VHE GAMMA RAY ASTRONOMY PRESENT RESULTS AND FUTURE PROSPECTS

ICRR, University of Tokyo Max-Planck-Institute for Physics

Masahiro Teshima

VHE Instruments

MAGIC

MILAGRO

MILAGRO VERTAS

CANGAROO

CANGAROO III

TIBET ARGO-YBJ

PACT

GRAPES

TACTIC

MAGIC

HESS

TIBET

Origin of cosmic rays

apparent source direction

charged particle

Gamma

Cosmic Rays + X -> π + X

 π^0

μ -> e + vv

Imaging Air Cherenkov Telescope Cherenkov Light 50photons/m² (5

Cherenkov Light 50photons/m² (5 pe/m²) at 1TeV → MAGIC 2 x240 m², HESS 4 x106 m²

Typical parameters

Energy range50GeV ~ 10TeVCR rejection power >99%Angular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Sensitivity ~1% Crab Flux (10-13 erg/cm²s)

MAGIC Telescopes

New technologies to lower the threshold energy

17m diameter world largest Cherenkov tel.
0.1° High resolution camera
Hemispherical High QE PMT
Optical fibre analogue signal transmission
2GS/sec Ultra Fast FADCs
Fast rotation for GRB ~20secs/180deg.
Trigger threshold ~50GeV → ~25GeV

Upgrade from MAGIC to MAGIC Stereo Regular operation since September 2009

Sensitivity 1.6% Crab \rightarrow ~0.6% Crab (50hrs) Angular resolution 1.0 deg \rightarrow 0.06 deg Energy resolution 25% \rightarrow 15%

Angular Resolution in MAGIC Stereo

Data and MC agrees very well !! ~ 0.1 degrees at 100GeV ~ 0.5 degrees at 1000GeV

Started regular observations from October 2009

Better hadron rejection
 Better angular resolution (0.06 degrees)
 Better energy resolution (25%-15%)
 Enhance the sensitivity over the whole energy range

Sensitivity of MAGIC Stereo achieved (~0.6% Crab), factor 3 better than mono

Sensitivity of MAGIC Stereo achieved (~0.6% Crab)

Crab Nebula 3.5hr observation with MAGIC-Stereo

Physics objectives

SNRs

Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

Origin of cosmic rays

Dark matter

Space-time & relativity

Cosmology

Gamma-Ray Emission Processes(1) Astrophysical process

Gamma ray emission process from DM Annihilation

Dark Matter Annihilations

Bergstrom et al.

VHE Skymap

106 sources (45 Extragalactics + 61 Galactics) in Nov 2010 Blazars, FSRQs, FR-I, Starburst galaxies SNRs, PWNe, Pulsar, Binaries, un-IDs

GALACTIC SOURCES SNRS, PWNE

Great success!! HESS galactic plane survey

PWNe, SNRs, Binaries, un-IDs

HESS: Shell type SNRs RX J1713, RX J0852, RCW86

5

0

XMM-Newton, HESS

SNR Study RX J1713 HESS + Fermi

MAGIC: Shell type SNRs IC443(MAGIC J0616)

One of the most luminous star forming region (distance ~ 6kpc) W51C is a medium age (~30kyr) Super Nova Remnant Shell of the remnant is interacting with surrounding molecular cloud Discovery by Fermi/LAT (GeV) and HESS (4.4 σ at 1TeV)

Promising candidate SNR to test and study cosmic ray acceleration

MAGIC results for W51C

Relative Flux Maps

- Observation: 31.1 h in 2010
- Extended emission: 0.16°
- Maximum of the emission coincides with the shocked cloud regions
- Models based on Fermi / LAT + radio data predict a too softer spectrum than MAGIC sees
- Morphology suggests hadronic or other mechanisms:
 - particle spectrum hardens at high energies
 - High energy particles penetrate more effectively dense regions
 - other sources > 100 GeV

SNRs in different evolutionary stages

Pulsar Wind Nebulae observation by HESS

- Major galactic TeV source population
 - Associated with relatively young (<10⁵ year old) and energetic pulsars
- Generally believed that we see inverse Compton emission of 1-100 TeV electrons
- 1% of Spin-down energy goes to VHE gamma rays

Pulsar Wind Nebula HESS J1825-137 Energy Dependent Morphology

- Major galactic TeV source population
 - Associated with relatively young (<10⁵ year old) and energetic pulsars
- Generally believed that we see inverse Compton emission of 1-100 TeV electrons
- 1% of Spin-down energy goes to VHE gamma rays

 Clear evidence for cooling of electrons in the Nebula

Crab Nebula spectrum Fermi and MAGIC-Stereo

Pulsar Study

MAGIC result: Published in Science in 2008

By measuring the spectrum around cutoff or at high energies is important to distinguish the emission model

Polar cap: double exponent Outer gap: simple exponent

Crab Pulsar

EXTRAGALACTIC SOURCES

Number of extragalactic VHE Sources (45)

Extra-galactic sources

2010-11-11 - Up-to-date plot available at http://www.mpp.mpg.de/~rwagner/sources/

45 sources (3 x FR-I, 2 x Starburst galaxies, 4 x FSRQs, 36 BL Lacs)

PKS 2155–304 (HESS Observation) Spectral Energy Distribution

 Time-averaged SED is well described by a single zone SSC model:

Highest energy electrons ($\gamma_e > 2 \times 10^5$) produce the X-ray emission, but contribute relatively little above 0.2 TeV

Mrk421 MWL SED

FSRQ 3C279 (z=0.536) MAGIC Most distant 100GeV AGN

EBL (Extragalactic Background Light)

EBL upper limit by MAGIC and HESS observations

Second most distant 100GeV source FSRQ PKS1222 (4C +21.53) (z=0.436)

~10mins doubling time maybe inconsistent with EC model

M87 flare in 2008: MAGIC, VERITAS, HESS, VLBA

Model of 43GHz Radio flux using the measured VHE gamma flux

M87 flare in 2008: MAGIC, VERITA, HESS, and VLBA

Morphological studies of UHECR potential sources Cen A (3.4Mpc) & Cen B (56Mpc) Moskalenko et al. 0805.1260v1

Cen A: HESS detection

Distance: 3.8Mpc Flux: 0.8% in Crab Unit Spectral Index: -2.7

Cross: the best location (COG) Circle: 95% C.L. VHE extension limit

 $L_{VHE} \sim 2.6 \times 10^{39} \text{ erg s-1}$ $L_{UHECR} \sim 10^{40} \text{ erg s-1}$

IC310 (FR-I Radio galaxy) is discovered, when observing Perseus cluster / NGC1275

Too bright as an off-axis blazar

Significance sky map of Perseus cluster observation with MAGIC in 2009-2010

Gamma ray bursts

Binary neutron stars

10 GRBs observed by Fermi

→ 71 GeV

→ 59 GeV (0.829s)

→ 93 GeV (82s)

(16.54s)

GRB	duration	# of events > 100 MeV	# of events > 1 GeV	delayed HE onset	Long-lived HE emission	Highest Energy	Redshift
080825 C	long	~10	0	?	~	~600 MeV	
080916 C	long	>100	>10	~	~	~ 13.2 GeV	4.35
081024 B	short	~10	2	~	~	3 GeV	
081215A	long	_	—	—	_	_	
090217	long	~10	0	x	_	~1 GeV	
090323	long	>10	>0	_	~	_	3.57
090328	long	>10	_	_	~	_	0.736
090510	short	>150	>20	~	~	~31 GeV	0.903
090626	long	_	_	_	~	_	
090902B	long	>200	>30	~	~	~ 33 GeV	1.822

GRB090902B

GRB080916C

GRB090510(short burst)

GRB090902B

GRB 080916C Fermi results +CTA simulation

- normalize to GBM light curve
- extrapolate GBM+LAT spectra with Y. Inoue EBL

simulate with
 D. Mazin's tool

T. Yamamoto, Y. Inoue & R. Yamazaki

CTA Monte Carlo: Expected Light curve for GRB at z=4.3

CTA performance study by S.Inoue, Y.Inoue, T.Yamamoto, et al

Summary of VHE gamma ray astronomy

- The VHE gamma ray astronomy started with the discovery of VHE emission from Crab by Whipple observatory in 1989
- The third generation telescopes, HESS, MAGIC and VERITAS are increasing the number of VHE sources very rapidly (1-2 sources/months)

More than 100 of VHE gamma ray sources

- SNRs, Pulsar, PWNe, Binaries / BL Lacs, FSRQs, FR-I, Starburst Galaxies
- Galactic sources: SNRs
 - We can see several SNRs in different evolutionary stages with the different energy spectra
- Galactic sources: PWNe
 - Most popular galactic sources, asymetric morphologies, energy dependent morphology
- Nearby bright BL Lacs show the intensity variation of x 50
 - Mkn421, Mkn501, PKS2155
 - Very fast time variations of a few minutes are found in Mkn501 and PKS2155
- Distant sources:3c279, PKS1222
 - The room for the extra component (Pop-III) in EBL is now very slim

~23m telescopes 4 - 6° FoV 0.08 - 0.12° pixels Parabolic/Hybrid f/D~1.2

12m telescopes 7 - 8° FoV 0.16 - 0.18° pixels Hybrid f/D =1.35

4-7 m telescopes
8 - 10° FoV
0.2 - 0.3° pixels
DC or SO f/D 0.5-1.7

Possible array configuration

Configuration E: LST x 4, MST x 23, SST x 32

Acceptance 3km2

Kifune Plot (expectation from log S - log N)

All sky observatory (2 stations in North and South)

One observatory with two sites operated by one consortium

Mainly extragalactic science

> Galactic plus extragalactic science

~ 50MEuro Canaries: La Palma, Tenerife 2400m Mexico: San Pedro Martir 2800m

~ 100MEuro Namibia: Kohmas Highland 1800m Chile: La Silla 2400m Argentina: El Leoncito 2600m Argentina: Puna Highland 3700m

HESS-like - HESS exposure - HESS sources

Galactic sources

Simulations: Digel + Funk (Stanford) + Hinton (Leeds)

超新星は銀河宇宙線の源か? 超新星残骸の進化

銀河系外の天体・相対論的ジェットの研究 最高エネルギー宇宙線の起源?

ガンマ線バースト (z<6)

宇宙はどこまで透明か? → 宇宙の星形成史 宇宙論的な距離を飛来する高エネルギーガンマ線

探究的研究 暗黒物質の探索 暗黒物質対消滅からのガンマ線を探る ノーベル賞級の大発見なるか?

Specification and Physics

23m Large size telescope and 12m Middle size telescope

23m LST designed by MPI group

12m MST designed by DESY group

4-7m Small Size Telescope

Italian Design 7m

UK Design 4m

Recommendations and supports

ASPERA Roadmap Magnificent Seven

ASTRONET Roadmap

High Priority project Ground based projects

8 Infrastructures from Physics and eng

СТА	150		
E-ELT	950		
ELI	400		
FAIR	1187		
KM3NeT	200		
PRINS	1400		
SKA (GLOBAL)	1500		
SPIRAL2	196		

Decadal Survey in Astronomy and Astrophysics in US

New Worlds, New Horizons

in Astronomy and Astrophysics

Report Release e-Townhall Keck Center of the National Academies August 13, 2010

ATIONAL RESEARCH COUNCIL

Ground-based projects ranked in order: Large-scale

- Large Synoptic Survey Telescope (LSST)
- Innovations Program
- Giant Segmented Mirror Telescope (GSMT)
- Atmospheric Čerenkov Telescope Array (ACTA)

CTA Japan 活動 大口径望遠鏡プロトタイピング

✓ CTAは日米欧の国際共同実験
 ✓ 日本は主にCTA-LST大口径望遠鏡に貢献
 ✓ 最終的には全体の20%の貢献をめざす
 ✓ 日本グループ70名の研究者
 ✓ ハード: 23m大型望遠鏡8台分のカメラと鏡
 ✓ ソフト:物理、シミュレーション、データ解析

=273mm =330 mm D=76 mm Aluminum D=70....130 CF 100mm, 80mm Steel X100 mm CTA LST(23m 大口径望遠鏡)

日本グループによる技術開発・技術貢献

1.5m サイズ

高精度分割鏡

大型スパッタリングチェンバー Cr + Al + SiO2 + HfO2 による マルチコート(長寿命、増反射)

Summary: CTA

- CTA will provide
 - 10 times better sensitivity
 - wider energy coverage (10GeV-100TeV)
 - All sky observation
 - ~1000 VHE sources
- High quality data will be delivered
 - Better energy resolution (10%)
 - Better angular resolution (2arc min)
- Time schedule
 - Preparatory Phase until 2014
 - Construction phase: 2015-
- Cost ~200MEuro
 - Contribution from CTA-Japan ~20% of total cost
- Expected contribution from CTA Japan
 - LST Camera
 - GHz sampling readout electronics
 - Large size mirrors

よろしくご支援をお願いいたします。

