Exploring the First Two Billion Years of the Universe with Subaru Telescope

大内 正己 The Carnegie Institution of Washington

Overview

- すばる望遠鏡が明らかにした 赤方偏移z>=4の宇宙進化
- 1. 銀河と大規模構造

(パリティ誌10月号:"すばる望遠鏡の10年")

2. 宇宙再電離

による宇宙再電離時代の探査

news 有機発光素子を用いた大型スクリーンの到来 J.N.A.マシューズ 谷垣勝己 訳 非生物系で探る生物同期現象 J.ミラー 若本祐一訳 _____ '

大内正己-

家 正則-

青木和光 -

CDMモデルにおける銀河・構造形成

- Cold Dark Matter (CDM) モデル→Bottom up シナリオ
 - □ CDMの初期密度揺らぎから現在の物質構造(銀河•大規模構造)が作られた
 - CDMに代わり得るモデルは現時点で存在しない
- ダークマターは重力崩壊しvirializeする→ダークハロー
 ダークハローの中で星形成が起こる→銀河
 - 第0次近似で、ダークハロー ~ 銀河

z = 20.0

50 Mpc/h

Millennium Simulation (Springel et al. 2005)

プロジェクトが始まる前の状況

- 1、個数密度 → 遠方銀河の<mark>光度関数</mark>
- 2、相関強度 → 遠方銀河の相関関数

これまでの観測が届いていないz>=4の時代

すばる望遠鏡による 深宇宙探査

Subaru Prime Focus Camera (Suprime-Cam) Suprime-Cam (+inst. rotator)

- 可視光撮像装置
 - 高感度 (by the 8.3m mirror)
 - □ 広視野 (by the prime focus)
- z>4の宇宙を観測→高感度が必要
- 宇宙の構造を見渡す→広い視野が必要
 →Killer tool

HSTの方が高い空間分解能と感度を持つが、視野の大きさを含めたサーベイスピード Sは、

S(Subaru) ≥10 x S(HST)

Imaging Survey with Suprime-Cam

■ 銀極方向のSDF, SXDS, GOODS-N領域 (計~2deg^2)

- 得られた画像から遠方銀河をselect
 - □ z>4銀河は前景天体に埋もれている
 - □ 2つの手法
 - (1) Narrow-band technique $\rightarrow Ly\alpha$
 - (2)Dropout technique \rightarrow Lyman break

Identifying High-z Galaxies

Identifying High-z Galaxies

Spectroscopic Confirmation

Keck/DEIMOS

すばるの広領域探査により25kにおよぶz=4-7銀河 (うち~280個分光同定)。従来の10-100倍の個数

VLT/VIMOS

Magellan/IMACS

Fraction of contamination (foreground interloper) <~0.1

z~7: 300 (50) Number in () is the one of spectroscopically identified obje

(70)

4k (30)

500 (130)

20k

z~5: z~6:

宇宙の星形成史

■ 定性的にCDMのダークハローの進化と同じセンス

z=5.7の大規模構造の発見

最も密度の高い領域にある銀河を分光フォローアップして、3次元分布を調べた

その結果、2つのclump (A and B)を発見した。サイズは1 Mpc (proper)。探査体積 (1x10⁶MPC³)中で最も高い密度超過 → ~2x10¹⁴Mo程度の銀河団の祖先?

Close Companion(s)を持つ遠方銀河

i'画像

Z~4銀河の例

小スケールのクラスタリング超過の検出

z~6-11: Transition of IGM status

□ z~6: Final stage? (GP;Fan+06 cf.

z~11: WMAP5+inst.

model(Dunklev+08)

Becker+07)

A Schematic Outline of the Cosmic History 137億年前 1.電離宇宙 宇宙背景放射 2.中性宇宙 初代銀河 宇宙探査の限界 (z~7) ~ 1 billion 3. 電離宇宙 現在 S.G. Djorgovski et al. & Digital Media Center, Caltech

What is the Reionization Era

Cosmic reionization predicted by the radiative transfer model (lliev et al. 2006)

Galaxies (blue dots) and ionized bubbles (orange)

Ionizing Photon Budget

- z=7において、銀河は宇宙(銀河間水素)を電離させるだけの光子を生産しているか?
 - □ 銀河だけで宇宙を完全電離することはできない

もしくは

 宇宙は完全電離。ただし、銀河の性質が現在から進化している(より高いescape fraction[>0.2], 低いmetallicity 等。エラーはfactor ~4と大きいが。。)

Open Questions

□ 宇宙再電離史

z=7は宇宙再電離の始まりなのか??
 →z=7のNeutral fractionを求める必要あり。

□ 電離光子の収支

z=7において電離宇宙が実現される場合は、銀河の性質(fescやmetallicity、IMF)がどのくらい進化しているか?(現時点ではfactor of 4程度の統計エラー)

→1桁大きいサンプルで測定精度を向上

McQuinn et al. (2007)

dist.

Large statistics at z~7 with Hyper-Suprime Cam (2011-)

約1万個のz=7銀河からneutral fractionとlonized bubble topologyに制限(Ouchi/Strauss et al.)
 国立天文台、IPMU他が検討している次世代主焦点分光器でz=7銀河の3次元分布および物理状態

Serendipitous Discovery of a Giant Ly α Emitter at z=6.6

Ouchi et al. (2009)

現在進行中のSuprime-Camによる広域探査

- z=6.6で17kpcに広がったLya電離雲を発見
 - □ L[Lya]=4x10⁴³ erg/s, isophotal size~17kpc(現在の天の川銀河のstellar diskの半径程度)
 - □ レアな天体: 我々の探査体積(10⁶ Mpc³)に1個。(1個/HSCの視野)

この天体の物理的起源は?

- 何故このようにサイズが大きく、質量も大きいのか? (同時 代z=6-7で見つけられた銀河に比べ~x10程度)
- ガスの電離エネルギーは何か?

今あるデータだけでは分からない!!

- (1) Halo gas photoionized by a hidden AGN?
- (2) Clouds of HII regions in a single virialized galaxy?
- (3) Cooling gas accreting onto a massive dark halo?
- (4) Merging bright LAEs with clouds of HII regions?
- (5) Outflowing gas excited by shocks or UV radiation from starbursts/mergers?

But it is a good laboratory for understanding early galaxy formation.

×Α

Large statistics at z~7 with Hyper-Suprime Cam (2011-)

- 約1万のz=7銀河からneutral fractionとlonized bubble topologyに制限(Ouchi/Strauss et al.)
- 国立天文台、IPMU他が検討している次世代主焦点分光器でz=7銀河の3次元分布および物理状態

Summary

すばる望遠鏡による赤方偏移z=4-7の銀河探査

1. 銀河と大規模構造

- 光度関数の減少。光度進化が主?
- 遠方大規模構造の発見
- 銀河のダークハロー中での形成・進化
- 2. 宇宙再電離
 - z=7で電離光子の不足?再電離期??もしくは
 - 電離光子は足りているが、z=7銀河の性質はlow-zのものから進化

今後の展望

- すばる次世代装置(HSC; NAOJ, IPMU他)
 による宇宙再電離時代の探査
 - 宇宙再電離史、bubble topology
 - Serendipitous discoveryへの期待