Indication of electron neutrino appearance in the T2K experiment

Masato Shiozawa for the T2K collaboration ICRR Seminar, June-15-2011

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Institute for the Mathematics and Physics of the Universe, U of Tokyo

Results

- T2K performed $v_{\mu} \rightarrow v_{e}$ oscillation analysis based on 1.43 x 10²⁰ p.o.t. (2010 Jan. 2011 Mar.)
 - Observed 6 V_e candidate events
 - # of expected events = 1.5 ± 0.3 (syst.) (if $\sin^2 2\theta_{13} = 0$)
 - Under null θ_{13} hypothesis, prob. of observing 6 or more events is 0.007, equivalent to 2.5σ significance.
 - $0.03~(0.04) < \sin^2 2\theta_{13} < 0.28~(0.34)$ at 90% C.L. for normal (inverted) hierarchy (assuming $\Delta m^2_{23}=2.4~x~10^{-3}~eV^2$, $\delta_{CP}=0$)

Indication of $V_{\mu} \rightarrow V_{e}$ appearance

This result was submitted to PRL and the preprint will appear in arXiv tomorrow. Reference: arXiv:1106.1238 for the T2K experimental setup.

T2K Collaboration

International collaboration (~500 members, 59 institutes, 12 countries)

T2K (Tokai-to-Kamioka) experiment

T2K Main Goals:

- \bigstar Discovery of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation (ν_{e} appearance)
- \star Precision measurement of ν_{μ} disappearance

Overview of this talk

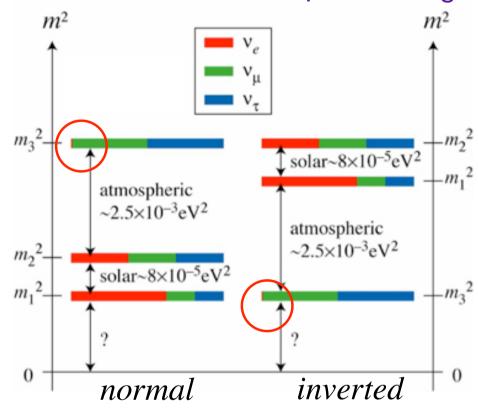
- 1. Introduction of T2K experiment
- 2. Search for v_e appearance with 1.43 x 10^{20} protons on target (p.o.t)
 - Analysis overview
 - v_e selection criteria
 - The expected number of events at Far detector
 - Systematic uncertainty
 - Observation at Far detector & Results
- 3. Conclusion

Previous Results w/ 0.3×10^{20} p.o.t has been reported by K. Okumura in April. Analyzed data exposure is ~5 times larger than previous one.

Physics Motivation of v_e appearance

Direct detection of neutrino flavor mixing in "appearance" mode

Determine θ_{13}


the last mixing angle θ_{13} can be determined by $v_{\mu} \rightarrow v_{e}$

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} \text{ L/4E}) + ...$$

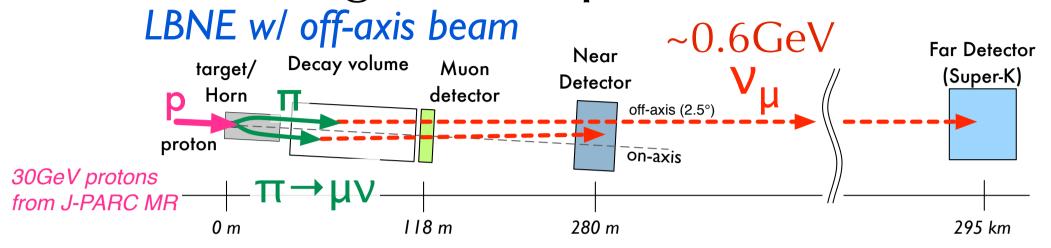
$$(\Delta m^{2}_{23} \sim \Delta m^{2}_{31})$$

Open a possibility to measure CP violation in lepton sector in future

CP odd term in $P(v_{\mu} \rightarrow v_{e}) \propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$

Neutrino mass & three flavor mixing

Mixing angle: θ_{12} , θ_{23} , θ_{13}


$$\theta_{12} = 34^{\circ} \pm 3^{\circ} \ \theta_{23} = 45^{\circ} \pm 5^{\circ} \ \theta_{13} < 11^{\circ}$$

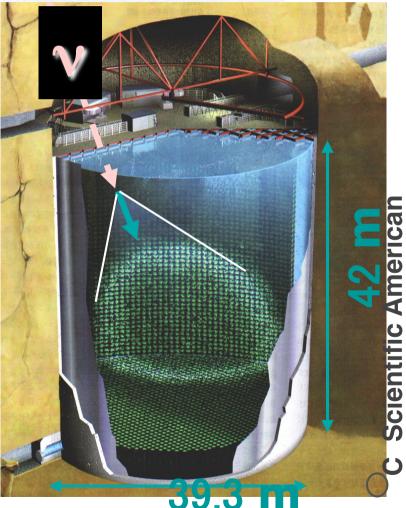
Last unknown mixing angle θ_{13}

 $\sin^2 2\theta_{13} < 0.15$ at 90% C.L.

CHOOZ (reactor exp.) and MINOS (accelerator exp.)

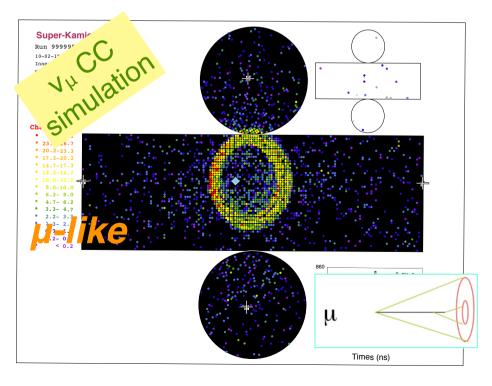
Design Principle of T2K

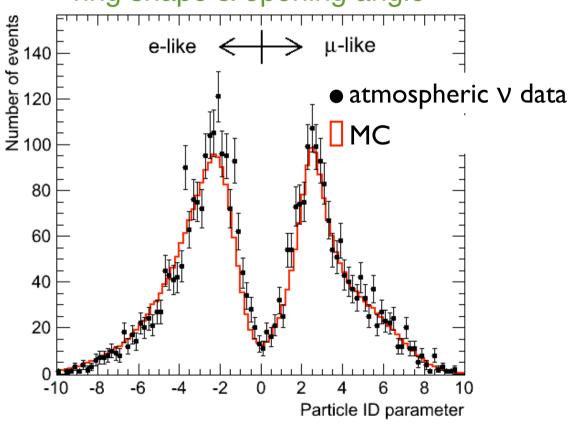
☑ Super-Kamiokande(SK) as far neutrino detector


- World largest v & proton decay detector
- Distance L and E_ν matches to meet oscillation maximum condition: L · Δ m²₂₃/(4E_ν)~ π /2
- Excellent identification of event topology and kinematics
 - ν_{μ} → ν_{e} , ν_{e} + n → e^{-} + p (ν_{e} appearance signal)
 - Enable us to reconstruct the neutrino energy
 - High rejection efficiency for backgrounds: e.g. μ , π^0 , π^{\pm}

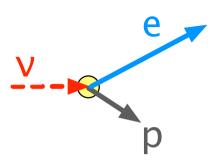
Un-oscillated v

(←2-body kinematics)

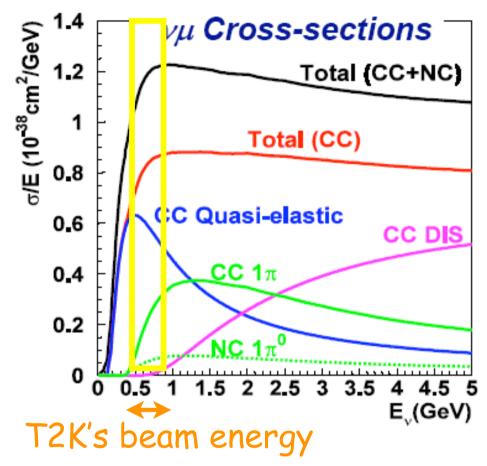

- Water Cherenkov detector w/ fiducial volume 22.5kton (Total 50kton)
- Phase IV w/ Dead-time less DAQ system since September 2008
- T2K event trigger by accelerator beam timing
- atmospheric v samples as control samples to study detector performance.


11,129 x 20inch PMTs (inner detector, ID)

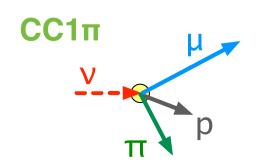
Super CC Ru Charge (pe) - >26.7 - 20.2-23.3 - 113.7-17.3 - 12.2-14.7 - 10.0-12.2 - 8.0-10.0 - 6.2- 8.0 - 4.7- 6.2 - 7.7- 1.2 - 0.7- 1.2 -

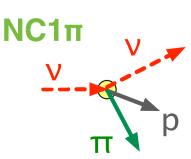

Electron-like and muon-like event at SK

Particle identification using ring shape & opening angle

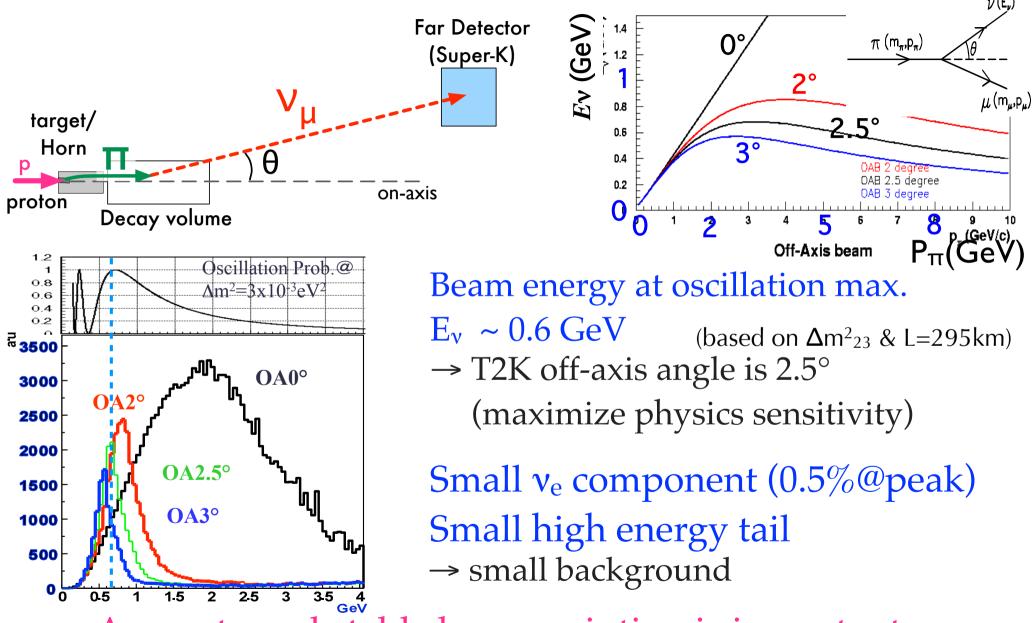

Probability that μ is mis-identified as electron is ~1%

Charged Current Quasi-elastic (CCQE) interactions dominate at sub GeV

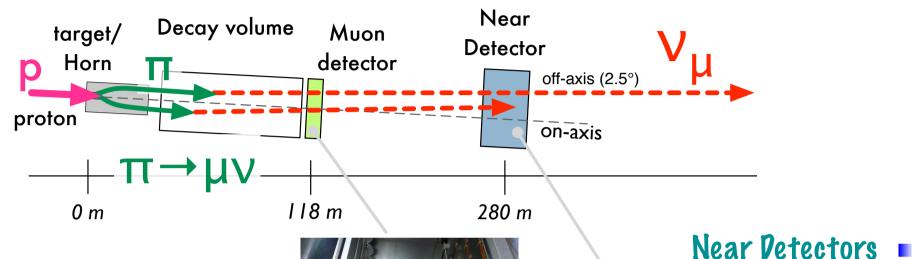



CCQE:
$$v_{e(\mu)} + n \rightarrow e(\mu) + p$$
 (T2K signal)

 ν interactions at high energy cause background events in T2K (e.g. $NC1\pi^0$ is one of ν_e background)



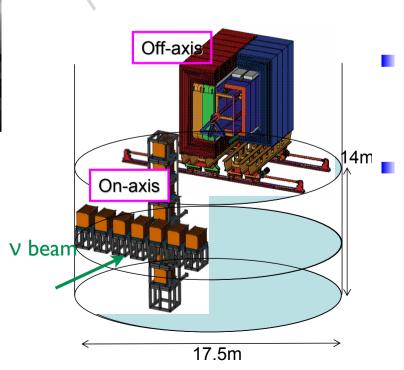
→ need to reduce high energy V



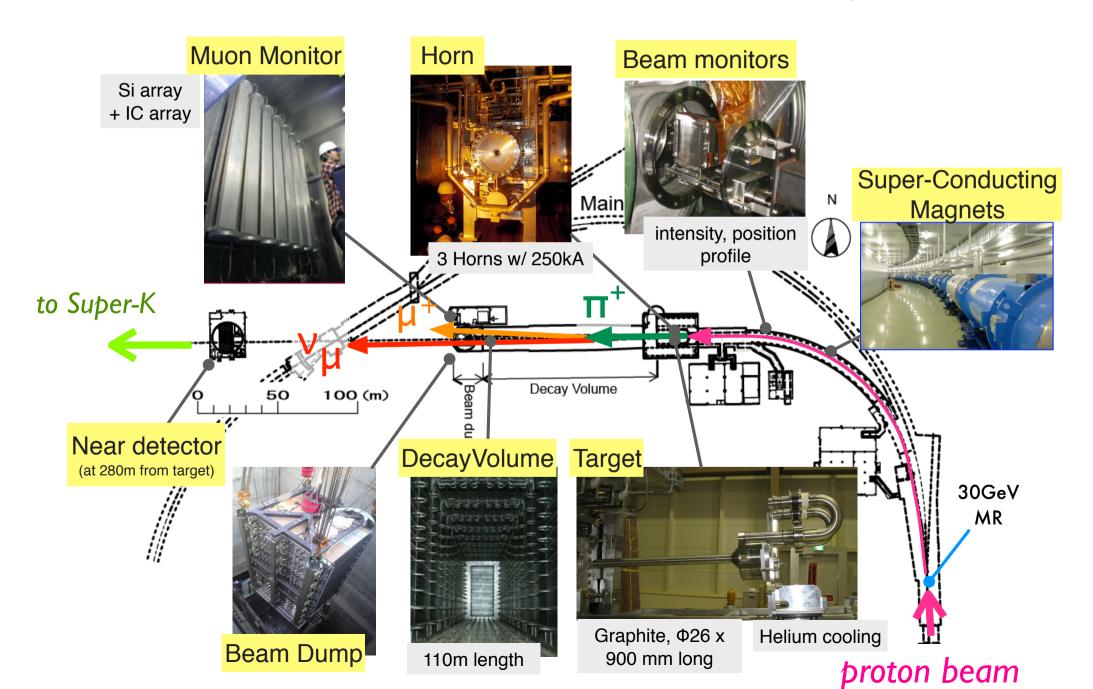
Off-axis beam: intense & narrow-band beam

Accurate and stable beam pointing is important (Keep the peak energy stable)

Monitor beam direction and intensity

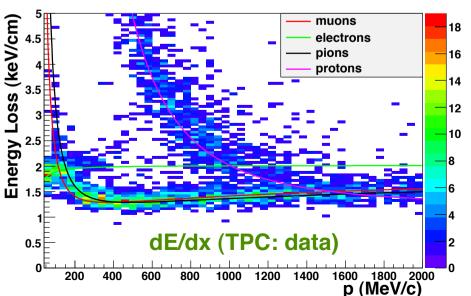

Muon monitor

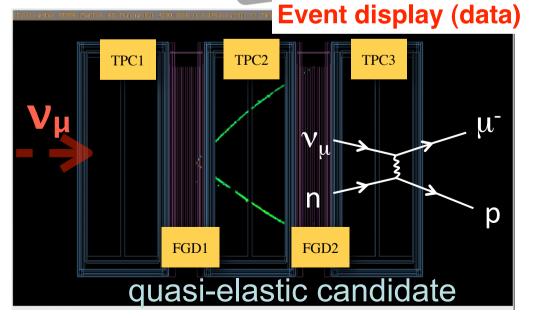
monitor spill-by-spill


On-axis INGRID

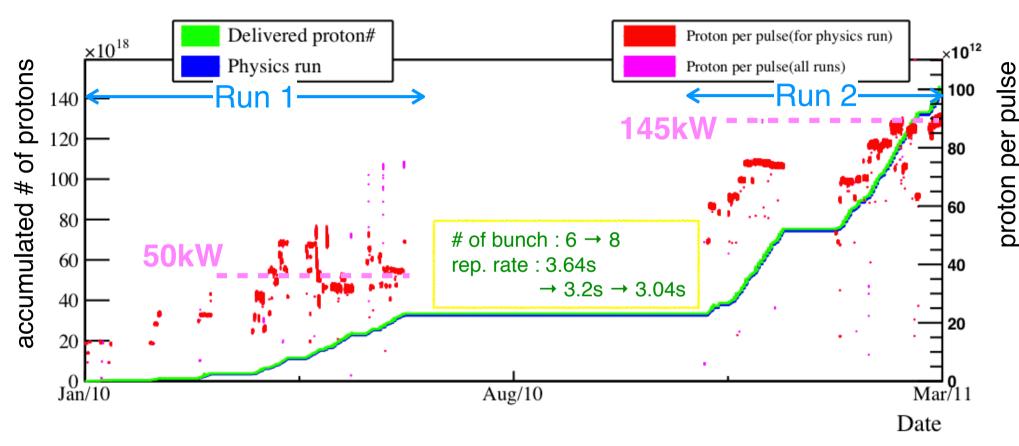
- monitor actual ν beam day-by-day
- detector coverage is 10m x 10m

Stability of beam direction should be $<1 \, \text{mrad}$ (to keep the peak energy at SK stable $\delta E<2\%$)


J-PARC Neutrino beam facility


Off-axis Near Detector (ND280)

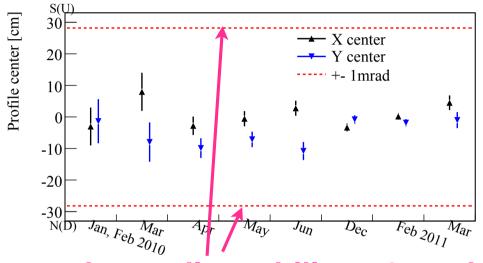
ν_μ CC events rate measurement in present analysis


- 0.2 T UA1 magnet
- Fine Grained Detector (FGD)
 - scintillator bars target (water target in FGD2)
 - 1.6ton fiducial mass for analysis
- I in a Projection Ciambers (TPC)
 - better than 10% dE/dx resolution
 - 10% momentum resolution at 1GeV/c

Total # of protons used for analysis

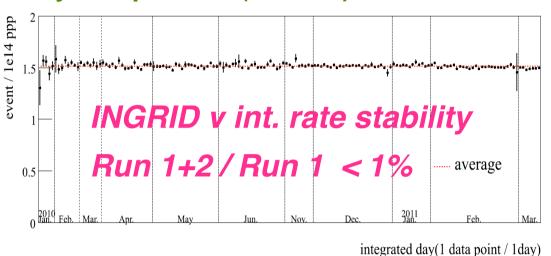
Run 1 (Jan. '10 - June '10)

- 3.23×10^{19} p.o.t. for analysis
- 50kW stable beam operation

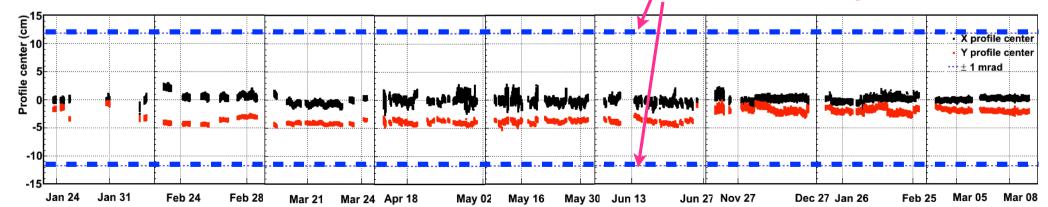

Run 2 (Nov. '10 - Mar. '11)

- 11.08×10^{19} p.o.t. for analysis
- ~145kW beam operation

Total # of protons used for this analysis is 1.43 x 10²⁰ pot 2% of T2K's final goal and x 5 exposure of the previous report


v beam stability

Stability of v beam direction (INGRID)



v beam dir. stability < 1mrad

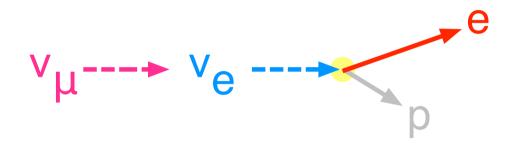
Stability of v interaction rate normalized by # of protons (INGRID)

Stability of beam direction (Muon monitor) Beam dir. stability < 1mrad

Search for v_e appearance

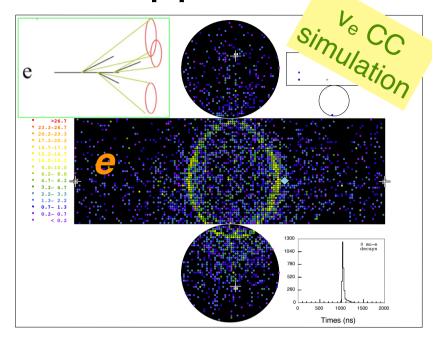
Analysis overview

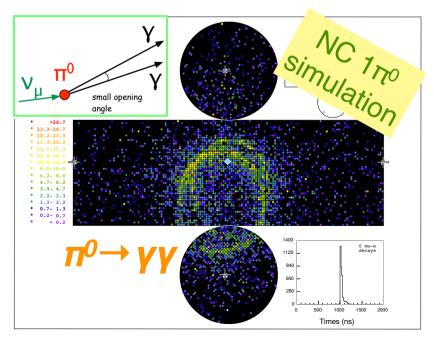
- 1. Apply v_e selection criteria to the events at far detector (SK)
- 2. Compare # of observed events and # of expected events
 - \rightarrow search for ν_e appearance


Contents in this section

- v_e selection criteria
- The expected number of events at Far detector using *Hadron (pion) production measurement* & ND v event rate measurement
- Systematic uncertainty
- Observation at Far detector & Results

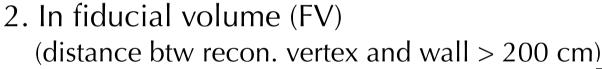
- v_e selection criteria
- The expected number of events at Far detector
- Systematic uncertainty
- Observation at Far detector & Results


T2K Signal & Background for v_e appearance

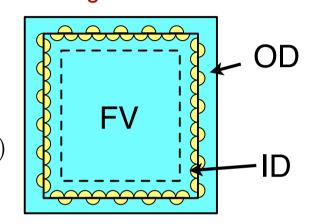

- Signal = single electron event
 - oscillated v_e interaction :

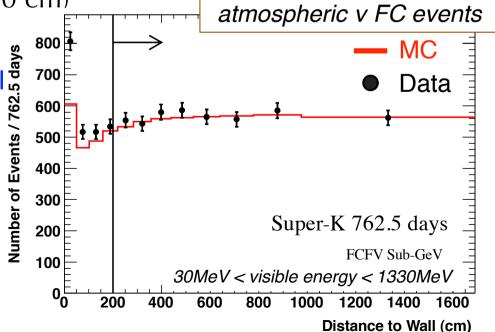
 $CCQE: v_e + n \rightarrow e + p$ (dominant process at T2K beam energy)

- Background
 - intrinsic v_e in the beam (from μ , K decays)
 - π^0 from NC interaction


ve selection at far detector (SK)

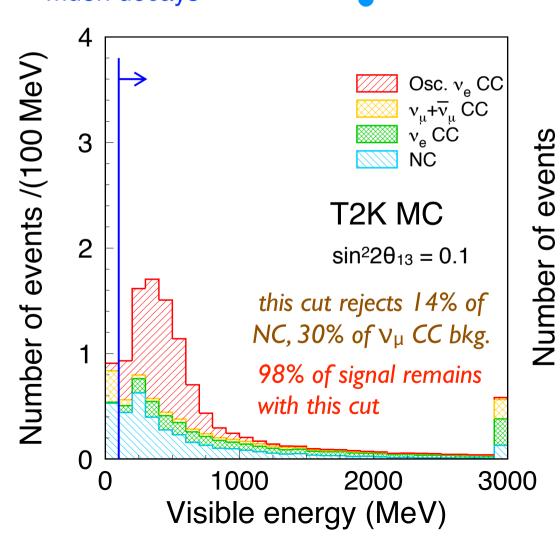
The selection criteria were optimized for initial running condition


The selection criteria were fixed before data taking started to avoid bias

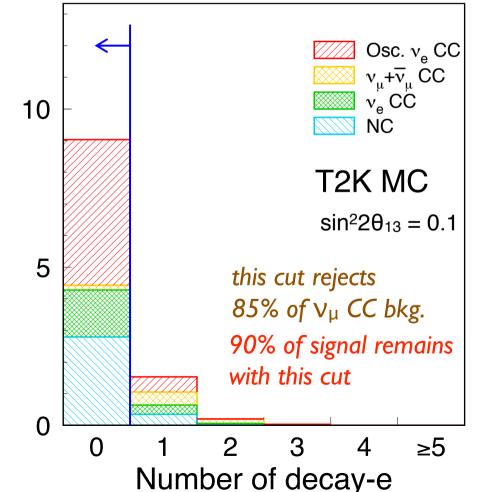

7 selection cuts

1. T2K beam timing & Fully contained (FC) (synchronized the beam timing, no activities in the OD)

- * Avoid degraded reconstruction of vertex and Cherenkov rings for events too close to the wall
- * Reject events which originated outside the ID
- * Define FV 22.5kton
- 3. Single electron
 (# of ring is one & e-like)

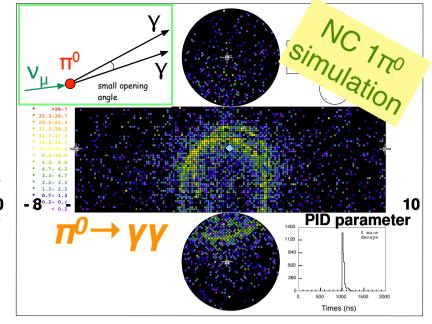


4. Visible energy > 100 MeV


(visible energy = electron-equivalent energy deposited in ID)

* Reject low energy events, such as NC background and decay electrons from invisible muon decays

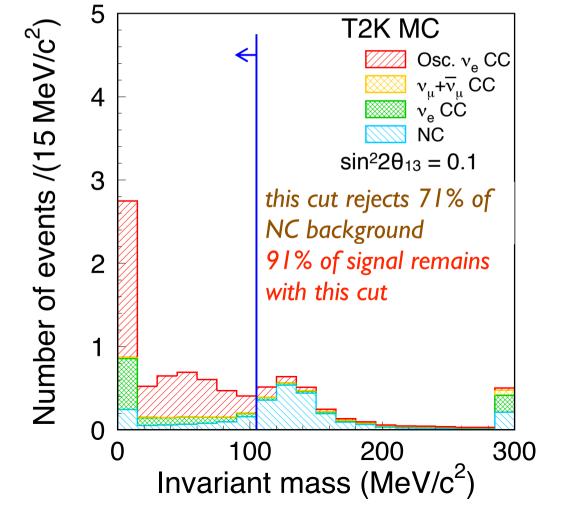
5. No decay electron observed (no delayed electron signal)

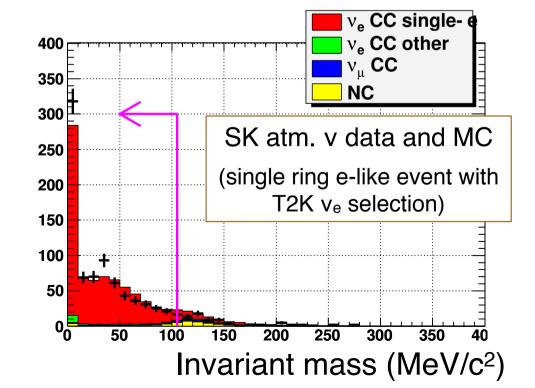

* Reject events with muons or pions which are invisible or mis-identified as *electron* $(v_{\mu} \text{ events or } CC \text{ non-QE events})$

6. Reconstructed invariant mass $(M_{inv}) < 105 \text{ MeV/c}^2$

* Suppress NC π⁰ background

Forced to find 2nd ring by using expected light pattern under the 2 e-like rings assumption, and then reconstruct invariant mass of these 2 e-like rings

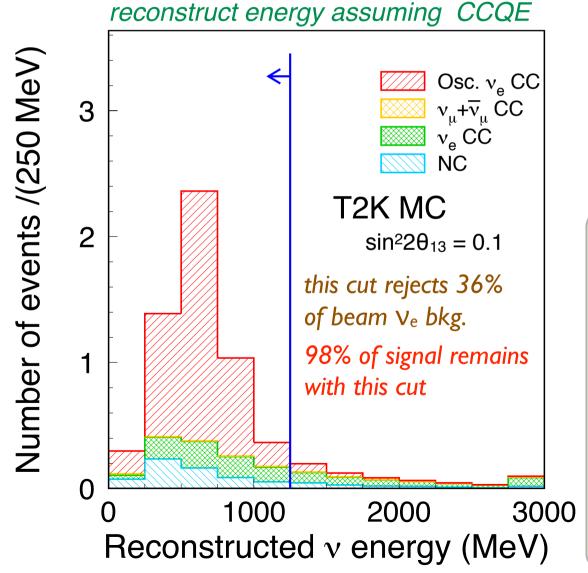

100

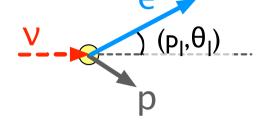

80

60

40

demonstrate to reconstruct invariant mass using atmospheric v data





7. Reconstructed energy $(E_{rec}) < 1250 \text{ MeV}$

* Reject intrinsic beam ve backgrounds at high energy

* Signal (v_µ→v_e) has a sharp peak at E_v~600MeV

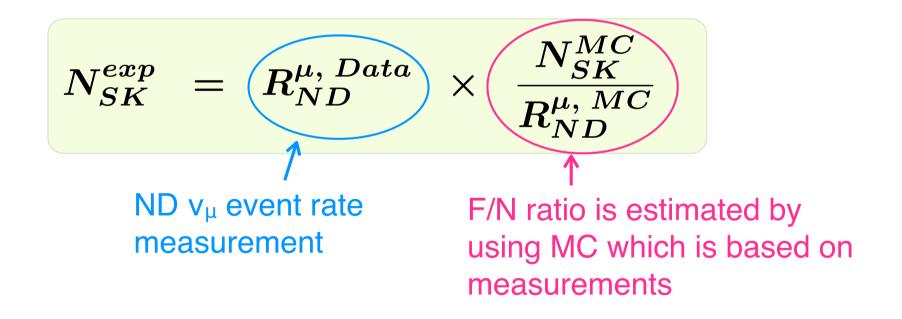
$$E_{rec} = rac{m_n E_l - m_l^2/2 - (m_n^2 - m_p^2)/2}{m_n - E_l + p_l \cos heta_l}$$

(with additional correction for nuclear potential)

After all the selection criteria background rejection :

>99% for v_{μ} CC,

77 % for beam ve CC,


99 % for NC

vµ→ve CC signal eff. : 66 %

- v_e selection criteria
- **The expected number of events at Far detector**
- Systematic uncertainty
- Observation at Far detector & Results

Expected # of events at Far detector

The number of signal and background events are derived by the # of observed v_{μ} event rate at near detector ($R^{\mu,Data}_{ND}$) and the ratio of the expected events in the near and far detectors (F/N ratio)

Expected # of events at Far detector

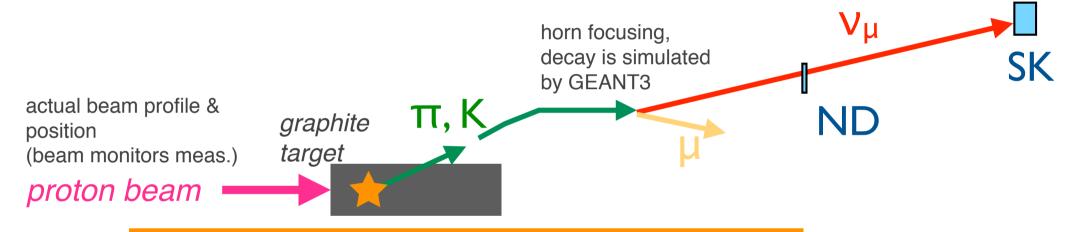
$$N_{SK}^{exp} \; = \; \left(R_{ND}^{\mu, \; Data}
ight) imes \left(rac{N_{SK}^{MC}}{R_{ND}^{\mu, \; MC}}
ight)$$

ND v_{μ} event rate

Measurement of the number of inclusive v_{μ} charged-current events in ND per p.o.t. using data collected in Run 1 (2.88 x 10¹⁹ p.o.t.)

Stability of the beam event rate is confirmed by INGRID measurement INGRID v int. rate stability Run 1+2 / Run 1 < 1%

F/N ratio for v_e signal event


(flux) x (osc. prob.) x (x-section) x (efficiency) x (det. mass)

$$\frac{N_{SK \nu_e \ sig.}^{MC}}{R_{ND}^{\mu, MC}} = \frac{\int \Phi_{\nu_{\mu}}^{SK}(E_{\nu}) \cdot P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \sigma(E_{\nu}) \ dE_{\nu}} \cdot \frac{M^{SK}}{M^{ND}} \cdot POT^{SK}$$

Neutrino flux prediction

T2K Neutrino beam simulation based on Hadron production measurements

$$\frac{\int \Phi_{\nu_{\mu}}^{SK}(E_{\nu}) \cdot P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

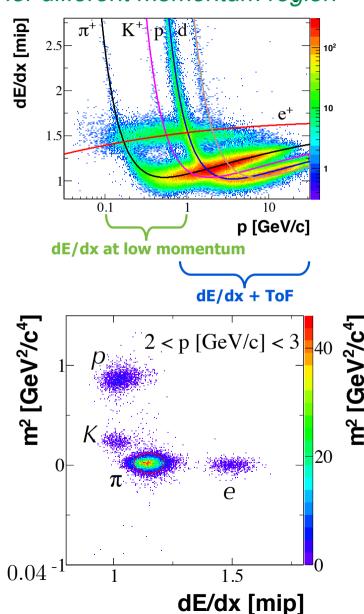


Hadron production in 30GeV proton + C

- Use CERN NA61/SHINE pion measurement (large acceptance: >95% coverage of v parent pions)
- Kaon, pion outside NA61 acceptance, other interaction in the target were based on FLUKA simulation
- Secondary interaction x-sections outside the target were based on experimental data

CERN NA61/SHINE measurement

Measure hadron(π , K) yield distribution in 30 GeV p + C inelastic interaction

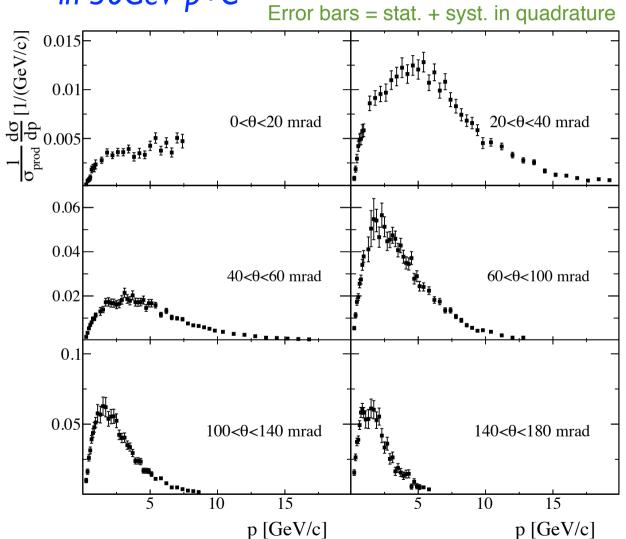


Large acceptance spectrometer + TOF

detector performance

$$\sigma(p)/p^2 \approx 2 \times 10^{-3}, \ 7 \times 10^{-3}, \ 3 \times 10^{-2} (\text{GeV/c})^{-1} \ \sigma(\text{dE/dx})/\langle \text{dE/dx} \rangle \approx 0.04^{-3}$$

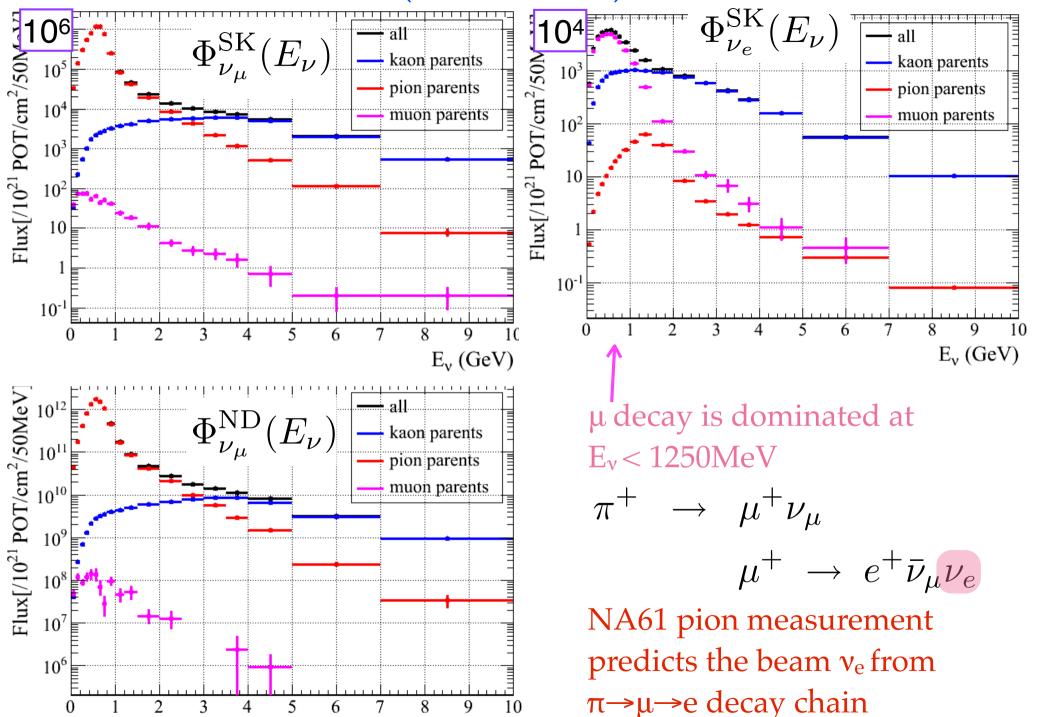
for $p > 5, \ p = 2, \ p = 1 \text{ GeV/c}$ $\sigma(\text{TOF-F}) \approx 115 \text{ ps}$


π⁺ production: Two analysis for different momentum regions I

Results of pion production from thin target (2007 data)

Differential cross section for π^+ production in 30GeV p+C

Systematic uncertainty was evaluated in each (p,θ) bin

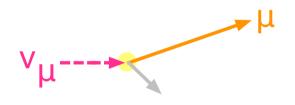

typically 5-10%

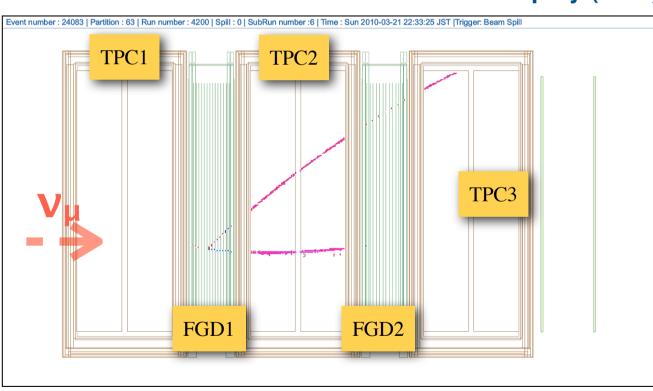
The normalization uncertainty is 2.3% on the overall (p,θ)

 \rightarrow Propagate the systematic uncertainty in each (p,θ) bin into the expected number of events in T2K

→ Input to T2K neutrino beam simulation

Predicted neutrino flux (center value)


E_v (GeV)


v_{μ} interaction rates at near detector

• Measure # of inclusive v_{μ} charged current interaction (N^{Data}_{ND})

Event display (data)

Select events which have FGD hits and μ -like tracks reconstructed in single TPC

High purity : 90% v_{μ} Charged Current int. (50% CCQE)

ND Measurement of muon momentum in inclusive v_{μ} CC events $(v_{\mu} + N \rightarrow \mu^{+} + X)$ entries/(100 MeV/c) 200 p.o.t. normalized 180 ν_{μ} CC QE $\nu_{_{\mu}}\,CC\;non\;QE$ 160 $\overline{\mathbf{v}}_{\mu}$ CC 140 NC 120 External Background 100 data is consistent with 80 MC based on the NA61 and 60 v interaction simulation (w/o tuning) 40 **20**E 1500 2000 2500 3000 3500 $P(\mu)$ (MeV/c)

Results

$$R_{ND}^{\mu, Data} = 1529 \text{ events } / 2.9 \times 10^{19} \text{ p.o.t.}$$

$$\frac{R_{ND}^{\mu, Data}}{R_{ND}^{\mu, MC}} = 1.036 \pm 0.028 (\text{stat.})_{-0.037}^{+0.044} (\text{det. syst.}) \pm 0.038 (\text{phys. syst.})$$

Intrinsic Beam v_e background at Far detector

- The number of beam v_e background events at far detector is predicted using the v beam simulation based on NA61 measurements (pion) and FLUKA (kaon)
 - ND measurements (μ momentum and event rate) are consistent with MC based on the ν beam simulation

$$N_{SK\;beam\;
u_e\;bkg.}^{exp} \;=\; R_{ND}^{\mu,\;Data} \;\; imes rac{N_{SK\;beam\;
u_e\;bkg.}^{MC}}{R_{ND}^{\mu,\;MC}}$$

$$\frac{N_{SK\ beam\ \nu_e\ bkg.}^{MC}}{R_{ND}^{\mu,\ MC}} = \frac{\int \Phi_{\nu_e}^{SK}(E_{\nu}) \cdot P_{\nu_e \to \nu_e}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}} \cdot \frac{M^{SK}}{M^{ND}} \cdot POT^{SK}$$

The expected number of events for $\sin^2 2\theta_{13} = 0$

The expected number of events with 1.43 x 10²⁰ p.o.t.

 $N^{exp}_{SK tot.} = 1.5 \text{ events}$

	beam v _μ CC	beam v _e CC	NC	Oscillated v _µ →v _e (solar term)	Total
The expected # of events at SK	0.03	0.8	0.6	0.1	1.5

of NC background is calculated by

$$N_{SK\ NC\ bkg.}^{exp} \ = \ R_{ND}^{\mu,\ Data} \ imes \ rac{N_{SK\ NC\ bkg.}^{MC}}{R_{ND}^{\mu,\ MC}}$$

- ν_e selection criteria
- The expected number of events at Far detector
- **Systematic uncertainty**
- * Observation at Far detector & Results

Systematic uncertainty on Nexp_{SK}

for sin ² 2θ ₁₃ =0		syst. error	error source
101 0111 20 13-0	,	$\pm 8.5\%$	\bigcirc (1) ν flux
		$\pm 14.0\%$	\bigcirc $\stackrel{(2)}{\bigcirc}$ ν int. cross section
		$^{+5.6}_{-5.2}\%$	(3) Near detector
		$\pm 14.7\%$	(4) Far detector
		$\pm 2.7\%$	(5) Near det. statistics
$N^{exp}_{SK}=1.5\pm0.3$		+22.80 -22.7 0	Total
events			

$$N_{SK}^{exp} \; = \; egin{aligned} R_{ND}^{\mu,\;Data} & imes & rac{N_{SK}^{MC}}{R_{ND}^{\mu,\;MC}} \end{aligned}$$

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{SK}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

Neutrino flux uncertainty

- (3) Near detector
- (4) Far detector
- (5) Near det. statistics

Uncertainties in hadron production and interaction are dominant sources

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{SK}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

Error source

- Pion production
 - NA61 systematic uncertainty in each pion's (p, θ) bin
- Kaon production
 - Used model (FLUKA) is compared with the data(Eichten et. al.) in each kaon's (p, θ) bin
- Secondary nucleon production
 - Used model (FLUKA) is compared with the experimental data
- Secondary interaction cross section
 - Used model (FLUKA and GCALOR) is compared with the experimental data of interaction x-section (π , K and nucleon)

graphite target

Summary of v flux uncertainties on N^{exp}_{SK} for $\sin^2 2\theta_{13} = 0$

	N_{SK}^{exp}	=	$R_{ND}^{\mu,\;Data}$	$ imes rac{N_{SK}^{MC}}{R_{ND}^{\mu,MC}}$
Error source			$\frac{N_{SK}^{MC}}{R_{ND}^{\mu,\ MC}}$	
Pion production			2.5%	
Kaon production			7.6%	Hadron
Nucleon production			1.4%	production
Production x-section			0.7%	& interaction
Proton beam position/profile			2.2%	
Beam direction measurement			0.7%	
Target alignment			0.2%	
Horn alignment			0.1%	
Horn abs. current			0.3%	
Total			(8.5%))

T T MC

The uncertainty on N^{exp}_{SK} due to the beam flux syst. is 8.5%

Error cancellation works for some beam uncertainties

v int. cross section uncertainty

Evaluate uncertainty on F/N ratio by varying the cross section within its uncertainty $\int_{\Phi_{n}^{SK}(E_{\nu}) \times F} \Phi_{n}^{SK}(E_{\nu}) \times F$

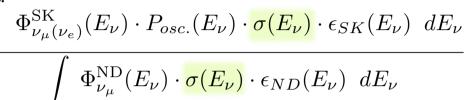
Cross section uncertainties are estimated by Data/MC comparison, model comparison and parameter variation

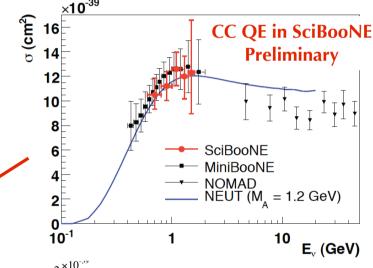
Cross section uncertainty relative to the CCQE total x-section

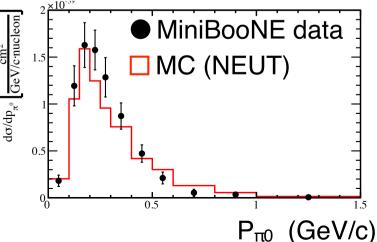
Process	Systematic error (comment)	
CCQE	energy dependent ($\sim \pm 7\%$ at 500 MeV)	
$CC 1\pi$	$30\% \ (E_{\nu} < 2 \text{ GeV}) - 20\% \ (E_{\nu} > 2 \text{ GeV})$	
CC coherent π^0	100% (upper limit from [30])	
CC other	$30\% \ (E_{\nu} < 2 \text{ GeV}) - 25\% \ (E_{\nu} > 2 \text{ GeV})$	
$NC 1\pi^0$	$30\% \ (E_{\nu} < 1 \ {\rm GeV}) - 20\% \ (E_{\nu} > 1 \ {\rm GeV})$	•
NC coherent π	30%	
NC other π	30%	
Final State Int.	energy dependent ($\sim \pm 10\%$ at 500 MeV)	

Uncertainty of $\sigma(v_e)/\sigma(v_\mu) = \pm 6\%$

error source


(1) ν flux


(2) ν cross section


(3) Near detector

(4) Far detector

(5) Near det. statistics

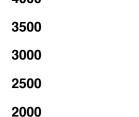
error source

(1) ν flux

(2) ν cross section

(3) Near detector

(4) Far detector


(5) Near det. statistics

ν int. cross section uncertainty on N^{exp}_{SK} for $\sin^2 2\theta_{13} = 0$

Main v interaction in each event

Erro	or source		NC background: NC1 π^0 Beam $ u_e$ background: $ u_e$ CCQE
	Source	syst. error on N_{SK}^{exp}	Signal : $v_{\rm e}$ CCQE
-	CC QE shape	3.1%	ND CC event : CCQE(50%) $CC1\pi(23\%)$
	$CC 1\pi$	2.2%	CC11(23 70)
	CC Coherent π	3.1%	
	CC Other	4.4%	
	$NC 1\pi^0$	5.3%	
	NC Coherent π	2.3%	
	NC Other	2.3%	
	$\sigma(u_e)$	3.4%	Uncertainty in pion's
	FSI	10.1%	← final state interaction
-	Total	(14.0%)	is dominant

The uncertainty on N^{exp}_{SK} due to the v x-section syst. is 14% ($\sin^2 2\theta_{13}=0$)

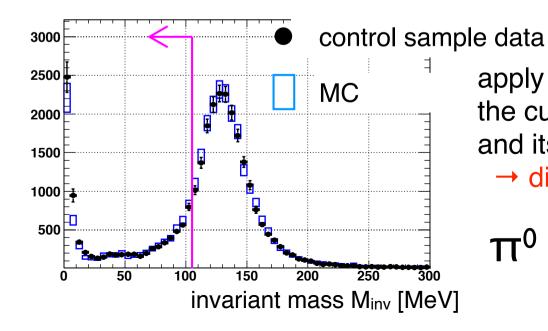
1500

500

Far detector uncertainty

- error source
 - (1) ν flux
 - (2) ν cross section
 - (3) Near detector
 - (4) Far detector
 - (5) Near det. statistics

- Uncertainty due to the SK detector systematic
- Evaluate using control sample


$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{SK}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

Normalized by number of events

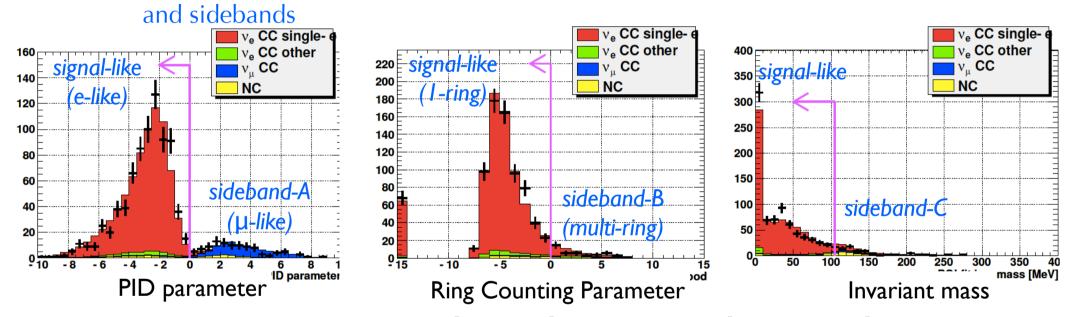
One of biggest error source:

detection efficiency of NC 1π⁰ background

Topological control sample of π^0 made by combining one data electron + one simulated γ

apply T2K v_e selection and compare the cut efficiency between control sample data and its MC

→ difference is assigned as sys. error


$$\pi^0$$
 efficiency=6.8±0.7(syst.)%

Uncertainty of v_e CCQE selection efficiency

detection efficiency of ν_e CC (for dominant BG and signal)

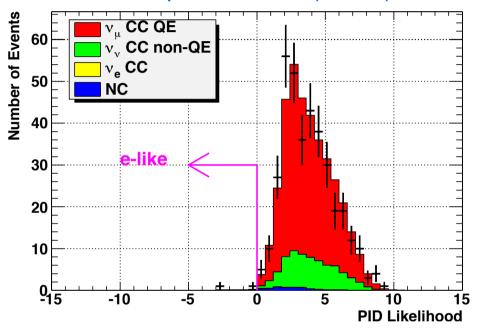
atmospheric v sample

subsample which satisfies all T2K ve selection criteria (signal-like)

From comparisons btw the atmv data and MC, we constrain selection efficiency of each cuts.

	Efficiency [%] Efficiency [%]
	(T2K beam ν_e) (T2K signal ν_e)
Ring-counting	96.8 ± 1.9 (syst.) 96.6 ± 1.6 (syst.)
PID	98.9 ± 1.1 (syst.) 98.8 ± 1.4 (syst.)
POLfit mass	90.1 ± 6.1 (syst.) 90.7 ± 4.1 (syst.)

Particle ID uncertainty study


Cosmic ray µ sample

200 events 180 Data cosmic-µ 160 MC (0.6-1.2 GeV/c)120 100 e-like 80 60 40 20 15 -20 -15 -10 -5 10 20 5 PID likelihood parameter mis-PID: Data: 0.00±0.16(stat.)%

MC: 0.10±0.10(stat.)%

atmospheric v sample

 μ control sample selected by decay electrons

mis-PID:

Data: 0.54±0.39(stat.)%

MC: 0.20%

The mis-ID fraction and the likelihood are well reproduced.

→PID uncertainty < 1%

Summary of Far detector systematics uncertainty

Error source	$\frac{\delta N_{SK \ \nu_e \ sig.}^{MC}}{N_{SK \ \nu_e \ sig.}^{MC}}$	$\frac{\delta N_{SK\ bkg.\ tot.}^{MC}}{N_{SK\ bkg.\ tot.}^{MC}}$
π^0 rejection	-	3.6%
Ring counting	3.9%	8.3%
Electron PID	3.8%	8.0%
Invariant mass cut	5.1%	8.7%
Fiducial volume cut etc.	1.4%	1.4%
Energy scale	0.4%	1.1%
Decay electron finding	0.1%	0.3%
Muon PID	_	1.0%
Total	7.6%	15%

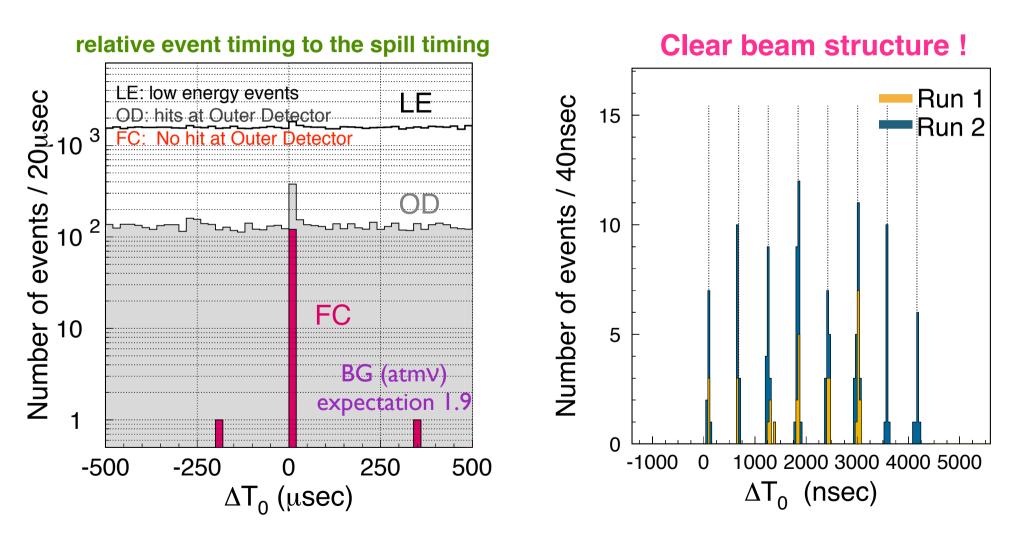
Evaluated by atmospheric v_e enriched data

→ The total uncertainty on $N^{MC}_{SK tot.}$ is **14.7** % ($\sin^2 2\theta_{13} = 0$) (uncertainty on the background + solar term oscillated v_e)

Total Systematic uncertainties

Summary of systematic uncertainties on Nexp_{SK total.} for sin²2θ₁₃=0 and 0.1

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	cf.
O(1) Beam flux	$\pm 8.5\%$	$\pm 8.5\%$	sin²2θ ₁₃ =0: #sig = 0.1 #bkg = 1.4
$\mathcal{O}(2)$ ν int. cross section	$\pm 14.0\%$	$\pm 10.5\%$	
(3) Near detector	$+5.6 \% \\ -5.2 \%$	$^{+5.6}_{-5.2}$ $^{\circ}_{0}$	sin²2θ ₁₃ =0.1: #sig = 4.1 #bkg = 1.3
(4) Far detector	$\pm 14.7\%$	$\pm 9.4\%$	
(5) Near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$	
Total	$\left(egin{array}{c} +22.8 \% \ -22.7 \% \end{array} \right)$	$\left(\begin{array}{c} +17.6 \% \\ -17.5 \% \end{array}\right)$	


(due to small Far det. uncertainty for signal)

 $N^{exp}_{SK \ tot.} = 1.5 \pm 0.3$ at $\sin^2 2\theta_{13} = 0$

- v_e selection criteria
- The expected number of events at Far detector
- Systematic uncertainty
- **Observation at Far detector & Results**

SK events in beam timing

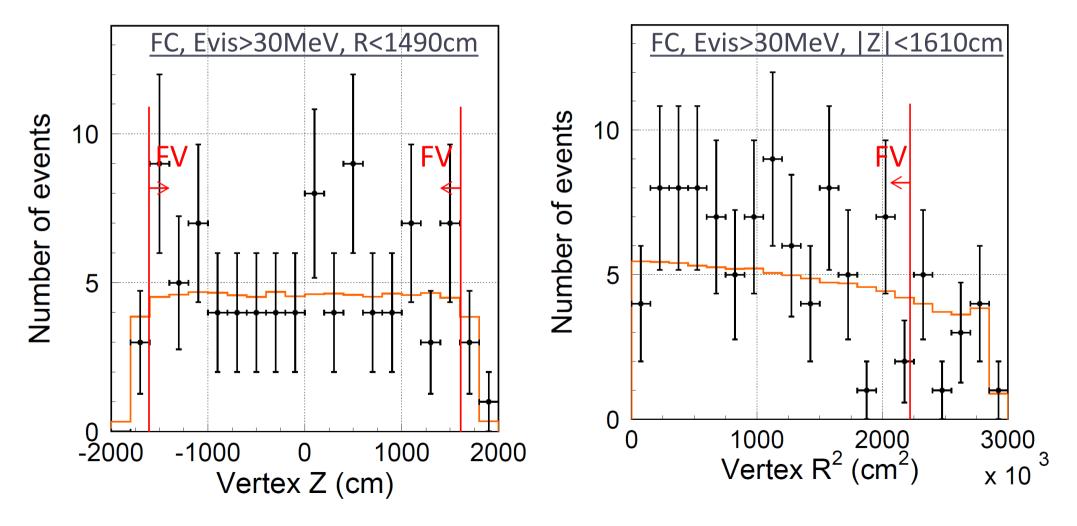
Events in the T2K beam timing synchronized by GPS

 $\Delta T_0 = T_{GPS} @SK - T_{GPS} @J-PARC - TOF(~985 \mu sec)$

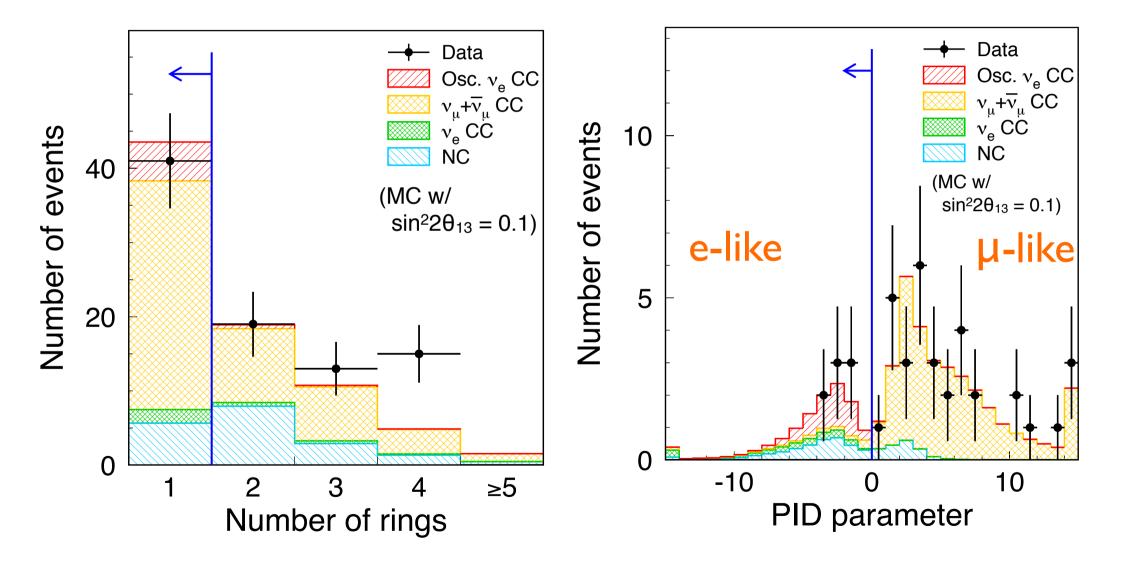
Number of T2K events at far detector

Number of events in on-timing windows (-2 \sim +10 μ sec)

Class / Beam run	RUN-1	RUN-2	Total	non-beam
POT (x 10 ¹⁹)	3.23	11.08	14.31	background
Fully-Contained (FC)	33	88	121	0.023

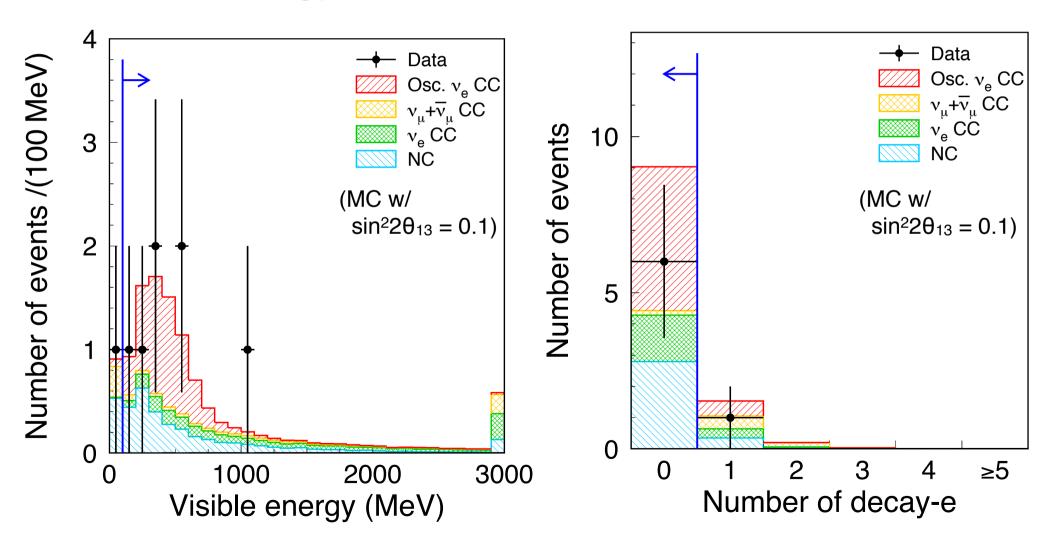

The accidental contamination from atmospheric v background is estimated using the sideband events to be 0.023

apply the v_e event selection

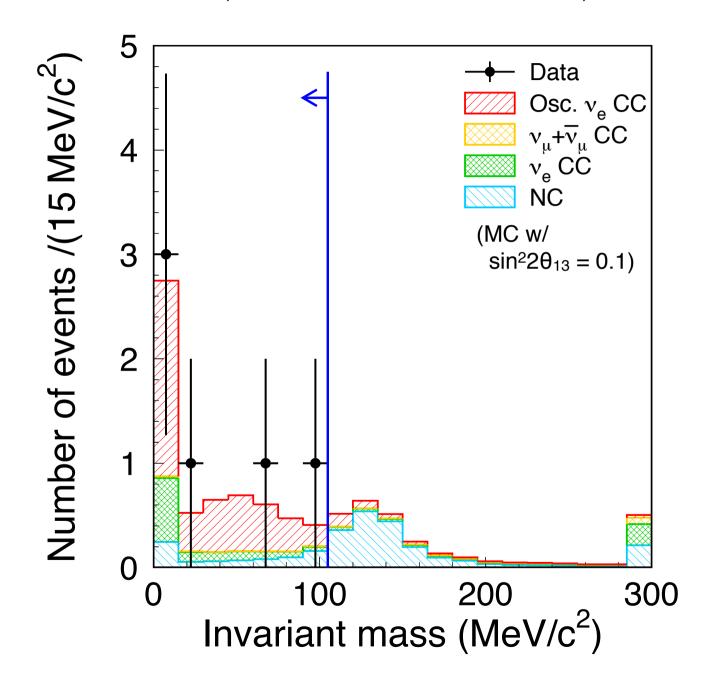

defined before the data collection 6 selection cuts other than FC cut

Fiducial volume cut

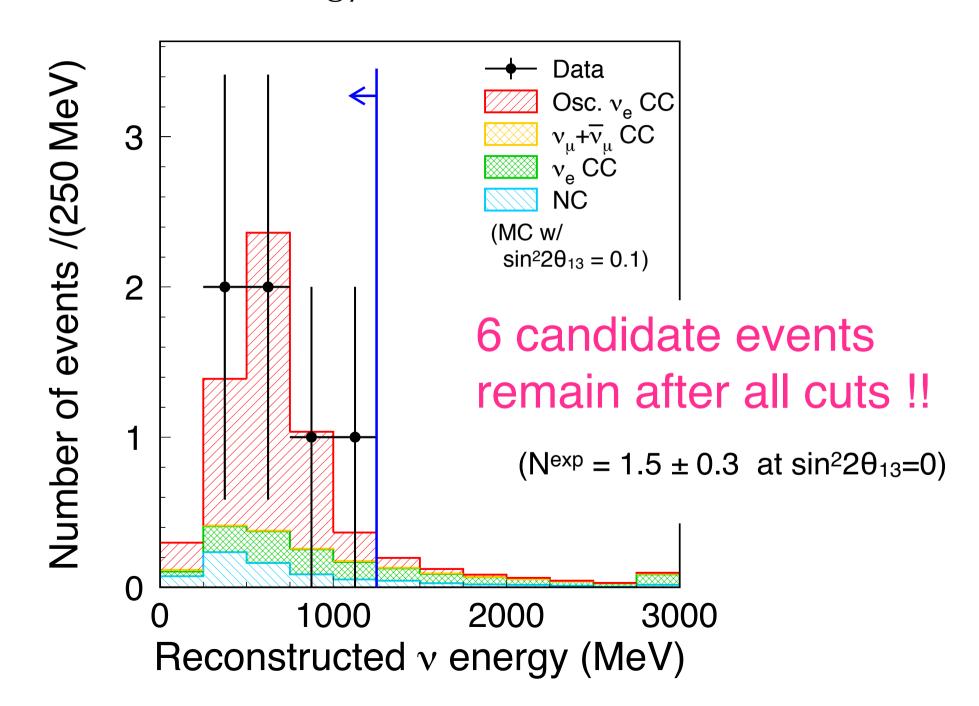
(distance between recon. vertex and wall > 200cm)

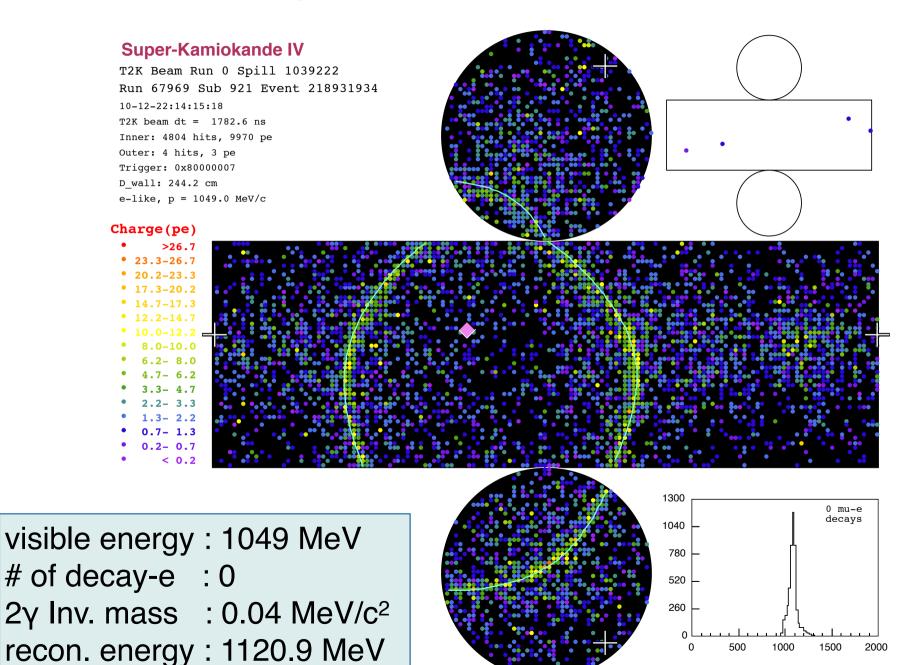


Single electron cut (# of ring is one & e-like)

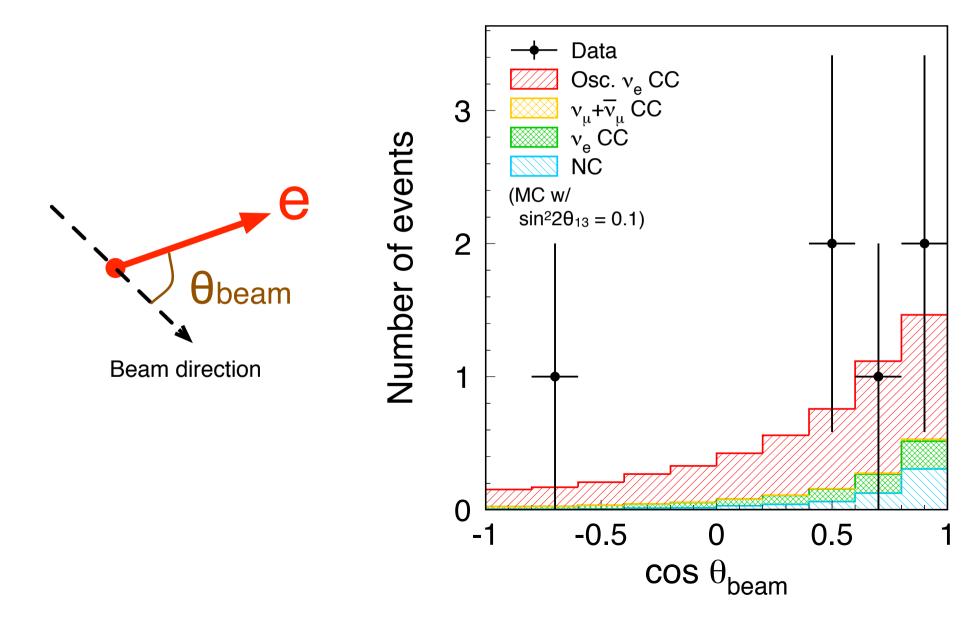


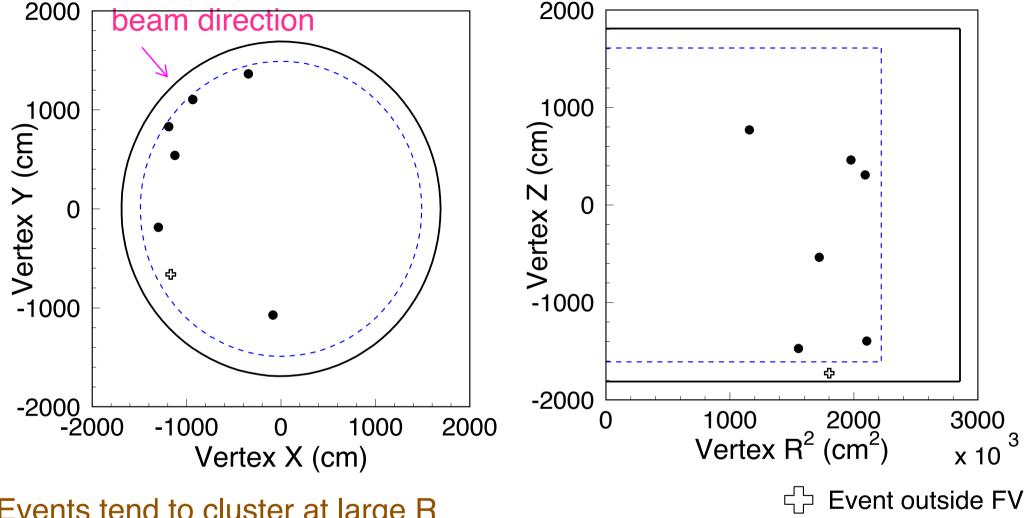
Visible energy cut (visible energy > 100MeV)


No decay electron


Invariant mass cut ($M_{inv} < 105 \text{ MeV/c}^2$)

Reconstructed ν energy cut ($E_{rec} < 1250 \text{ MeV}$): Final cut


v_e candidate event


Times (ns)

Further check

Check several distribution of v_e candidate events

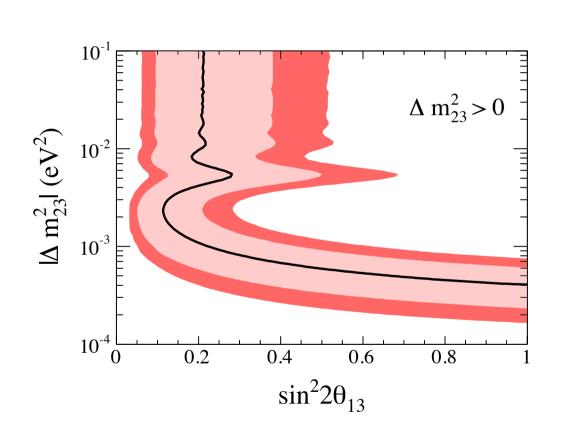
Vertex distribution of v_e candidate events

Events tend to cluster at large R

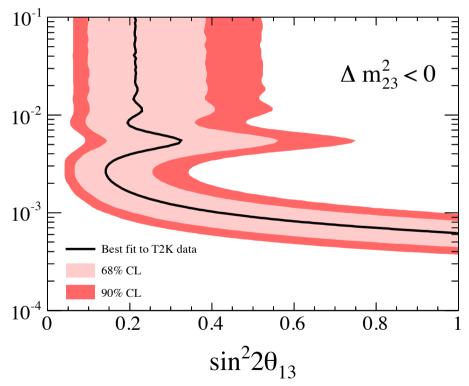
→ Perform several checks. for example

- * Check distribution of events outside FV → no indication of BG contamination
- * Check distribution of OD events → no indication of BG contamination
- * A K.S. test on the R² distribution yields a p-value of 0.03

Results for v_e appearance search with 1.43 x 10^{20} p.o.t.

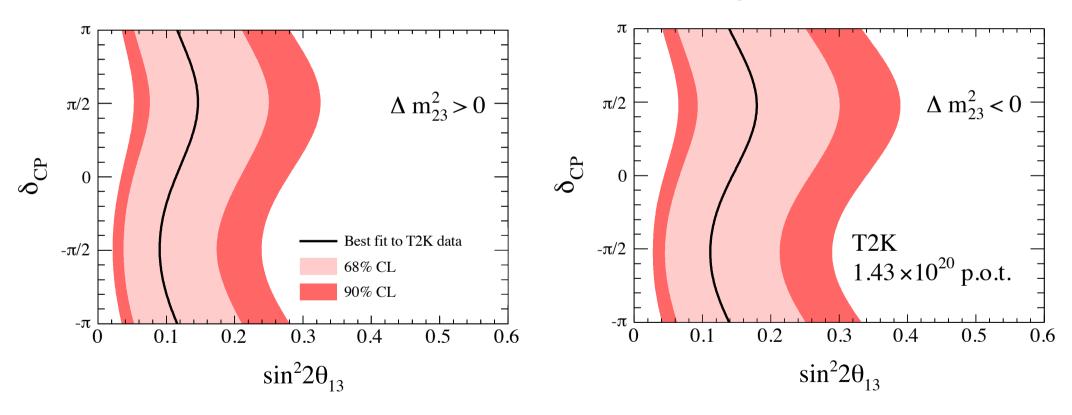

The observed number of events is 6

The expected number of events is 1.5 ± 0.3


for $\sin^2 2\theta_{13} = 0$

 \rightarrow Probability to observe 6 or more events is 0.007, assuming θ_{13} =0, corresponding to 2.5 σ significance.

Allowed region of $\sin^2 2\theta_{13}$ for each Δm^2_{23}



Feldman-Cousins method was used

Allowed region of $sin^2 2\theta_{13}$ for each δ_{CP}

(assuming $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$)

90% C.L. interval (assuming Δm^2_{23} =2.4 x 10⁻³ eV², δ_{CP} =0)

 $0.03 < \sin^2 2\theta_{13} < 0.28$

 $0.04 < \sin^2 2\theta_{13} < 0.34$

T2K Next steps

Aim to firmly establish v_e appearance and to better determine the angle θ_{13}

This result is obtained by only 2% exposure of T2K's goal.

- Plan for re-starting experiment in this calendar year
 - Recovery works in progress
- Analysis improvement
 - New analysis methods using $\nu_{\rm e}$ signal shape (e.g. recon. energy) are under developing
 - Improve uncertainties in the Super-K for subdominant BG sources, i.e. π^{\pm} , $\pi^{\pm}\pi^{0}$, $\mu\pi^{0}$ etc.

Conclusion

- We reported new results from $v_{\mu} \rightarrow v_{e}$ oscillation analysis based on 1.43 x 10²⁰ p.o.t. (2010 Jan. 2011 Mar.)
 - Observe 6 candidate events
 - # of expected events = 1.5 ± 0.3 (syst.) ($\sin^2 2\theta_{13} = 0$)
 - Under null θ_{13} hypothesis, prob. of observing 6 or more events is 0.007, equivalent to 2.5σ significance.
 - 0.03 (0.04) < $\sin^2 2\theta_{13}$ < 0.28 (0.34) at 90% C.L. for normal (inverted) hierarchy (assuming Δm^2_{23} =2.4 x 10⁻³ eV², δ_{CP} =0)

Indication of $V_{\mu} \rightarrow V_{e}$ appearance

The paper was submitted to PRL and the preprint will appear in arXiv tomorrow.

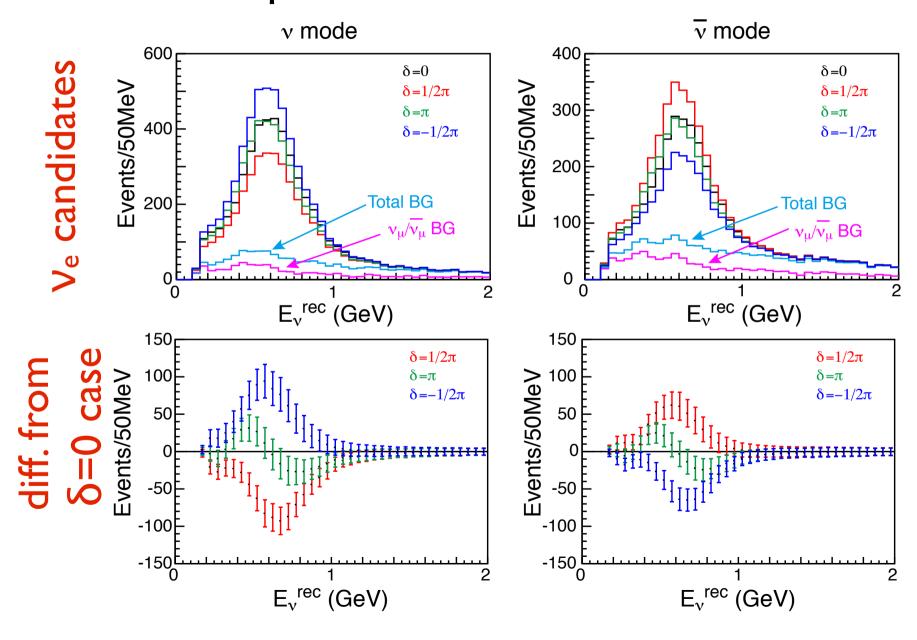
- Plan for improve the measurement after recovery of the experiment in this calendar year
- v_{μ} disappearance result with 1.43 x 10²⁰ p.o.t. data will be reported this summer

Epilogue

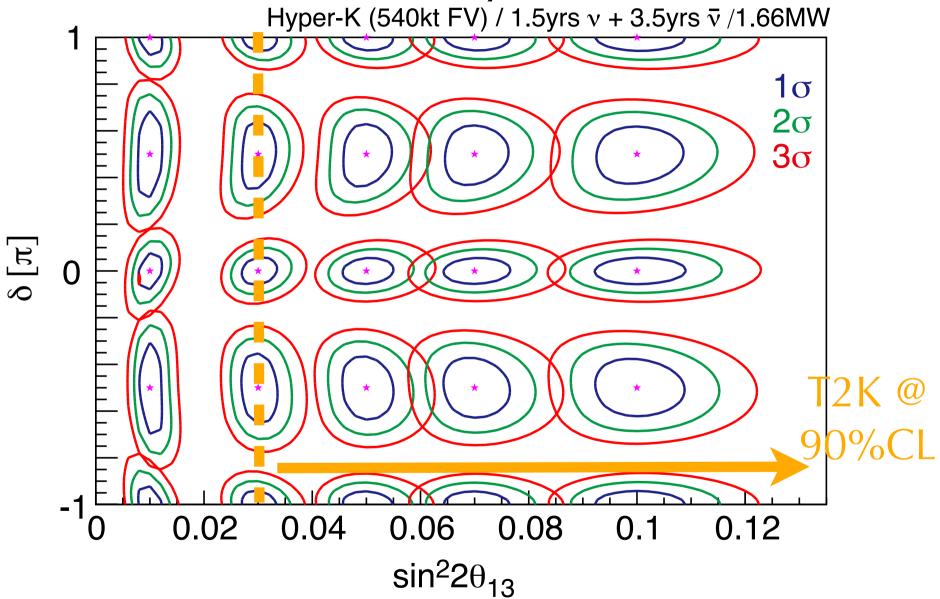
Personal view of future prospects...

Toward full picture of neutrino masses and mixings

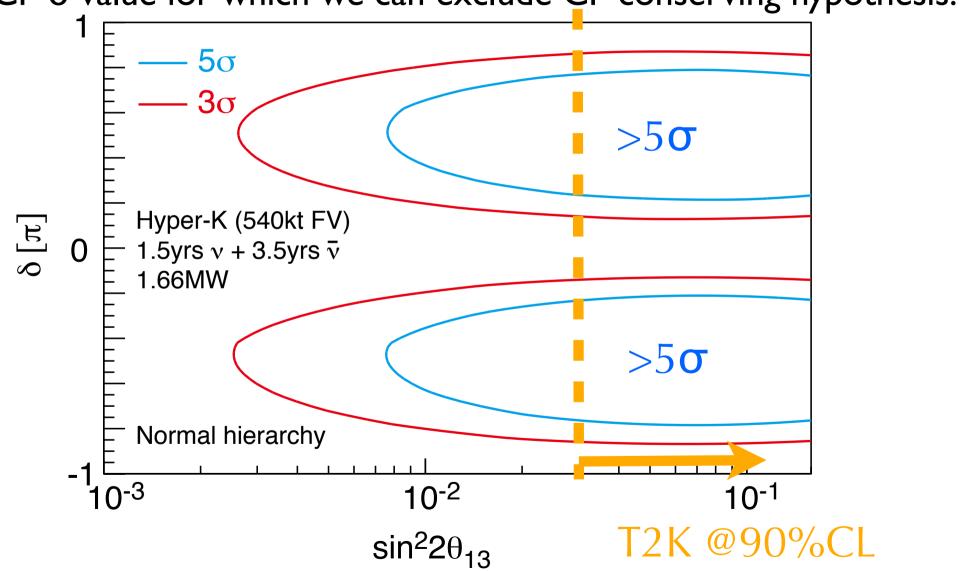
```
Discovery of (\theta_{23}, \Delta m^2_{23})
\rightarrow (\theta_{12}, \Delta m^2_{12})^{\text{solar, reactor } \nu}
\rightarrow \theta_{13} \text{ in a few year?}
```


If θ_{13} is really large (sin²2 θ_{13} ~0.1) as indicated by T2K, we have to think very seriously how to explore last ν 's parameter in the MNS matrix:

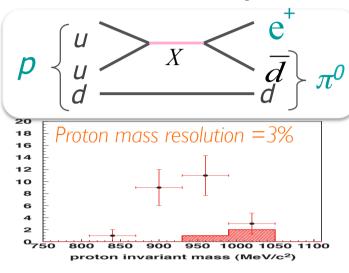
 $\delta_{\sf CP}$


CP odd term in $P(v_{\mu} \rightarrow v_{e})$ $\propto \sin\theta_{12} \sin\theta_{13} \sin\theta_{23} \sin\delta$

Compare electron appearance (number and spectrum) in ν and anti- ν beam


Sensitivity on δ_{CP}

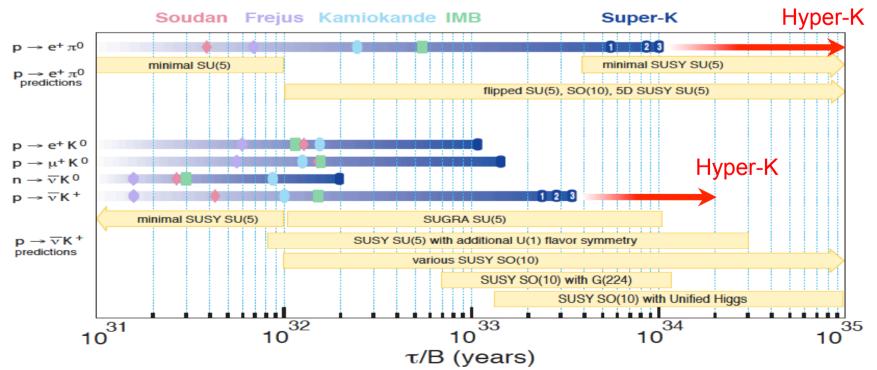
5 years (1.1yrs ν beam and 3.9yrs anti- ν beam) assuming 5% uncertainties for signal, ν_{μ} BG, ν_{e} BG, and ν_{e} /anti- ν_{e} .

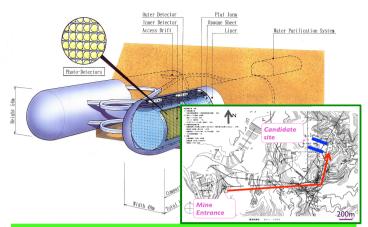

CPV discovery potential

CP δ value for which we can exclude CP conserving hypothesis.

Proton Decay

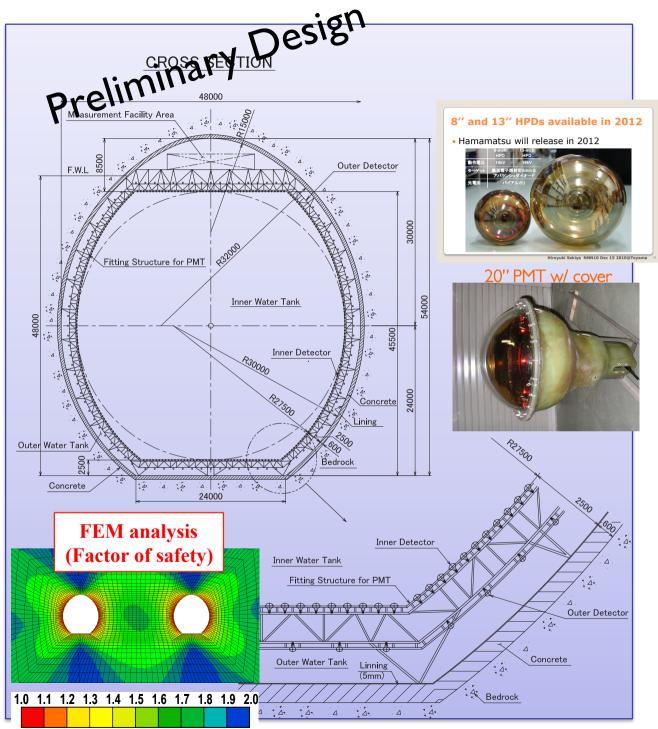
- explore quark/lepton unification -




$$p \rightarrow e^+ \pi^0$$

- 1.0 x 10³⁴ years (Super-K I+II+II @ 90% C.L.)
 - $\rightarrow 1 \times 10^{35} \text{ years} (0.54 \text{Mton} \times 10 \text{yrs} @ 90\% \text{ CL})$

$$p \rightarrow vK^+$$


- 3.3 x 10³³ years (Super-K I+II+III @ 90%C.L.)
 - → 2 x 10³⁴ years (0.54 Mton x 10yrs @ 90% CL)

Hyper-K Base-Design

- 1Mton total volume, twin cavity
- 0.54Mton fiducial volume
- Inner (D43m x L250m) x 2
- Outer Detector >2m
- Photo coverage 20% (1/2 x SK)
 - Base-design to be optimized
 - Geological survey of the site is going on
 - Qualitative studies on physics potential

