Image: A mathematical states of the state

- RMS(X_{max}) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
- but: almost pure *Fe* at the highest energies?!

Image: A mathematical states of the state

Alternative approach - study of muon densities at ground

Alternative approach - study of muon densities at ground

• Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

Alternative approach - study of muon densities at ground

• Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

• may be UHECR are gold nuclei?!

Alternative approach - study of muon densities at ground

• Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

- may be UHECR are gold nuclei?!
- highly unlikely, rather CR interaction models should be wrong

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area ($\Delta b^2 \sim 1/|q^2|$)
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- ullet \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- ullet \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- \bullet \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- $\bullet\,\Rightarrow$ large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻ * *

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻ * *

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- → very dense parton system can be described perturbatively

• similar physics content for all MC generators used in CR field:

- multiple scattering
- soft & hard processes
- nonlinear effects, e.g. parton shadowing (not in all models)

< □ > < □ >

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

< D > < B > < E >

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

□ ▶ ◆ ミ ▶

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)

- 4 回 > - 4 回 > - 4 回 >

- QGSJET II-03/04 (SO, 2006/2011)
- EPOS (Liu, Pierog & Werner, 2006-2011)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches
- differ in implementations, theory input, etc. \Rightarrow in predictions

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches
- differ in implementations, theory input, etc. \Rightarrow in predictions

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment
 - however: weak predictive power
- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment
 - however: weak predictive power

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - ullet \Rightarrow no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

• LHC data: $N_{ch}(s)$ rises quicker than predicted by most MCs

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 りんの

• $N_{\rm ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

• $N_{\rm ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

イロン イヨン イヨン ・

 most of the models agree with the data within 10% (surprisingly, the oldest models perform best)

• $N_{ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

- most of the models agree with the data within 10% (surprisingly, the oldest models perform best)
- OR MCs: tuned to data over a wide energy range
 ⇒ loose in details, win in predictive power

• $N_{\rm ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

- most of the models agree with the data within 10% (surprisingly, the oldest models perform best)
- OR MCs: tuned to data over a wide energy range ⇒ loose in details, win in predictive power
- however: none of the models describes all the observables

• $N_{ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

• however: none of the models describes all the observables

Effect of model retuning to LHC data?

in the following investigated using the QGSJET-II model

• based on combined treatment of soft & hard parton processes

• based on combined treatment of soft & hard parton processes

<ロ> <同> <同> < 回> < 三> < 三>

• based on combined treatment of soft & hard parton processes

<ロ> <同> <同> < 回> < 三> < 三>

• based on combined treatment of soft & hard parton processes

<ロ> <同> <同> < 回> < 三> < 三>

based on combined treatment of soft & hard parton processes

・ロト ・同ト ・ヨト ・ヨ

 nonlinear processes (parton shadowing / saturation): Pomeron-Pomeron interactions

based on combined treatment of soft & hard parton processes

 nonlinear processes (parton shadowing / saturation): Pomeron-Pomeron interactions

• NB: in this model saturation may be reached for soft $(q^2 < Q_0^2)$ partons only

 QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions

<ロ> <同> <同> <三>

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production
- however: small impact on EAS characteristics if the model is calibrated to the same data set [SO, 2009]

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production
- however: small impact on EAS characteristics if the model is calibrated to the same data set [SO, 2009]

• N_{ch}(s)-rise: too steep in QGSJET-II-03

• N_{ch}(s)-rise: too steep in QGSJET-II-03

not easy to correct:

- hadronization parameters tuned at fixed target energies
- general model parameters tuned to cross sections & SFs

• N_{ch}(s)-rise: too steep in QGSJET-II-03

not easy to correct:

- hadronization parameters tuned at fixed target energies
- general model parameters tuned to cross sections & SFs

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \text{ GeV}^2)$

- parton saturation operates over a larger kinematic space
- \Rightarrow slows down multiplicity rise

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \ {\rm GeV}^2)$

- parton saturation operates over a larger kinematic space
- \Rightarrow slows down multiplicity rise

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \ {\rm GeV}^2)$

- parton saturation operates over a larger kinematic space
- \Rightarrow slows down multiplicity rise

Multiplicity: cross check with ATLAS data

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS

- qualitatively the same trend
- the level of (dis)agreement varies for different event selections

Multiplicity: cross check with ATLAS data

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS

- qualitatively the same trend
- the level of (dis)agreement varies for different event selections

Multiplicity: cross check with ATLAS data

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS:

- overall multiplicity corrections at $\sim 10\%$ level
- \Rightarrow insignificant for air shower predictions

Multiplicity: cross check with ATLAS data

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS:

- overall multiplicity corrections at $\sim 10\%$ level
- \Rightarrow insignificant for air shower predictions

- more energy kept in the hadronic cascade
- more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

- more energy kept in the hadronic cascade
- more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

Production of (anti-)baryons

- more energy kept in the hadronic cascade
- more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

Production of (anti-)baryons

- more energy kept in the hadronic cascade
- more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data
- higher kaon yields in older models (QGSJET, SIBYLL)

Inelastic cross section

• side-effect of higher Q_0^2 -cutoff: slower rise of cross sections

 e.g., σ^{tot}_{pp} - consistent with E710 data at 1.8 TeV

Inelastic cross section

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Inelastic cross section

Table: Model predictions for "visible" cross sections (in mb) at $\sqrt{s} = 7$ TeV for ATLAS MB triggers: at least one charged hadron at $-3.84 < \eta < -2.09$ and/or at $2.09 < \eta < 3.84$ (MBTS_{AND/OR}).

- elongation rate (ER) reduced above 1 EeV
- NB: similarity between QGSJET-II-04 and SIBYLL
 misleading (ER-increase will be even larger there)

- elongation rate (ER) reduced above 1 EeV
- NB: similarity between QGSJET-II-04 and SIBYLL
 misleading (ER-increase
 - will be even larger there)
- however: inelasticityrelated uncertainty remains

- elongation rate (ER) reduced above 1 EeV
- NB: similarity between QGSJET-II-04 and SIBYLL
 misleading (ER-increase will be even larger there)
- however: inelasticityrelated uncertainty remains
- QGSJET/QGSJET-II-04: large X_{max} difference

• overall effect of the retuning on air shower predictions:

- less than 10% change for muon number (N_{μ})
- shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

- overall effect of the retuning on air shower predictions:
 - less than 10% change for muon number (N_{μ})
 - shower maximum X_{max} shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)

・ロト ・同ト ・ヨト ・ヨト

• overall effect of the retuning on air shower predictions:

- less than 10% change for muon number (N_{μ})
- shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)

・ロト ・同ト ・ヨト ・ヨト

• overall effect of the retuning on air shower predictions:

- less than 10% change for muon number (N_{μ})
- shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)
- good news: hadronic physics at & around the 'knee' robust

- overall effect of the retuning on air shower predictions:
 - less than 10% change for muon number (N_{μ})
 - shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)
- good news: hadronic physics at & around the 'knee' robust
- but: challenge for UHECR studies
 - X_{max} − RMS(X_{max}) contradiction: smaller 'inelasticity'? (to approach heavy composition with ⟨X_{max}⟩)
 - explanation of muon excess extremely difficult

- overall effect of the retuning on air shower predictions:
 - less than 10% change for muon number (N_{μ})
 - shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)
- good news: hadronic physics at & around the 'knee' robust
- but: challenge for UHECR studies
 - X_{max} RMS(X_{max}) contradiction: smaller 'inelasticity'? (to approach heavy composition with (X_{max}))
 - explanation of muon excess extremely difficult

- overall effect of the retuning on air shower predictions:
 - less than 10% change for muon number (N_{μ})
 - shower maximum X_{max} shifted deeper above 10¹⁸ eV (by less than 20 g/cm² at 10²⁰ eV)
- good news: hadronic physics at & around the 'knee' robust
- but: challenge for UHECR studies
 - X_{max} − RMS(X_{max}) contradiction: smaller 'inelasticity'? (to approach heavy composition with ⟨X_{max}⟩)
 - explanation of muon excess extremely difficult

considerable progress in studing ultra-high energy CRs

- high energy (GZK?) cutoff firmly confirmed
- first hints towards astrophysical sources of UHECR

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

considerable progress in studing ultra-high energy CRs

- high energy (GZK?) cutoff firmly confirmed
- first hints towards astrophysical sources of UHECR

< D > < B > < E >

decisive tool – measurements of CR composition

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ecisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ecisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of $\sigma_{\it pp}^{\it inel}$ required (for most of the models)

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ecisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of σ_{pp}^{inel} required (for most of the models)

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ecisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of $\sigma_{\it pp}^{\it inel}$ required (for most of the models)

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ecisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of σ_{pp}^{inel} required (for most of the models)

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of σ_{pp}^{inel} required (for most of the models)

impact on experimental CR studies:

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of σ_{pp}^{inel} required (for most of the models)
- impact on experimental CR studies:
 - astrophysical origin of the CR 'knee' supported by LHC data (no exotic physics observed at mb level)
 - UHECR composition puzzle further aggravated: small room to explain the 'muon excess', X_{max} / RMS(X_{max}) inconsistences
Summary

- considerable progress in studing ultra-high energy CRs
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - exception: reduction of σ_{pp}^{inel} required (for most of the models)
- impact on experimental CR studies:
 - astrophysical origin of the CR 'knee' supported by LHC data (no exotic physics observed at mb level)
 - UHECR composition puzzle further aggravated: small room to explain the 'muon excess', X_{max} / RMS(X_{max}) inconsistences

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}

<ロ> <同> <同> < 回> < 回><<

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}

<ロ> <同> <同> < 回> < 回><<

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{max}

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS(X_{max})
 - studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{\rm max}$

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS(X_{max})
 - studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{\rm max}$

- reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
- good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS(X_{max})
 - studies of 'baryon stopping' by LHCf \Rightarrow understanding of X_{max}

<ロ> <同> <同> < 回> < 回><<