Cosmic-Ray Positrons from Astrophysical Sources: GRBs, Pulsars and SNRs

Kunihito Ioka (KEK)

KI, arXiv:0812.4851 Kawanaka, KI & Nojiri, arXiv:0903.3782 Fujita, Kohri, Yamazaki & KI, arXiv:0903.5298

PAMELA

Positron excess above the predicted secondary

A hint was provided previously by AMS, HEAT etc., though not conclusive

FIG. 4. The positron fraction as a function of energy for the combined HEAT- e^{\pm} and HEAT-pbar data, compared to model predictions and other recent measurements (CAPRICE [3], Golden [29], AMS [4]). Dates in parentheses give the year of the measurement and not the publication. The solid curve is the positron fraction based on a purely secondary production of positrons given by [23]. The dashed and dot-dashed curves are the ratios including contributions from Higgsino LSP decay [15] and gamma-ray pulsars [6], respectively.

Beatty+ 04

Principle of detection

Magnet ⇒ Rididity (pc/Ze), charge sign, value (dE/dx)

electron/hadron separation

- Shower starting point
- Longitudinal profile

Secondary positrons

ATIC/PPB-BETS

An Excess also in (e⁺ + e⁻) Spectrum

Chang+ 08, Torii+ 08

ATIC/PPB-BETS

Dark Matter (DM) Signal?

Fermi

An Excess (but Not Peak) in (e⁺+e⁻) Spectrum

PAMELA electron (e-) flux

Demodulated spectrum

Power-law fit -- spectral index

HESS

Consistent with Fermi

No ATIC peak (but not rule out)

Steep at >1TeV

Differences between ATIC/PPB-BETS & Fermi/HESS are controversial

Primary sources

e[±] cooling

Our galaxy

e[±] lose energy (cool) via inverse Compton and synchroton

 $\varepsilon_{\text{cut}} \sim \frac{1}{bt}, \ b = \frac{4\sigma_T c}{3(mc^2)^2} \left(\frac{B^2}{8\pi} + U_{\gamma}\right)$

Positron source d<~1kpc

We are here

Energetics

Figure 24.2: Differential spectrum of electrons plus positrons multiplied by E^3 (data from [15–22]). The line shows the proton spectrum multiplied by 0.01.

ρ(proton)~1eV/cm³
ρ(electron)~10⁻²eV/cm³
ρ(positron)~10⁻³eV/cm³
~ 0.1% of p

Dark Matter?

Annihilation

Decay

Q ~ n² E_{cut} ~ m_{DM} $<\sigma v > ~3x10^{-24} cm^3/s$ $>3x10^{-26} cm^3/s$ boost factor ~100

Q ~ n
E_{cut} ~ m_{DM}/2
$$\tau_{decay}$$
~10²⁶sec (>H⁻¹)

Astrophysical Origin?

Shen 70; Aharonian+ 95; Atoyan et al. 95; Chi+ 96; Zhang & Cheng 01; Grimani 07; Yuksel+ 08; Buesching+ 08; Hooper+ 08; Profumo 08; Malyshev+ 09; Grasso+ 09 Kawanaka, KI & Nojiri 09;

Proton Comtami.

Fazely+ 09; Schubnell 09

Shen & Berkey 68; Pohl & Esposito 98; Kobayashi+ 04; Shaviv+ 09; Hu+ 09; Fujita+Kl 09; Blasi 09; Blasi & Serpico 09; Mertsch & Sarkar 09; Biermann+ 09

Propagation

Delahaye+ 08; Cowsik & Burch 09

Heinz & Sunyaev 02

KI 08

Cosmic-ray Nuclei energy 10⁻³ x 10⁵⁰erg/SN ~ (1sec pulsar)/SN

~ 10⁵⁰erg/10³SN

$$e^{\pm} \operatorname{Propagation}_{\substack{\partial \\ \partial t}} f(t, \varepsilon_{e}, \vec{x}) = K(\varepsilon_{e}) \nabla^{2} f + \underbrace{\partial}_{\substack{\partial \\ \partial \\ e}} [b \varepsilon_{e}^{2} f] + q(t, \varepsilon_{e}, \vec{x})_{injection}_{injection}$$

$$b \sim 10^{-16} \text{GeV}^{-1} \text{s}^{-1} \qquad \text{Energy loss by}_{iC \& \text{ synchro.}}^{intermediated integral}_{injection}$$

$$K(\varepsilon_{e}) \sim 5.8 \times 10^{28} \text{ cm}^{2} \text{s}^{-1} \left(1 + \frac{\varepsilon_{e}}{4 \text{GeV}}\right)^{1/3} \iff B/C \text{ ratio}$$

For a single burst with $q \propto \varepsilon_e^{-\alpha}$ Power law spectrum

$$f = \frac{q_0 \varepsilon_e^{-\alpha}}{\pi^{3/2} d_{diff}^3} (1 - bt \varepsilon_e)^{\alpha - 2} e^{-(d/d_{diff})^2}$$

$$\mathcal{E}_{cut} \sim \frac{1}{bt}$$

$$d_{diff}(t, \varepsilon_e) \sim 2 [K(\varepsilon_e)t]^{1/2} \text{ Atoyan+ 95, Shen 70}$$

Positron

We can fit the PAMELA data well d=1kpc PAMELA Background+(a) Background GRB/Pulsar (a) (a) GRB/Pulsar (b) GRB/Pulsar (c) 2d5 yr

Electron

ATIC/PPB-BETS & Fermi/HESS

DM-like Sharp Cutoff

Continuous injection

$$F(t,\varepsilon_{e}) = \int_{0}^{t} dt \frac{Q_{0}(t')\varepsilon_{e}^{-\alpha}}{\pi^{3/2}r_{diff}^{3}} (1-bt'\varepsilon_{e})^{\alpha-2} \exp\left(-\frac{r^{2}}{r_{diff}^{2}}\right)$$
Case 1: pulsar-type decay

$$Q_{0}(t) \propto L_{\text{spindown}} = \frac{E_{tot}}{\tau_{0}(1+t/\tau_{0})^{2}}$$
Case 2: exponential decay

$$Q_{0}(t) \propto \frac{E_{tot} \ln 4}{\tau_{0}} \exp\left(-\frac{t \ln 4}{\tau_{0}}\right)$$

$$\tau_{0}$$

Astrophysical Models

Shen 70; Aharonian+ 95; Atoyan et al. 95; Chi+ 96; Zhang & Cheng 01; Grimani 07; Yuksel+ 08; Buesching+ 08; Hooper+ 08; Profumo 08; Malyshev+ 09; Grasso+ 09 Kawanaka, KI & Nojiri 09;

Proton Comtami.

Fazely+ 09; Schubnell 09

Shen & Berkey 68; Pohl & Esposito 98; Kobayashi+ 04; Shaviv+ 09; Hu+ 09; Fujita+KI 09; Blasi 09; Blasi & Serpico 09; Mertsch & Sarkar 09; Biermann+ 09

Propagation

Delahaye+ 08; Cowsik & Burch 09

Heinz & Sunyaev 02

GRB

KI 08

~10⁵⁰erg e[±] ~10⁵⁻⁶yr ago

Pulsar

Multiple Injection (e⁺)

⇒ Smooth Spectra & Reasonable Energy

Multiple Injection (e⁻+e⁺)

Average spectrum ~ Fermi but ≠ATIC

Single v.s. Multiple

A single source \Rightarrow A relatively large anisotropy

Gamma-ray pulsars

y-ray only pulsar CTA1

Fig. 1: The *Fermi* LAT gamma-ray source, the central PWN X-ray source, and the corresponding *EGRET* source superimposed on a 1420 MHz map (7) of CTA 1. The LAT source and its 95% error region (small red circle) is displayed on the map together with the central PWN source RX J00070+7302 (cross) and the position and error of the corresponding *EGRET* source 3EG J0010+7309 (large blue circle). The coincidence of the pulsed gamma-ray source and the X-ray point source embedded in the off-center PWN is striking. The offset of the pulsar from the center of the radio SNR, which is thought to be the place of origin, is quite visible. The inferred transverse speed of the pulsar is ~450 km/s, which is a reasonable speed of a pulsar (20).

Fig. 3: Gamma-ray (>100 MeV) light-curve of the pulsar in CTA 1 shown over two periods of rotation with a resolution of 32 phase bins per period (corresponding to ~10 ms/bin). The two maxima in the broad emission feature each have a FWHM of ~0.12 and are separated by about 0.2 in phase. Overall, the LAT pulsar light-curve is similar to the gamma-ray light-curve of the *EGRET* pulsar PSR B1706-44 (*21*).

Pulsar and PWN "⇔ GeV-TeV unID sources

SNR

Local bubble Loop I, ... ← 20-40 SNe at ~100 pc

Nearby SNRs surely affect the solar environments

SNR model (ATIC)

Massive stars born in **Dense Clouds** ⇒ Supernova \Rightarrow Shock acc. \Rightarrow pp \rightarrow e⁺e⁻ R~40pc, n~100cm⁻³, d=200pc s=1.4, $t_{pp} = 5 \times 10^5 \text{yr},$ E_n=3x10⁵⁰erg

SNR model (Fermi)

Massive stars born in **Dense Clouds** ⇒ Supernova \Rightarrow Shock acc. \Rightarrow pp \rightarrow e⁺e⁻ R~40pc, n~50cm⁻³, d=200pc s=1.75, $t_{pp} = 2x10^{5} yr$, $E_{n} = 3 \times 10^{50} \text{ erg}$

2nd Nuclei for Hadronic

Hadronic models ⇒ Secondary Nuclei Excesses

FIG. 1: The titanium-to-iron ratio in cosmic rays along with model predictions — the 'leaky box' model with production of secondaries during propagation only (dashed line), and including production and acceleration of secondaries in a nearby source (solid line - dotted beyond the validity of our calculation). The data points are from ATIC-2 [26].

FIG. 2: The boron-to-carbon ratio in cosmic rays along with model predictions — the 'leaky box' model with production of secondaries during propagation only (dashed line), and including production and acceleration of secondaries in a nearby source (solid line). The data points are from HEAO-3 (circles) [30], ATIC-2 (triangles) [33] and CREAM (squares) [34].

Mertsch and Sarkar 09

 10^{4}

SNR model features

Hard spectrum for e⁺e⁻

Radiative phase $t_{age} > t_2 = 3.5 \times 10^3 E_{51}^{4/17} n_2^{-9/17}$ yr

$$\begin{split} N_p(E) &\propto E^{-s} \exp(-E/E_{\max,p}) \\ s &= (r+2)/(r-1) <\!\!\!2 \\ E_{\max,p} &= 1.6 \times 10^2 \ h^{-1} v_{s,8}^2 \left(\frac{B_{\rm d}}{10 \ \mu \rm G}\right) \left(\frac{t_{\rm age}}{10^5 \rm yr}\right) \ {\rm Te} \end{split}$$

V

Low Gamma-ray and Neutrino Signals The SNR destroyed the Dense Cloud Anti-proton and Secondary Nuclei excess above ~100GeV
Inhomogeneous SNRs?

Shaviv+ 09

Figure 1: The CR flux diffusion model. We assume that the SNe remnant distribution has two components. The primary component resides in spiral arms with a Gaussian cross-section. Because the opening pitch angle i of the arms is small, they can be assumed to be long cylinders (with their main axis perpendicular to the plane of the figure), making the problem effectively 2D. The angle between the x-axis and the galactic radial axis, is the small pitch angle. A second component resides in the disk, with an exponential vertical decay. The arm and disk are assumed to have an energy dependent diffusivity D up to the "CR" halo at height $l_H = 1$ kpc, from which the CRs escape. The nearby source distribution is described as the sum of the known nearby SNR. Because nearby sources are considered, the smooth disk distribution is truncated for r < 0.5 kpc and t < 0.5 Myr.

FIG. 2: Fluxes of e^- and e^+ at Earth for $E_{max} = 100$ TeV. The dotted line refers to primary electrons, the dashed lines are the fluxes of positrons (upper curve) and electrons (lower curve) from interactions of cosmic rays in the Galaxy. The dot-dashed lines are the fluxes of positrons (upper curve) and electrons (lower curve) from production in the sources. The thick solid line is the total flux. The data points are from Fermi/LAT [18].

Blasi 09

GRB summary

Luminosity: ~10⁵¹erg/s (most luminous) Energy: E_{iso} ~10⁵³erg, E~10⁵¹erg Spectrum: ε_{peak} ~200keV, Flat to TeV? Event rate: ~1/10⁵yr/galaxy Optical flash: in some GRBs, why so rare? Dark GRB: ~1/2 GRBs, dust absorption?

GRB 080916C

Band function over 6 decades in energy

Adiabatic cooling

Important for compact sources

Trapped e[±] have adiabatic invariant

$$\frac{p_{\perp}^2}{B} \sim \text{const}$$

$$B \propto V^{-2/3}$$

⇒ e^{\pm} lose energy ⇒ Old (>10⁵yr) pulsars How about GRBs?

Dust echo e[±] production far outside the remnant High energy photon ε_q >1TeV Target photon $\varepsilon_t \sim 1 eV$ $\varepsilon_a \varepsilon_t > (m_e c^2)^2$ Dust scattering $\tau \sim Q_{scatter} n_d \pi a_d^2 R_e$ $\sim 0.3 \left(\frac{a_d}{10^{-5} \text{ cm}}\right)^{-1} \left(\frac{n_H}{10^2 \text{ cm}^{-3}}\right) \left(\frac{R_e}{1 \text{ pc}}\right)$ t(expansion)~t(diffusion) Typical for molecular cloud R~10¹⁸cm~0.3pc

Spectral conversion

To isotropic distribution

$$R_L \sim \frac{\varepsilon_e}{eB} \sim 10^{15} \,\mathrm{cm} \left(\frac{\varepsilon_e}{1 \,\mathrm{TeV}}\right) \left(\frac{B}{1 \,\mu G}\right)^{-1}$$

Scatter afterglow photons $\Rightarrow e^{\pm}$ cooling & creaction

 $\Rightarrow \varepsilon_e \sim \frac{3\pi R_e^2 m_e^2 c^4}{\sigma_\tau E} \sim 1 \,\mathrm{TeV}$

Microquasar L_{Eddington} (10³⁸erg/s) x 10⁵yr ~ 10⁵⁰erg

Fig. 1. Cartoon of the proposed model of CR production in microquasars: The interface between the relativistic jet and the ISM is a natural site for the production and release of relativistic particles.

Fig. 7. Toy model of the microquasar contribution to the CR spectrum, for a *single* microquasar situated in a low mass X-ray binary, active for $\tau \ge 1.5 \times 10^7$ yrs on the level of 3×10^{38} ergs s⁻¹ (similar to GRS 1915+105), and at a distance of 1 kpc. For simplicity, we assumed the source was operating with uniform bulk Lorentz factor

Theoretical uncertainty

Theoretical uncertainty ~1 order-of-mag. ⇒ It could be just secondary

Delahaye+ 08

FIG. 6: The theoretically calculated positron fraction in models A (similar to that of [10] as shown in fig. 2), B, and C are compared with the observations. All calculations are normalized at ~ 10 GeV

Diffuse y-ray background

Summary

Electron/Positron excess

- Dark Matter?
- Pulsar? SNR: pp? GRB: TeV γ + dust eV γ ?

Astrophysical sources

- ${\sim}10^{49\text{-}50} erg \ e^{\pm} {\sim}10^{5\text{-}6} yr \ ago$
- Fit spiky ATIC as well as Smooth Fermi
- Spectral cutoff similar to DM case (⇒CALET)
- **Anisotropy (CR & Diffuse γ)**
- Anti-proton, 2nd Nuclei: Hadronic models

y of Pulsar Wind

PAMELA excess requires 10⁴⁹e[±] per SN $\Rightarrow 10^{49} \times \gamma_w m_\rho c^2 \text{ erg}$ ~ $10^{49} \left(\frac{\gamma_{\rm w}}{10^6}\right)$ erg per SN $\Leftrightarrow E_{\text{rotation}} \sim 10^{50} \text{erg } P_{10 \text{ms}}^{-2}$ So far only $\gamma_w \sim 10^6$ for Crab γ_w~4x10⁵ for PSR B1259 $\varepsilon_{\rm br} = \sqrt{\frac{3}{2}} \frac{e\hbar}{m_e c^2} B \gamma_1^2 \simeq 4 \left(\frac{B}{1.8 \text{ G}}\right) \left(\frac{\gamma_1}{4 \times 10^5}\right)^2 \text{ keV.}$

Remnants of e^{\pm} Sources ~10⁵⁰erg e^{\pm} ~10⁵⁻⁶yr ago \Rightarrow Old remnant \Rightarrow X-ray dim via cooling ~ TeV unID

HESS J1804: TeV/X>13 (Bamba+ 07) Westerlund 2: TeV/X>2.7 (Fujita+ 09)

Bamba: GeV ~ pion?

Metal in SNR

[Fe II]

Fe

Fig. 1.—Regions of the three filaments (north, middle, and south) of the northeast jet used for spectral analysis. Laming+(06)

"Jet" region X-ray Spec. \Rightarrow 2x10⁵²erg ~7° Jet \Rightarrow 10⁵⁰erg? barrel-shaped Ni & Fe in the jet ⇒ GRB-like jet?

W49B

Molecular Hydrogen

Si

Ca

Keohane+(07)

4.86-6.40 keV

Candidates

Dark Matter

Annihilation $<\sigma v > ~3x10^{-24} cm^3/s$ $>3x10^{-26} cm^3/s$ boost factor ~100

 $\frac{\text{Decay}}{\tau_{\text{decay}}} \sim 10^{26} \text{sec} \ (>H^{-1})$

Many (>100) papers

Astrophysical Model Cosmic-ray energy 10⁻³ x 10⁵⁰erg/SN ~ 10⁴⁷erg/SN

- ~ (1sec Pulsar)/SN
- ~ (10⁻³ x SNR)/SN
- ~ (1 GRB)/10³SN
- ~ (1 Microquasar)/10³SN

~30 papers

Cutoff width by inhomo. $\Delta \varepsilon_{\rm cut} / \varepsilon_{\rm cut} = -\Delta b / b - \Delta t / t$

 $N_b \sim c t_{\rm age}/d_b$ $\Delta b \sim \delta b / \sqrt{N_b}$

 $\left(\frac{\Delta\varepsilon_{\rm cut}}{\varepsilon_{\rm cut}}\right)_{\Delta b} \sim 6\% \left(\frac{\delta b}{b}\right) \left(\frac{d_b}{1\,{\rm kpc}}\right) \left(\frac{t_{\rm age}}{10^6\,{\rm vr}}\right)^{-1/2}$

Short Summary

Electron/Positron excess PAMELA ATIC/PPB-BETS ⇔ Fermi/HESS Dark matter? Astrophysical sources?

Astrophysical source $\sim 10^{50}$ erg e[±] $\sim 10^{5-6}$ yr ago Fit spiky ATIC as well as Smooth Fermi Spectral cutoff similar to DM case Cutoff energy ~ 300 GeV(10⁶yr/t) Cutoff width $\Delta \epsilon / \epsilon \sim \Delta t / t$

PAMELA e/h separation

FIG. 2: Calorimeter energy fraction \mathcal{F} : 28–42 GV. Panel a shows the distribution of the energy fraction for negatively charged particles, selected as electrons in the upper part of the calorimeter. Panel b shows the same distribution for positively charged particles selected as protons in the bottom part of the calorimeter. Panel c shows positively charged particles, selected in the upper part of the calorimeter, i.e. protons and positrons.

Antiproton as predicted

No excess for antiproton

Adriani+(PAMELA) 08

FIG. 1 (color online). Energy resolution for the LAT after electron selection; the full widths of the smallest energy window containing the 68% and the 95% of the energy dispersion distribution are shown. The comparison with beam test data up to 282 GeV and for on-axis and at 60° incidence shown in the figure indicates good agreement with the resolution estimated from the simulation.

Abdo+ 09

Fermi e/h separation

FIG. 2 (color online). Distribution of the transverse sizes of the showers (above 150 GeV) in the CAL at an intermediate stage of the selection, where a large contamination from protons is still visible. Flight data (black points) and MC simulation (gray solid line) show very good agreement; the underlying distributions of electron and hadron samples are visible in the left (red) and the right (blue) peaks, respectively.

Abdo+ 09

Fermi e/h separation

Figure 4. Electron flux reconstruction (see details in the text)

Moiseev+ 07

HESS 08

FIG. 3: The energy spectrum $E^3 dN/dE$ of CR electrons as measured by H.E.S.S. in comparison with previous measurements. The H.E.S.S. data are shown as solid points. The two fit functions (A and B) are described in the main text. Upper limits are given for a confidence level of 95%. The shaded band indicates the approximate systematic error arising from uncertainties in the modeling of hadronic interactions and in the atmospheric model. The double arrow indicates the effect of an energy scale shift of 15%, the approximate systematic uncertainty on the H.E.S.S. points. Previous data are reproduced from: AMS [18], HEAT [19], HEAT 94-95 [20], BETS [21], Kobayashi [2] and ATIC [22].

Polarcap

FIG. 1.—Schematic diagram showing the corotating magnetosphere and the wind zone. Star is at lower left.

Goldreich&Julian 69

$$\begin{split} \Delta V &\approx \frac{\Omega^2 B_s R^3}{c^2} \\ &= 10^{16} \left(\frac{\Omega}{10^2 \text{ s}^{-1}} \right)^2 \left(\frac{B_s}{3 \times 10^{12} \text{ G}} \right) \left(\frac{R}{10^6 \text{ cm}} \right)^3 \text{ V} , \end{split}$$

Ruderman&Sutherland 75

FIG. 3.—Breakdown of the polar gap. The solid lines are polar field lines of average radius of curvature ρ ; for a pure dipole field $\rho \sim (Rc/\Omega)^{1/2} \sim 10^8 P^{1/2}$ cm, but for a realistic pulsar one expects $\rho \sim 10^6$ cm if many multipoles contribute near the surface. A photon (of energy > 2 mc²) produces an electron-positron at *I*. The electric field of the gap accelerates the positron out of the gap and accelerates the electron toward the stellar surface. The electron moves along a curved field line and radiates an energetic photon at 2 which goes on to produce a pair at 3 once it has a sufficient component of its momentum perpendicular to the magnetic field. This cascade of pair production—acceleration of electrons and positrons along curved field lines—curvature radiation—pair production results in a "spark" breakdown of the gap.

FIG. 2.—A growing charge-deficient region ($\rho \approx 0$) in the outer magentosphere near a null surface. Negative charge is assumed to flow out, leaving behind a partial void near that surface (labeled + for the equivalent electrostatic effect of the absence of -). The Coulomb field of $\rho - \rho_0 \approx -\rho_0$ pushes positive charge + on the other side of the null surface toward the star, leaving behind a partial void which acts as a negative charge region (as labeled).

Chen, Ho & Ruderman86

Other components are also expected Fermi LAT: 080825C (<35sec, 14 γ <GeV), 080916C (14 γ >GeV), 081024B (Short, <3GeV)

Some GRBs have ~eV photon (optical) flashes Optical flash was theoretically expected ⇒ Absorption/Scattering by dust? (~1/2 GRBs are dark without optical afterglow)

FIG. 1.—Radius R_d out to which grains are destroyed by thermal sublimation, as a function of cloud density $n_{\rm H}$, for different values of L_{49} , Δt_1 , and a_{-5} . The heavy curve is for "typical" GRB parameters. The lines $A_V = 10$ and $A_V = 30$ show the radius of a cloud having $A_V = 10$ and 30 from center to edge. Also shown (*dot-dashed line*) is the radius $R_{\rm ion}$ out to which the gas is photoionized by a flash with $L_{49} \Delta t_1 = 1$. Dotted lines indicate radii with enclosed gas mass from 10^4 to $10^8 M_{\odot}$.

Old SNR

SN in **Dense Cloud** R~40pc, n~100cm⁻³, d=200pc, s=1.6, $t_{pp} = 10^{6}$ yr, E_p=3x10⁵⁰erg

Cowsik & Burch 09

FIG. 4: The observed $(Sc+Ti+\nu)/Fe$ secondary to primary ratio is plotted (points from a compilation in [11]) along with the power law extrapolation at high energies (dot-dashed line, Model A), a constant extrapolation (solid line, Model B), and a two-component fit (dotted lines, Model C).

Cowsik & Burch 09

FIG. 5: Here we have subtracted $f_{n^+}(E)$ and $f_{n^-}(E)$ from the total spectrum of the electronic component and have shown $g_e(E)$, the spectrum of electrons generated by the cosmic ray sources. The primary electron component $g_e(E)$ is plotted for the HESS, FERMI, ATIC and other data using $\eta = 0.45$. The positron spectrum from the nested leaky box model C is plotted as well (solid line).

Other possibilities

Simple model \Rightarrow E~10⁵⁰erg~(GRB)

- 10msec pulsar has a rotational energy of E~10⁵⁰erg (Kawanaka,KI+09)
 L_{Eddington} (10³⁸erg/s) x 10⁵yr ~ 10⁵⁰erg e.g., Black hole + Disk + Jet (Microquasar)
- 3. Supernova remnant (Fujita+KI 09)

 $pp \rightarrow \pi \rightarrow e^+$

e[±] cooling

Fig. 6. The positron diffusion length λ_D decreases as the energy *E* at the Earth approaches the energy E_S of the line. The long-dashed horizontal line corresponds to a diffusion length λ_D equal to the thickness *L* of the diffusion layers. Below that limit, positron propagation is not sensitive to the vertical boundaries and the infinite 3D approximation is valid. This regime corresponds to large values of the parameter ζ – see the definition (42).

e[±] lose energy (cool) via inverse Compton and synchroton Sources should be within R_d~kpc < Galactic disk~10kpc **Diffusion time** $\sim R_{d}^{2}/K \sim 10^{7} yr$ **Galactic Rate** >1/10⁵yr

Cosmic Ray

E<10¹⁵⁻¹⁶eV (Knee) $F \propto E^{-2.7}$ **Probably Galactic SNR** $L_{CR} \sim 10^{41} erg/s \sim 0.1 E_{SN}/t_{SN}$ No direct evidence 10¹⁵⁻¹⁶<E<10¹⁸eV (Ankle) $F \propto E^{-3-3.2}$ Galactic origin?? Simple SNR: E<10¹⁴eV 10¹⁸eV<E $F \propto E^{-2.7}$ **Extragalactic AGN? GRB?**

Cutoff/Line at ~600 GeV

Positron Fraction

- LAT will be able to precisely reconstruct the e-spectrum in 20 GeV -1 TeV. (still working on extending this range in both directions).
- LAT should detect > 10⁷ electrons above 20 GeV per year of operation. LAT will be able to check at much better statistics and with much smaller systematic errors on various spectral features !

 \Leftrightarrow DM case (~0?)

A COSMIC-RAY POSITRON ANISOTROPY DUE TO TWO MIDDLE-AGED, NEARBY PULSARS?

I. BÜSCHING,^{1,2} O. C. DE JAGER,^{1,2,3} M. S. POTGIETER,^{1,2} AND C. VENTER^{1,2} Received 2007 October 23; accepted 2008 March 20; published 2008 April 10

Geminga and B0656+14 are the closest pulsars with characteristic ages in the range of 100 kyr to 1 Myr. They both have spin-down powers of the order 3×10^{34} ergs s⁻¹ at present. The winds of these pulsars had most probably powered pulsar wind nebulae (PWNe) that broke up less than about 100 kyr after the birth of the pulsars. Assuming that leptonic particles accelerated by the pulsars were confined in the PWNe and were released into the interstellar medium (ISM) on breakup of the PWNe, we show that, depending on the pulsar parameters, both pulsars make a nonnegligible contribution to the local cosmic ray (CR) positron spectrum, and they may be the main contributors above several GeV. The relatively small angular distance between Geminga and B0656+14 thus implies an anisotropy in the local CR positron flux at these energies. We calculate the contribution of these pulsars to the local CR diffusion coefficient. We further give an estimate of the expected anisotropy in the local CR positron spectru model, the local CR positron spectrum imposes constraints on pulsar parameters for Geminga and B0656+14, notably the pulsar parameters for CR leptons.

FIG. 1.—Left: Contribution of Geminga to the positron LIS for $k_0 = 0.1 \text{ kpc}^2 \text{ Myr}^{-1}$ and $P_0 = 40 \text{ ms}$, T = 20 kyr (long-dashed line), $P_0 = 40 \text{ ms}$, T = 60 kyr (dot-dashed line), and $P_0 = 60 \text{ ms}$, T = 20 kyr (dashed line) on top of an isotropic background (solid line). The thin lines mark the combined spectra (pulsar contribution plus background), whereas the thick lines give the contribution of the pulsar alone. Also shown are data from Boezio et al. (2000) (diamonds) and DuVernois et al. (2001) (triangles). Right: The expected local anisotropy in the case where only Geminga contributes to the LIS (thick lines), and in the case where Geminga contributes on top of an isotropic background positron flux (thin lines) as given by Barwick et al. (1998) (solid line in left panel). The line styles correspond to the cases as given for the left panel. The thick-dashed and long-dashed lines coincide.

157pc

Pulsars as the Sources of High Energy Cosmic Ray Positrons

Dan Hooper

Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia, USA and Department of Astronomy and Astrophysics, The University of Chicago, USA

Pasquale Blasi

Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia, USA and INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy

Pasquale Dario Serpico

Physics Department, Theory Division, CERN, CH-1211 Geneva 23, Switzerland and Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia, USA

Recent preliminary results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 50 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons.

FIG. 3: As in Fig. 2, but from the nearby pulsar B0656+14. The solid lines correspond to an energy in pairs given by 3×10^{47} erg, while the dotted lines require an output of 8×10^{47} erg.

FIG. 4: The positron spectrum and positron fraction from the sum of contributions from B0656+14, Geminga, and all pulsars farther than 500 parsecs from the Solar System.

FIG. 5: The dipole anisotropy in the electron+positron spectrum from a source 110,000 years old at a distance of 290 pc (B0656+14-like) and from a source 370,000 years old at a distance of 157 pc (Geminga-like). In each case, we have normalized the energy output to match the PAMELA data and have used a spectral shape of $dN_e/dE_e \propto E_e^{-1.5} \exp(-E_e/600 \text{ GeV})$. Also shown as dashed lines is the sensitivity of the Fermi gamma-ray space telescope to such an anisotropy (after five years of observation). The Fermi sensitivity shown is for the spectrum integrated above a given energy.

$$\delta = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{3K|\nabla(dN_e/dE_e)|}{c(dN_e/dE_e)},$$

In addition to studying the gamma-ray sky, the Fermi gamma-ray telescope will also be able to measure a flux of electrons (and positrons, though without charge discrimination) at a rate of approximately 3×10^7 electrons per year above 10 GeV [29]. This implies that Fermi should be able to detect (at the 2σ confidence level) a dipole anisotropy in the electron flux above 10 GeV if $\delta \gtrsim 0.05\%$ in one year or $\delta \gtrsim 0.03\%$ in 5 years.

TABLE II: Data for a few selected nearby pulsars and SNR's. E_{out} is the energy output in e^{\pm} pairs in units of 10^{48} erg (for the ST model column we assumed $f_{e^{\pm}} = 3\%$). The energy output for the SNR Loop I and Cygnus Loop are not estimated within the ST model, but via estimates of the total SNR output. The $f_{e^{\pm}}$ column indicates the e^{\pm} output fraction used to compute the fluxes shown in fig. 4 and 5 assuming the ST model.

Name	Distance [kpc]	Age [yr]	$\dot{E}~[{\rm ergs/s}]$	$E_{\rm out}$ [ST]	$E_{\rm out}$ [CCY]	$E_{\rm out}$ [HR]	$E_{\rm out}$ [ZC]	$f_{e^{\pm}}$	g
Geminga [J0633+1746]	0.16	3.42×10^5	3.2×10^{34}	0.360	0.344	0.013	0.053	0.005	0.70
Monogem [B0656+14]	0.29	1.11×10^5	3.8×10^{34}	0.044	0.133	0.006	0.020	0.020	0.70
Vela [B0833-45]	0.29	1.13×10^4	6.9×10^{36}	0.084	0.456	0.006	0.372	0.0015	0.14
B0355 + 54	1.10	5.64×10^{5}	4.5×10^{34}	1.366	0.677	0.022	0.121	0.2	0.61
Loop I [SNR]	0.17	$2 imes 10^5$		0.3				0.006	
Cygnus Loop [SNR]	0.44	$2 imes 10^4$		0.03				0.01	

TABLE III: Possible combinations of multiple pulsars contributing to explain the PAMELA and the ATIC data. P/A refers to whether the pulsar dominantly contributes to the PAMELA or to the ATIC signal. $E_{\rm out}$ is the energy output in e^{\pm} pairs in units of 10^{48} erg.

Name	P/A	Distance [kpc]	Age [yr]	$E_{\rm out}$ [ST]	$E_{\rm out}$ [CCY]	$E_{\rm out}$ [HR]	$E_{\rm out}$ [ZC]
J1918+1541	Р	0.68	2.31×10^6	0.99	0.33	0.023	0.022
B0450 + 55	Р	0.79	$2.28 imes 10^6$	1.16	0.37	0.025	0.025
B0834 + 06	Р	0.72	2.97×10^6	0.11	0.07	0.011	0.001
B1845-19	Р	0.95	2.93×10^6	0.01	0.015	0.005	0.0002
B0919+06	А	1.20	4.97×10^5	0.158	0.178	0.010	0.016
B0355 + 54	Α	1.10	5.64×10^5	1.366	0.677	0.022	0.121
B1055-52	Α	1.53	5.35×10^5	0.82	0.49	0.017	0.075
J1849-0317	Α	1.90	4.81×10^5	0.06	0.10	0.007	0.007
B1742-30	А	2.08	5.46×10^5	0.24	0.22	0.012	0.022

Composition

Figure 24.1: Major components of the primary cosmic radiation from Refs. [1–12]. The figure was created by P. Boyle and D. Muller.

Li, Be, B: spallation of C, O

PDG 08