宇宙線空気シャワー・レーダー観測のR/D

寺澤敏夫(東大宇宙線研)

10²⁰eVに達する超高エネルギー宇宙線(UHECR)の起源は 現在の宇宙線物理学の最大の謎である。次世代のUHECR 観測法として電波的手段が注目されており、UHECRの作る 巨大空気シャワーのレーダー検出法はその1つである。セミ ナーではレーダー法についてのR/Dの結果をお話ししたい。

宇宙線空気シャワー・レーダー観測のR/D

寺澤敏夫(東大宇宙線研)

10²⁰eVに達する超高エネルギー宇宙線(UHECR)の起源は 現在の宇宙線物理学の最大の謎である。次世代のUHECR 観測法として電波的手段が注目されており、UHECRの作る 巨大空気シャワーのレーダー検出法はその1つである。セミ ナーではレーダー法についてのR/Dの結果をお話ししたい。

共同研究者: 中村卓司氏(極地研)・佐川宏行氏(宇宙線研)ほか

現在、北天対象のTA(テレスコープアレー計画:日本+ユタ大)と南 天対象のPAO(Pierre Auger Observatory: ヨーロッパ勢+シカゴ大) が相補的な観測を行いつつ、競争中である。

UHECRの取得期待値はTAでは年間約10個、Augerでは約50個 であり、まだ十分とは言えない。そのため、次世代の観測計画に ついての準備・議論が進んでいる。

△ _ ____ (1 particle per m²—second)

宇宙から地上を見下ろしてEASの発光(窒素分子の蛍光)を捉え、TA、Augerの2桁上の有効面積を狙おうとするのがEUSO計画 (理研・甲南大など)である。

ー方、より低予算で大面積をカバーしうるものとして、地上から 電波的にUHECRを測ろうとするいくつかのアイデアがある。

目次

- 1. Introduction
- 2. 宇宙線のさまざまな電波観測手段
 3. レーダー法の原理
 4. 京大信楽MUレーダー概要
 5. 宇宙線エコー候補 その同定と強度推定
 6. レーダー法と制動輻射受信法

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

- ・ 空気シャワーそのものが発生する電波
 - Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)
 - Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
 - 大気中ではその他の電波が優勢
 - 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
 - - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

Possible Impulsive Radio Signals from Ultra-high Energy Extensive Air Showers Detected by the ANITA Experiment

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

Falcke et al., Nature 435, 313-316 (2005)

Detection and imaging of atmospheric radio flashes from cosmic ray air showers

(地磁気内でのシンクロトロン輻射~数+MHz帯)

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

• 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち ー次宇宙線が高エネルギーになるほど有望になる
- 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる – FORTE, RICE, SALSA, GLUE, ……
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- これについては 後で述べる - LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

付録: レーダー法学生実習 (駒場 全学体験セミナー)

この部分にある準熱的~熱 的電子からのレーダーエコー の検出を狙う。(EAS先端部 にある相対論的電子からの エコーは強度が弱く、またドッ プラーシフトが大きすぎる。)

宇宙線EAS

- (数十分の1J~十数J)

流星のレーダー観測は確立した手段→宇宙線に応用できるだろう

付録: レーダー法学生実習 (駒場 全学体験セミナー)

Active phased array of 475 Yagis antennas Effective area: $8330m^2$ Freq: 46.5MHz (λ =6.45m) Beam width: 3.6度 peak power: 1MW Average power: 50 kW

把谷()

四古词 "

銚子))))))

Active phased array of 475 Yagis antennas Effective area: $8330m^2$ Freq: 46.5MHz (λ =6.45m) Beam width: 3.6度 peak power: 1MW Average power: 50 kW

把谷()

()古河 "

銚子))))))

MU radar=Middle and Upper atmosphere radar もともとは大気・電離層研究のためのレーダ-

Active phased array of 475 Yagis antennas Effective area: $8330m^2$ Freq: 46.5MHz (λ =6.45m) Beam width: 3.6度 peak power: 1MW Average power: 50 kW

四古词 "

銚子) 伏塔

Bain.

475素子干渉計を構成

The International Radio Telescope for the 21st Century

中心部のphased arrayのみのイラスト

http://www.skatelescope.org/

The International Radic

3素子クロス八木アンテナを19組ずつに束ね1群とし、それが全部で25群ある(19×25=475組の アンテナ)。

25群全体で直径D=約100mの円内に配置。 波長6.4m,アンテナ間隔は4.5m。

角分解能 λ/D ~3.6度

MUレーダー中心部拡大図

3素子クロス八木アンテナを19組ずつに束ね1群とし、それが全部で25群ある(19×25=475組の アンテナ)。

25群全体で直径D=約100mの円内に配置。 波長6.4m,アンテナ間隔は4.5m。

角分解能 λ/D ~3.6度

MUレーダー中心部拡大図

3素子クロス八木アンテナを19組ずつに束ね1群とし、それが全部で25群ある(19×25=475組の アンテナ)。

25群全体で直径D=約100mの円内に配置。 波長6.4m,アンテナ間隔は4.5m。

角分解能 λ/D ~3.6度

MUレーダー中心部拡大図

MUレーダー送受信ブース内

ブースは6箇所あり、25群を4群、4群、 4群、4群、4群、5群に分けて収容 (A1-A4,B1-B4,C1-C4,D1-D4,E1-E4,F1-F5)

46.5MHz入力

25群の各群のブース内での結線(受信時)

46.5MHz入力

25群の各群のブース内での結線(受信時)

http://www.rish.kyoto-u.ac.jp/radar-group/mu/MUR.htmlより

TRモジュール

各アンテナ素子に取り付けた合計475個の半導体小型送信機 (TRモジュール)群で送信を 行います。これにより

〇電波のビームを任意の方向にすばやく向けることが できますから、風や乱流の立体構造 がわかります。

〇分割してそれぞれ独立なレーダーとしても使うことができますから、種々の複雑な観測が可能です。

MUレーダーのために開発 された半導体小型送受信機 TRモジュール

縦 55cm × 横 60cm × 厚さ 14cm

CPU デジタル記録システム

サンプリング時間 2^{0~5}μ秒=1-32μ秒 サンプリング周波数 1MHz~31.25kHz ↑ それに応じてIFの帯域を 自動切り替え

Geometrical condition satisfied ~ 5% Limitation for backscatter radar

Limitation of pulse radar duty ratio is 5% or less

Number of CRs to be detected by the MU radar ($0.05^2 = 1/400$ of incident CRs)

>10¹⁷ eV >10^{17.5}eV >10¹⁸ eV >10^{18.5}eV several tens/day several/day several 10⁻¹/day several 10⁻²/day

Limitation of pulse radar duty ratio is 5% or less

Number of CRs to be detected by the MU radar ($0.05^2 = 1/400$ of incident CRs)

>10¹⁷ eV >10^{17.5}eV >10¹⁸ eV >10^{18.5}eV several tens/day several/day several 10⁻¹/day several 10⁻²/day

Number of CRs to be detected by the MU radar ($0.05^2 = 1/400$ of incident CRs)

>10 ¹⁷ eV
>10 ^{17.5} eV
>10 ¹⁸ eV
>10 ^{18.5} eV

several tens/day several/day several 10⁻¹/day several 10⁻²/day

レーダー観測の実際 送信パルスのパラメタ選択

繰り返し周期(IPP)=4000 µ 秒

レーダー観測の実際 送信パルスのパラメタ選択

受信機ON期間は

パルス先頭時刻後142-334µ秒

パルス修了時刻後 78-272μ秒

レーダー観測の実際 送信パルスのパラメタ選択

繰り返し周期(IPP)=4000 µ 秒

パルス修了時刻後 78-272 μ 秒 (レンジ換算11.7-40.8km)

レーダー観測の実際 送信パルスのパラメタ選択

繰り返し周期(IPP)=4000 μ 秒

パルス先頭時刻後142-334μ秒 (レンジ換算21.3-50.1km)

MUレーダー

パルス修了時刻後 78-272 µ 秒 (レンジ換算11.7-40.8km)

エコーの長さがパルス幅より短い場合、レンジ決定には10km程の不定性が避けられない (対応する高度決定の不定性は10 cos[天頂角] km)

レーダー観測の実際 送信パルスのパラメタ選択

エコーの長さがパルス幅より短い場合、レンジ決定には10km程の不定性が避けられない (対応する高度決定の不定性は10 cos[天頂角] km)

レーダー観測の実際 送信パルスのパラメタ選択

エコーの長さがパルス幅より短い場合、レンジ決定には10km程の不定性が避けられない (対応する高度決定の不定性は10 cos[天頂角] km)

受信時のサンプリング周波数500kHz (サンプリング周期2 µ 秒=500kHzサンプリング)

レーダー観測の実際 送信パルスのパラメタ選択

送信

MU radar

Radiation pattern of a 3-element Yagi antenna

送信

Radiation pattern of a 3-element Yagi antenna

MU antenna map

送信

選択した広角送信ビームパターン 天頂角45度程度までカバーするよう調整 (少し広すぎた。今後は10度ほどに狭め るよう検討中)

送信

選択した広角送信ビームパターン 天頂角45度程度までカバーするよう調整 (少し広すぎた。今後は10度ほどに狭め るよう検討中)

送信・受信に対するアンテナの位相パラメタセット は独立であり、それぞれに対し任意のビームパター ンが設定可能である。

独立な信号記録は25系統なので、それに合う ようアンテナを25本選ぶ。 (広角送信ビームパターンに合わせた。感度を 犠牲にして、視野を拡げる選択。)

方向探知:受信データ*の事後処理による

→電波干渉計の常套手段 Aperture Synthesis手法による全天電波輝度マップ作成

は受信ビームのメインローブの
大きさを示す。

*25素子干渉計処理(20秒間で約100MB=1時間で約18GBのデータが発生。一回の観測で100GB-200GB程度となる。)

天球上の天頂角θ=0-50°、方位角φ=0-360°の 範囲を1423個に分割し、全領域の電波輝度の それぞれの時間変化を2μ秒毎に計算し、ピー クを探す。

$$C(\Delta r_{ij}) \rightarrow \sum_{ij} C(\Delta r_{ij}) \exp(-ik\Delta r_{ij})$$

時間のかかる処理(FFTが使えない)。 (Core2Duo 3.16GHzのPCで20秒間のデータ の処理に2時間半)

→GPGPUによる高速化の試み(~数百倍)

25 antenna Combination (pointing toward the zenith)

ただし、25素子干渉計によるside lobe suppressionは精々 10dBほどである

25 antenna Combination (pointing toward zenith angle=10°)

ただし、25素子干渉計によるside lobe suppressionは精々 10dBほどである

ただし、25素子干渉計によるside lobe suppressionは精々 10dBほどである 25 antenna Combination (pointing toward zenith angle=30°)

ただし、25素子干渉計によるside lobe suppressionは精々 10dBほどである 25 antenna Combination (pointing toward zenith angle=40°)

目次 1. Introduction 2. 宇宙線のさまざまな電波観測手段 3. レーダー法の原理 4. 京大信楽MUレーダー概要 5. 宇宙線エコー候補 その同定と強度推定 6. レーダー法と制動輻射受信法

付録: レーダー法学生実習 (駒場 全学体験セミナー)

↑右の天球輝度マップの最大輝度点と その周り数点(6度離れた点)での 輝度の時間変化

 $\Box \neg \sigma$ range=24.8±4.8km

↑干渉計データ処理による 天球輝度マップ (sin(天頂角), 方位角)

↑右の天球輝度マップの最大輝度点と その周り数点(6度離れた点)での 輝度の時間変化

 $\Box \neg \sigma$ range=24.8±4.8km

↑ 干渉計データ処理による 天球輝度マップ (sin(天頂角), 方位角)

↑右の天球輝度マップの最大輝度点と その周り数点(6度離れた点)での 輝度の時間変化

 $\Box \neg \sigma$ range=24.8±4.8km

↑ 干渉計データ処理による 天球輝度マップ (sin(天頂角), 方位角)

Time variation

6μ sec before the peak

synthesized map

(天頂角90度まで、 探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

$4 \,\mu$ sec before the peak

synthesized map

(天頂角90度まで、探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

2μ sec before the peak

synthesized map

(天頂角90度まで、 探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

Just at the peak

synthesized map

(天頂角90度まで、 探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

2μ sec after the peak

synthesized map

(天頂角90度まで、探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

$4 \,\mu$ sec after the peak

synthesized map

(天頂角90度まで、 探索領域の外も描画)

sin (Zen ith angle) and phi

Time variation

6μ sec after the peak

synthesized map

(天頂角90度まで、 探索領域の外も描画)

sin (Zen ith angle) and phi

↑右の天球輝度マップの最大輝度点と その周り数点(6度離れた点)での 輝度の時間変化

 $\Box \neg \sigma$ range=24.8±4.8km

↑干渉計データ処理による 天球輝度マップ (sin(天頂角), 方位角)

↑右の天球輝度マップの最大輝度点と その周り数点(6度離れた点)での 輝度の時間変化

 $\Box \neg - \mathcal{O}$ range=24.8 \pm 4.8km

↑干渉計データ処理による 天球輝度マップ (sin(天頂角), 方位角) この観測例のまとめ:

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8μ秒弱の長さのレーダーエコーを返したことを検出 (range=24.8±4.8km) この観測例のまとめ:

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8μ秒弱の長さのレーダーエコーを返したことを検出 (range=24.8±4.8km)

→これは宇宙線エコーの有力候補

この観測例のまとめ:

見いだした宇宙線エコー候補(一番S/Nのよい例)

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8μ秒弱の長さのレーダーエコーを返したこと を検出 (range=24.8±4.8km)

→これは宇宙線エコーの有力候補

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8μ秒弱の長さのレーダーエコーを返したこと を検出 (range=24.8±4.8km)

→これは宇宙線エコーの有力候補

→宇宙線エネルギー推定には、アンテナ・受信機の感度を較正して、エコーの電波強度を求めなければならない。

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8µ秒弱の長さのレーダーエコーを返したこと を検出 (range=24.8±4.8km)

→これは宇宙線エコーの有力候補

→宇宙線エネルギー推定には、アンテナ・受信機の感度を較正して、エコーの電波強度を求めなければならない。

見いだした宇宙線エコー候補(一番S/Nのよい例)

天球の1点が8 μ 秒弱の長さのレーダーエコーを返したこと を検出 (range=24.8±4.8km) トレレニログー

→これは宇宙線エコーの有力候補

→宇宙線エネルギー推定には、アンテナ・受信機の感度を較正して、エコーの電波強度を求めなければならない。

N♠ E◀

N♠

E◀

レーダー受信機の感度較正:銀河雑音による

Maeda et al. (1999)

MU北天電波マップ (46.5MHz; 銀河座標)

N▲

E←

レーダー受信機の感度較正:銀河雑音による

Maeda et al. (1999)

MU北天電波マップ (46.5MHz; 銀河座標)

E←

レーダー受信機の感度較正:銀河雑音による

Maeda et al. (1999)

MU北天電波マップ (46.5MHz; 銀河座標)

銀河雑音とシステム内部雑音を合計して、雑音温度を $T_N = 10^4$ 度とする。 2008.9-2009.2 の MU 観測における受信帯域 Δf は 500kHz であったので、雑音 強度 N は

 $N = k_B T_N \Delta f = 1.38 \times 10^{-23} \times 10^4 \times 5 \times 10^5 = 6.9 \times 10^{-14}$ [W] (1) 2008.12.3 02:31:51.6JST の宇宙線エコー候補については S/N=16 であったので、 後方散乱波の強度 P_r として、

 $P_r = 16 \times N_{tot} = 16 \times 6.9 \times 10^{-14} = 1.1 \times 10^{-12}$ [W] (2) を得る。 銀河雑音とシステム内部雑音を合計して、<mark>雑音温度を $T_N = 10^4$ 度</mark>とする。 2008.9-2009.2 の MU 観測における受信帯域 Δf は 500kHz であったので、雑音 強度 N は

 $N = k_B T_N \Delta f = 1.38 \times 10^{-23} \times 10^4 \times 5 \times 10^5 = 6.9 \times 10^{-14}$ [W] (1) 2008.12.3 02:31:51.6JST の宇宙線エコー候補については S/N=16 であったので、 後方散乱波の強度 P_r として、

 $P_r = 16 \times N_{tot} = 16 \times 6.9 \times 10^{-14} = 1.1 \times 10^{-12}$ [W] (2) を得る。
銀河雑音とシステム内部雑音を合計して、<mark>雑音温度を $T_N = 10^4$ 度</mark>とする。 2008.9-2009.2 の MU 観測における受信帯域 Δf は 500kHz であったので、雑音 強度 N は

 $N = k_B T_N \Delta f = 1.38 \times 10^{-23} \times 10^4 \times 5 \times 10^5 = 6.9 \times 10^{-14}$ [W] (1) 2008.12.3 02:31:51.6JST の宇宙線エコー候補については S/N=16 であったので、 後方散乱波の強度 P_r として、

 $P_r = 16 \times N_{tot} = 16 \times 6.9 \times 10^{-14} = 1.1 \times 10^{-12}$ [W] (2) を得る。 銀河雑音とシステム内部雑音を合計して、雑音温度を $T_N = 10^4$ 度とする。 2008.9-2009.2の MU 観測における受信帯域 Δf は 500kHz であったので、雑音 強度 N は

 $N = k_B T_N \Delta f = 1.38 \times 10^{-23} \times 10^4 \times 5 \times 10^5 = 6.9 \times 10^{-14}$ [W] (1) 2008.12.3 02:31:51.6JST の宇宙線エコー候補については S/N=16 であったので、 後方散乱波の強度 P_r として、

 $P_r = 16 \times N_{tot} = 16 \times 6.9 \times 10^{-14} = 1.1 \times 10^{-12}$ [W] (2) を得る。 銀河雑音とシステム内部雑音を合計して、 雑音温度を $T_N = 10^4$ 度 とする。 2008.9-2009.2 の MU 観測における受信帯域 Δf は 500kHz であったので、雑音 強度 N は

$$N = k_B T_N \Delta f = 1.38 \times 10^{-23} \times 10^4 \times 5 \times 10^5 = 6.9 \times 10^{-14} [W]$$
(1)
2008.12.3 02:31:51.6JST の宇宙線エコー候補については S/N=16 であったので、
後方散乱波の強度 P_r として、
$$P_r = 16 \times N_{tot} = 16 \times 6.9 \times 10^{-14} = 1.1 \times 10^{-12} [W]$$
(2)

レーダー	·方程式 χ^2		
後方散刮	L波の電力 $P_r = \frac{\Lambda}{(\Lambda)^3}$	$\frac{1}{D^4}\sigma_b P_t G_t G_r$	[W]
ただし、	$(4\pi)^{2}$	R^{4}	
λ:	波長	6.4 m	
<i>R</i> :	レンジ(レーダー、EAS間距離)	$24 \pm 4.8 \text{ km} \dots R =$	$24 \times 10^3 R_{24}$ m
σ_{b} :	radar cross section (後方散乱断i	面積)	と書いておく
P_{t} :	送信電力	1MW	$(R_{24}=0.8\sim1.2)$
G_{t} :	送信アンテナ利得	~1	
$G_{\rm r}$:	受信アンテナ利得	~137	

 λ 、R、P_t、G_t、G_rに値を代入して、 $P_r = 8.5 \times 10^{-12} R_{24}^{-4} \sigma_b$ [W]

一方、観測値より、 $P_r=1.1 \times 10^{-12}$ Wを用いて、

$$\sigma_b = 0.129 R_{24}^4 \, [\text{m}^2]$$

レーダー	·方程式	λ^2			
後方散舌	L波の電力 P_r	$=\frac{\Lambda}{(\Lambda)^{2}}$	$\sigma_b P_t$	$G_t G_r$	[W]
ただし、		$(4\pi)^{3}I$	\mathcal{X}^{4}		
λ:	波長		6.4 m		
<i>R</i> :	レンジ(レーダー、E	AS間距離)	24 ± 4.8 km	$\dots R = 2$	$24 \times 10^3 R_{24} \text{ m}$
σ_{b} :	radar cross section	(後方散乱断面	ī積)		と書いておく
P_{t} :	送信電力		1MW		$(R_{24}=0.8\sim1.2)$
G_{t} :	送信アンテナ利得		~1		
$G_{\rm r}$:	受信アンテナ利得		~137		

 λ 、R、P_t、G_t、G_rに値を代入して、 $P_r = 8.5 \times 10^{-12} R_{24}^{-4} \sigma_b$ [W]

一方、観測値より、 $P_r=1.1 \times 10^{-12}$ Wを用いて、

$$\sigma_b = 0.129 R_{24}^4 \, [\mathrm{m}^2]$$

レーダー	·方程式	λ^2		
後方散舌	し波の電力 P_r	$=\frac{\Lambda}{(\Lambda)^{2}}$	$\overline{\sigma_b} P_t G_t G_r$	[W]
ただし、		$(4\pi)^{3}R$	·4——	
λ:	波長	(б.4 т	
<u>R:</u>	<u>レンジ(レーダー、E</u>	<u>AS間距離) (</u>	$24 \pm 4.8 \text{ km} \dots R =$	$24 \times 10^3 R_{24}$ m
σ_b :	radar cross section	(後方散乱断面和	積)	と書いておく
P_{t} :	送信電力	-	1MW	$(R_{24}=0.8\sim1.2)$
G_{t} :	送信アンテナ利得	~	~1	
$G_{\rm r}$:	受信アンテナ利得	•	~137	

 λ 、R、 P_{t} 、 G_{t} 、 G_{r} に値を代入して、 $P_{r} = 8.5 \times 10^{-12} R_{24}^{-4} \sigma_{b}$ [W]

一方、観測値より、 $P_r=1.1 \times 10^{-12}$ Wを用いて、

$$\sigma_b = 0.129 R_{24}^4 \ [\text{m}^2]$$

レーダー	·方程式		λ^2				
後方散舌 ただし、	し波の電力	$P_r = \frac{1}{4}$	$\frac{\pi}{(\pi)^3 I}$	$\frac{\sigma_b}{R^4} P_t$	$G_t G_r$	[W]	
λ:	波長		,	6.4 m			
<i>R</i> :	レンジ(レータ	[*] 一、EAS間距	<u> 离</u> (1)	24 ± 4.8 km	$m \ldots R =$	$24 \times 10^3 R_{24}$	m
σ_{b} :	radar cross se	ction (後方散	和断面	i積)		と書いておく	
P_{t} :	送信電力			1MW		$(R_{24}=0.8\sim1.2)$	
G_{t} :	送信アンテナ	·利得		~1			
$G_{\rm r}$:	受信アンテナ	·利得		~137			
λ. <i>R</i> .	P _t 、G _t 、G _r に信	直を代入して、	$P_r =$	= 8.5×10	$e^{-12}R_{24}^{-4}$	σ_b [W]	
一方、	観測値より、	$P_r = 1.1 \times 10^{-1}$	² Wを用	いて、			
		$\sigma_b = 0.129R$	R_{24}^4 [m]	n^2]			
を得る	0	-	<u>~1</u> E	-			

レーダー	-方程式		λ 2				
後方散き ただし、	北波の電力	$P_r = \frac{1}{\left(\frac{2}{2}\right)^2}$	$\frac{\lambda}{4\pi)^3 I}$	$rac{\sigma_b}{R^4}$	$P_t G_t G_r$	[W]	
λ:	波長			6.4 m			
<u>R:</u>	レンジ(レータ	[*] 一、EAS間距	<u> - 离推)</u>	24 ± 4.81	$\operatorname{km} \ldots R =$	$24 imes 10^3 R_{24}$ m	n
$\sigma_{\rm b}$:	radar cross se	ction (後方散		ī積)		と書いておく	
$P_{\rm f}$:	送信電力			1MW		$(R_{24}=0.8\sim1.2)$	
G_{t} :	送信アンテナ	·利得		~1			
$G_{\rm r}$:	受信アンテナ	·利得		~137			
λ, R,	P _t 、G _t 、G _r に	直を代入して、	$P_r =$	= 8.5×1	$0^{-12} R_{24}^{-4}$	σ_b [W]	
一方、	観測値より、	$P_{r}=1.1 \times 10^{-1}$	¹² Wを月	肌て、			
		$\sigma_b = 0.129I$	R^4_{24} [n	n^2]			

レーダー	-方程式		λ^2		
後方散さ	乱波の電力	$P_r = \frac{1}{4}$	$\frac{\lambda}{(\pi)^3 R^4} \sigma_b F$	$P_t G_t G_r$ [[W]
λ: R:	波長 レンジ(レー/	ダー、EAS間距	6.4 m 翻) 24±4.8	km <i>B</i> – 24	$\times 10^3 B_{\rm out}$ m
$\sigma_{\rm b}$:	radar cross s 送信電力	ection (後方散	(乱断面積) 1MW	と書 (R ₂₄	、10 10 ₂₄ m 書いておく ₄ =0.8~1.2)
G_{t} : G_{r} :	送信アンテラ	ト利得 ト利得	~1 ~137		
λ. <i>R</i> .	P_{t}, G_{t}, G_{r}	値を代入して、	$P_r = 8.5 \times 1$	$10^{-12} R_{24}^{-4} \sigma_{4}$	$_{b}$ [W]
一方、	観測値より、	$P_{\rm r} = 1.1 \times 10^{-1}$	² Wを用いて、		
を得る	5.	$\sigma_b = 0.129 R$	R_{24}^4 [m ²]		_
宇宙線	のエネルギー	、EASの構造、	電波散乱の幾何	可条件に依存	

レーダー	-方程式		λ^2		
後方散舌	し波の電力	$P_r = \frac{1}{4}$	$\frac{\lambda}{\pi}$	$P_t G_t G_r$	[W]
λ:	波長		, 6.4 m 函生) 24 土 4	9 km D a	
σ_b :	radar cross se	×一、EAS间距 ection (後方散	<u>融) 2414</u> 乱断面積)	.0 KIII $R = 2$	$4 \times 10^{\circ} R_{24}$ m :書いておく
$P_t:$ $G_t:$	送信電力 送信アンテナ	⁻利得	1MW ~1	(1	R ₂₄ =0.8~1.2)
$G_{\rm r}$:	受信アンテナ	⁻利得	~137		
λ. <i>R</i> .	P_t , G_t , G_r	値を代入して、	$P_r = 8.5 >$	$\times 10^{-12} R_{24}^{-4}$	$\sigma_b [{ m W}]$
一方、	観測値より、	$P_{\rm r} = 1.1 \times 10^{-12}$	² Wを用いて、		
を得る	0	$\sigma_b = 0.129R$	$\frac{24}{24}$ [m ²]		
宇宙線	のエネルギー	、EASの構造、	電波散乱の幾	後何条件に依存	

→Gorhamの計算例と比較して宇宙線エネルギーを10¹⁸eV程度と推定したが、 期待されるエコーの頻度から考えて少しエネルギーが高すぎる。 まだ、エネルギー推定には1桁程度の不定性があり、今後の検討が必要。

見いだした宇宙線エコー候補(一番S/Nのよい例)

今後のMU観測(3月)で改良する予定の点

〇時間分解能を上げる(Δt=2μ秒↓1μ秒)
〇単にΔt↓ではS/Nが低下するので、同時に送信ビームを 絞る(3.6度は絞りすぎなので、18度程度に)

〇受信時に475本全てのアンテナを使う(昨年度は25本のみ)

→MU単体では、エコーの位置を決めうるだけで、宇宙線 の到来方向は判らない。

→MU単体では、エコーの位置を決めうるだけで、宇宙線 の到来方向は判らない。

複数の送受信点で観測し時間差を計測すれば場所と方向 が決まる(筈)←流星観測で実用化されている方法の応用

→MU単体では、エコーの位置を決めうるだけで、宇宙線 の到来方向は判らない。

複数の送受信点で観測し時間差を計測すれば場所と方向 が決まる(筈)←流星観測で実用化されている方法の応用

→MU単体では、エコーの位置を決めうるだけで、宇宙線 の到来方向は判らない。

複数の送受信点で観測し時間差を計測すれば場所と方向 が決まる(筈)←流星観測で実用化されている方法の応用

電波の経路による到着時刻差 ↓ 到来方向の決定

→MU単体では、エコーの位置を決めうるだけで、宇宙線 の到来方向は判らない。

複数の送受信点で観測し時間差を計測すれば場所と方向 が決まる(筈)←流星観測で実用化されている方法の応用

電波の経路による到着時刻差 ↓ 到来方向の決定

流星電波観測の学生実習: この原理の体験をさせた

目次

 Introduction
 宇宙線のさまざまな電波観測手段
 レーダー法の原理
 京大信楽MUレーダー概要 done
 宇宙線エコー候補 その同定と強度推定
 レーダー法と制動輻射受信法

付録: レーダー法学生実習 (駒場 全学体験セミナー)

宇宙線の電波的観測

・ 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)
- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

Geo-synchotron radiation

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波
 Microwave Molecular Bremsstrahlung Radiation (MBR)
- RADAR による宇宙線観測

Gorham et al., PRD 78, 032007 (2008)

Microwave bremsstrahlung detection of UHECR

- "Radio fluorescence" detection of UHECR air showers
- Could provide 100% duty-cycle alternative to N2 fluorescence detection (<10% duty cycle typical)
- Two accelerator experiments: Argonne Wakefield Accelerator (2003) & SLAC-T471 (summer 2004) indicate stronger-thanexpected microwave emission for 20-50ns after shower passage

TA, AugerにおけるFluorescence光観測と類似 →全ての準熱的電子が「見える」が、方向決定精度が悪い(だろう) 宇宙線の電波的観測

• 空気シャワーそのものが発生する電波

Askaryan effect (氷、岩塩などの媒質中でのチェレンコフ効果)

- Askaryan effect が測定された(D. Saltzberg et al PRL 86 (2001) 2802)

2つを組み合わせる

のがよい?

- 大気中ではその他の電波が優勢
- 入射一次宇宙線エネルギーの2乗に比例した電波強度をもち 一次宇宙線が高エネルギーになるほど有望になる
- - 電波に対して透明な物質(氷、岩塩、月面)がターゲットとなる

 - FORTE, RICE, SALSA, GLUE,
- 空気シャワー粒子が地磁気に巻きついてシンクロトロン放射 (巻きつくといっても1/4周程度)

Geo-synchotron radiation

- 大気中では Askaryan effect よりも優勢
- 近年シミュレーターが整備されてきた
- LOFAR (プロトタイプ LOPES 1-32MHz, 4MHz 毎)
- 空気シャワー粒子の制動放射によって生じる電波
 Microwave Molecular Bremsstrahlung Radiation (MBR)
- ・ RADAR による宇宙線観測

目次

- 1. Introduction
- 2. 宇宙線のさまざまな電波観測手段
 3. レーダー法の原理
 4. 京大信楽MUレーダー概要
 5. 宇宙線エコー候補 その同定と強度推定
- 6. レーダー法と制動輻射受信法

