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•  Known as one of fundamental elementary particles, 
involved in SM 

•  Only has weak interactions (no charge and very light), so 
very difficult to directly see 

•  Yet not know much about neutrinos, mass unknown yet 

The Nobel Prize of Physics, 2002  

Prof. Koshiba Prof. Davis 
No doubt neutrinos are very interesting 

particles to explore! 
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T~1eV: matter-radiation equality 
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•  The experiments (Kamiokande, SK, SNO, KamLAND) imply 
the total mass, m_tot>0.06 eV; but the mass scale yet unknown 

•  Neutrinos became non-relativistic at redshift when Tν,dec~mν 

–  If m_nu>0.6eV, the neutrino became non-relativistic before 
recombination, therefore larger effect on CMB, vice versa  

•  The cosmological probes measure the total matter density: 
CDM + baryon + massive neutrinos 
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1+ znr ≈189 mν 0.1eV( )
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In particular the cosmological linearized perturbation theory is remarkably 
successful: gives very robust, secure model predictions in structure formation



 relativistic matter: a^-4 
 non-relativistic matter: a^-3
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h = 0.71  ⇒   h = 0.65
Ωm = 0.258  ⇒   Ωm = 0.33

The m_nu effect on CMB absorbed by other paras
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Ωm0 = 0.26 →  Ωm0 = 0.33
h = 0.72 →  h = 0.66



•  The m_nu effect on CMB degenerate with h and Ω_m that are 
sensitive to the distance (Ichikawa+ 05) 

•  WMAP5: CMB alone m_nu,tot<1.3eV; WMAP5 + SN + BAO 
(no galaxy P(k)) m_nu,tot<0.6eV (CMB + geometrical probes) 

•  Seems best-available constraint from this method; if m_nu<0.6eV, 
as neutrinos become non-rel. btw z~1100 and today



+ 

WMAP (z~10^3) 

LSS (0<z<3) 

SDSS (Tegmark etal03)  

•  Given the precise CMB constraints, combining CMB and LSS allows to 
probe the evolution of structure formation over z=[0,10^3], thereby 
tightening the neutrino mass constraints (Hu, Eisenstein & Tegmark 98)
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δm (x,z) ≡
ρm (x,z) − ρ m (z)

ρ m (z)
= D(z)δm (x,z ≈1000)
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 ˙ ̇ D + 2H ˙ D − 4πGρ mD = 0

•  The density fluctuation field of total matter (mainly CDM) in the 
linear regime 

•  The 2nd-order diff. eqn. to govern the redshift evolution of 
density pert.: (FRW eqns ＋ linearized Einstein eqns.)

•  Cosmic acceleration  the density growth is suppressed 
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where 
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(Ωm0 +Ωde0 =1)
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δGµν = 8πGδTµν

Friction due to cosmic exp. Gravitational instability



•  The initial 
conditions on the 
perturbations are 
well constrained 
by the CMB 

•  A variant in DE 
changes the 
growth of density 
perturbations 

•  A test of gravity 
theory on 
cosmological scale 

CMB(z~1000) 

Redshift survey (0.5<z<1.3,z~3) 

Weak Lensing 
(0.2<z<1) 

SCDM ΛCDM 

Jenkins+99 



•  The initial conditions of SF is now well constrained by CMB 
•  In a CDM model, gravity due to dark matter distribution plays a major role 
•  N-body simulation is the most powerful tool to study nonlinear clustering 

processes in structure formation  
–  N-body particle = DM super particle; e.g. each N-body particle = 10^11 

M_sun = 10^50 DM particles 
–  Cold particle = no thermal velocity 

•  Simulations have been used in various cosmological studies 
•  A model with CDM plus neutrinos is still computationally challenging 

 z=10  z=0 

 A. Kravtsov 

~50Mpc 



•  Neutrinos are very light compared to CDM/baryon 
•  The phase-space distribution of neutrinos, even after decoupling, 

obeys the relativistic FD dist. (specified by m_ν) 
•  The thermal velocity at redshift z relevant for LSS is larger than the 

gravity induced peculiar velocity 

–  Even a massive cluster can’t much trap neutrinos 
•  The free-streaming scale, the distance neutrino can travel with the 

thermal vel. during cosmic expansion 
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 λ_fs is a 100Mpc scale, similar to BAO scales



•  A mixed DM model: Structure formation is induced by the density 
fluctuations of total matter   

•  The neutrinos slow down LSS on small scales 
–  On large scales λ>λfs, the neutrinos can grow together with CDM 

–  On small scales λ<λfs, the neutrinos are smooth, δν=0, therefore weaker 
gravitational force compared to a pure CDM case 

)(xδ

ν

Total matter perturbations can grow! 

CDM CDM 

ν

λ < λfs 

λ > λfs 

Suppresses growth of total 
matter perturbations  
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˙ ̇ δ cb + 2H ˙ δ cb − 4πGρ m(1− fν )δcb = 0, δν ≈ 0

€ 

δm =
ρ cδc + ρ bδb + ρ νδν

ρ c + ρ b + ρ ν
≡ fcδc + fbδb + fνδν
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δc = δb = δν



Brandbyge, Hannestad, Haugbolle, Thomsen 08

CDM CDM+M_nu=0.6eV CDM+M_nu=0.3eV
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Note: linear theory
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The suppression is 
stronger at lower 
redshifts and at larger k 
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 Hu et al 98
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ΔP(k)
Pν =0(k) z ~ 0, k >> k _ fs

~ −8 fν  



€ 

ΔP(k)
Pν =0(k) z ~ 0, k >> k _ fs

~ −8 fν  

•  A more realistic f_nu~0.01 (m_nu~0.1eV): the neutrinos 
became non-relativistic after z~10^3 

•  The power spectrum amplitude is suppressed by ~8%



We observe visible to 
explores invisibles  

Neutrinos 



From
 the V

irgo C
onsortium

 85
 M

pc
/h


Different types of galaxies (and clusters) trace the total 
matter (mostly DM) distribution in different ways



From Tegmark+04 

 k_fs~0.03h/Mpc 
 for m_ν~0.1eV



CMB 

Galaxy Survey Ly-alpha 

Weak Lensing 



•  CMB alone 
–  Pros: precise modeling available, linear scale 
–  Cons: smaller effect if M_nu<0.6eV   

•  Galaxy survey 
–  Pros: relatively easier to model in the weakly NL regime, a unique 

way to probe the scale-dependent suppression 
–  Cons: galaxy bias uncertainty degenerate with M_nu   

•  Weak lensing (CMB lensing, cosmic shear) 
–  Pros: directly probe mass clustering 
–  Cons: degenerate with z_s, sensitive to NL clustering  

•  Ly-alpha forest 
–  Pros: probe smallest, linear scales, higher statistical precision 
–  Cons: not straightforward to model  



•  CMB alone 
–  Ichikawa+(05) mν,tot<2eV (95%CL) for a flat model; WMAP5(Komatsu

+08), 1.5eV (note: 0.6eV if BAO+SN added, CMB lensing)  
•  Galaxy clustering 

–  2dF: Elgaroy+(02) mν,tot<2eV  (k_max=0.1h/Mpc) with the prior on Ω_m  
–  SDSS: Tegmark et al (06) mν,tot<0.9eV  (k_max=0.2h/Mpc) when 

combined with WMAP  
•  Weak lensing  

–  Ichiki, MT, Takahashi (09) CFHTWL ~34 deg^2+WMAP5, mν,tot<1eV    
•  Ly-alpha forest (+ galaxy survey) 

–  SDSS: Seljak, Slosar & McDonald (06); mν,tot<0.17eV   

Note: Lab. me,ν<a few eV 



•  The linear theory ceases 
to be accurate even on 
these large length scales 
(~50Mpc: δ~O(0.1)) 

•  The empirical model is 
employed: nuisance 
parameters Q and b 
introduced 
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Pg (k) = b2Pm
L (k)1+Qnlk
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1+1.4k
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Veff (LRG) ~ 1(Gpc /h)
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Nonlinear regime 
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fν =
Ων
Ωm
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Ωmh
2

Mν,tot<0.94eV(95%C.L.)



•  The linear theory assuming δm<<1 is not sufficient 
•  The density perturbation is still small O(δm)~0.1on relevant length 

scales 
•  The perturbation theory offers a yet another method for structure 

formation in the weakly nonlinear regime (Makino, Suto, Sasaki 92; 
Jain & Bertschinger 94)
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Mass conservation eq. 
Euler eq. 
Poisson eq.



Modeling NL P(k) for a MDM model 
(Saito, MT, Taruya PRL 08) 
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δcdm+baryon ≡ δcb = δcb
(1) + δcb

(2) + δcb
(3) +

€ 

δν ≈ δν
(1)

•  The first attempt to analytically model P(k) in the weakly NL regime, 
based on cosmological perturbation theory (PT) 

•  Have to work with multi-component fluid system 
–  NL clustering on small scales is mainly driven by CDM + baryon 
–  Neutrinos with light masses remain to stay in the linear regime (can’t be 

much trapped by halos) 

•  NL P(k) for a MDM model up to the 1-loop correct.   

 Apply PT 

 Linear theory (Solve Boltzmann eqns) 
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WFMOS achieves a few % accuracy in 
measuring P(k) at each k bins over  k=[0.03,1] 
The suppression effect on P(k) due to neutrinos is 
enhanced in the weakly nonlinear regime
The PT model explicitly tells the valid k-range of 
linear theory. PT can be applied to larger  k_max 

Saito, MT, Taruya, PRL, 2008
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256^3 CDM particles + 512^3 neutrino particles



Nice agreement with the PT 
results (private communication)



Galaxy bias
•  In weakly nonlinear regime, straightforward to include a galaxy biasing 

effect in a perturbation theory manner, if galaxy bias is a local type

Saito, MT, Taruya 09, PRD in press
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•  Nonlinear bias parameter b_2 introduces a scale-dependent 
modification on P(k) 

•  Even so, the galaxy P(k) amplitude is suppressed by neutrino effect



Red: halos (simulation)  

Solid curves: PT predictions  

SDSS Simulations 

•  There seems a space of bias parameters to reproduce the SDSS power 
spectrum and the simulated halo power spectrum  

•  More physically reliable model, compared to Q_nl model 

€ 

Pg (k) = b2Pm
L (k)1+Qnlk

2

1+1.4k

Saito et al. in prep. 



•  WMAP5+SDSS (PT 
model) 

–  Mν,tot <1.01eV(95%C.L.) 

•  WMAP5+SDSS (Q-
model) 
–  Mν,tot <0.84eV(95%C.L.) 

•  Can be further 
improved by adding SN 
constraints 

•  Quantify a bias in 
parameter estimation 
for Q-model 
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Saito et al. in prep. 

Q-model

PT

WMAP5 alone 

PT (N=5700 fixed)

Mν,tot [eV]



Crocce & Scoccimarro 08 

RPT (analytic model)

Linear 
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Error bars = ~100 Gpc^3 (all-sky) 
~5×(Error) for SUMIRE(5Gpc^3)

Also Suto & Sasaki 91 
Jeong & Komatsu 06 
Taruya & Hiramatsu 08 
Matsubara 08 

Include higher-order loop corrections



Ichiki, MT, Takahashi 09 
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 small scale  large scale 

・ CFHT WL data

M
ν,

to
t [
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]

Ωm(=Ωcdm+Ωbaryon+Ων)

•  Apply the NL model of P(k) to 
CFHT weak lensing data 
(~60deg^2) 

•  WL directory probe total matter 
(free of galaxy bias) 

•  Even though the data is from a 
small sky coverage (60deg^2), the 
constraint on M_nu is powerful: 
M_nu,tot <0.54 (WMAP5+SN
+BAO) 

Mν,tot <0.54eV (95% C.L.)



From D. Schlege’s talk

IPMU/U Tokyo is a full participating institute of SDSS-III

The SDSS’s 2.5m 
telescope at Apache 
Point Observatory



•  Planck+BOSS: Mν,tot<0.176eV(95%C.L.) 
•  Ignoring neutrino mass in the parameter estimation may cause a bias in DE 

equation of state: not negligible 
•  Japanese team is now trying to start the neutrino working group for BOSS



From Hitoshi’s slides

WL+galaxy P(k)+Planck: M_nu ~0.1eV(95%C.L.) achievable



•  Cosmological probes are, albeit indirect, a powerful method for 
constraining neutrino masses (total mass of three flavors)  

•  CMB + large-scale structure is particularly powerful 
–  Galaxy clustering, Weak lensing, Ly-alpha 

•  Need to model structure formation up to the nonlinear regime for 
a mixed dark matter model 
–  Perturbation theory method 
–  A hybrid simulation 

•  Future cosmological surveys look very promising 
–  The accuracy of 0.1eV (95%C.L.) achievable with SUMIRE 
–  A byproduct science for dark energy experiments 
–  A lot of room to improve the neutrino mass constraints (bispectrum, 

redshift distortion, combining WL and galaxy P(k)) 
–  CMB lensing: potentially achieve 0.1eV (95%) with CMBPol 


