LHC for VHEPA (LHCf)

Hiroaki MENJO (Graduate School of Science, Nagoya University)

on behalf of the LHCf collaboration

- VHEPA2014, 19-20 Mar. 2014, ICRR University of Tokyo -

Contents

- Accelerator/Collider experiments for VHEPA
 - Hadronic Interaction for VHEPA
 - Large Hadron Collider (LHC) and LHC experiments

LHCf Experiment

- An Forward Experiment at LHC -
- Resents results
- Future Operations

Connection with Astronomy

Lots of connections

- Particle Physics
 - → Fundamental Interaction
- Heavy Nuclear Physics
 - \rightarrow Dense matter in the early universe
- Hadronic interaction (QDC)
 - → High Energy Cosmic-Ray

CR v.s. Collision Energy

AirShower Technique For Observation

Measurement of HECR

X_{max}

the depth of air shower maximum. An indicator of CR composition

Uncertainty of hadron interaction models Error of <X_{max}> measurement

Extensive air shower observation

- Iongitudinal distribution
- lateral distribution
- Arrival direction

Air shower development

Astrophysical parameters

- Spectrum
- Composition
- Source distribution

<InA> of CRs

(Kampert and Unger, Astropart. Phys., 2012)

Why so much different ?

No "perfect" hadronic interaction model in >10¹⁵eV

- Hard Interaction (P_T > 1GeV/c)
 - → pQCD "with input parameters like PDF"
- Soft Interaction (P_T < 1GeV/c)</p>
 - → Not calculable by QCD
 Described by phonological model.

Measurements at colliders is mandatory for verifying/turning models

Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

- pp 7TeV+7TeV
 pp 3.5TeV+3.5TeV
 pp 450GeV+450GeV
 pp √s=2.76TeV, 8TeV
- → $E_{lab} = 10^{17} eV$ 2015-→ $E_{lab} = 2.6 x 10^{16} eV$ 2010-2011→ $E_{lab} = 2x 10^{14} eV$ 2009,2010
- PbPb √s_{NN}=2.76TeV p-Pb √s_{NN}=5TeV

2011-

LHC

2012-

CERN(2009)

LHC Experiments

7 experiments are measuring hadronic interactions at 4 interaction points with several detectors.

Experimental coverage at LHC

The detectors mostly cover the full range of rapidity 3/46 even at zero degree of collisions.

Particle production at LHC collisions

Key parameters for Air Showers

Key Parameters

- Inelastic Cross Section
 →TOTEM, ATLAS, CMS, ALICE
- Forward Energy Spectrum \rightarrow <u>LHCf</u>, ZDC and etc.
- Inelasticity k= 1- p_{lead}/p_{beam} →<u>LHCf</u>, ZDC and etc.
- Secondary interactions

+Nuclear Effect @ CR-Air

Total/Inelastic Cross-section

TOTEM Roman Pots

2.5

Charged Multiplicity Distribution

Measured by several experiments

T.Pierog @ HESZ2013

Energy Flow : CMS Forward

T2: phi=-2.935; eta=-5.69

Spectra of independent particles

Detailed description can be achieved

T.Pierog @ HESZ2013

- identified spectra
- \rightarrow p_t behavior driven by collective effects (in EPOS statistical hadronization + flow)

CMS Forward

CMS PRELIMINARY

Very Forward : Most Energetic part

Very nice results from Forward Detectors

But the most energetic part is not covered. Very Forward Experiments like LHCf and ZDC are important

The LHCf collaboration

The LHCf collaboration involves ~30 members at 10 institutions.

LHCf Experiment

CHOP The LHCf detectors

Sampling and Positioning Calorimeters

- W (44 r.l $\ , \ 1.7\lambda_{I}$) and Plastic Scintillator x 16 Layers
- 4 positioning layers XY-SciFi (Arm1) and XY-Silicon strip(Arm#2)
- Each detector has two calorimeter towers, which allow to reconstruct π^0

Expected Performance Energy resolution (> 100GeV) < 5% for Photons 30-40% for Neutrons Position resolution < 200µm for Photons a few mm for Neutrons

Front Counter

- thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

Arm1

Arm2

IP1,ATLAS

LHCf can measure

Front view of calorimeters @ 100µrad crossing angle

C

LHCf Operations

<u>At √s=900GeV p-p</u>

06 Dec. -15 Dec. in 2009 27.7 hours for physics, 2.6 hours for commissioning ~2,800 and ~3,700 shower events in Arm1 and Arm2
02 May - 27 May in 2010 ~15 hours for physics ~44,000 and ~63,000 shower events in Arm1 and Arm2

<u>At √s=7TeV p-p</u>

30 Mar. – 19 July in 2010
 ~ 150 hours for physics with several setup

With zero-crossing angle and with 100µrad crossing angle.

~2x10⁸ and ~2x10⁸ shower events in Arm1 and Arm2

2009-2010

2013

At √s_{NN}=5TeV p-Pb

20 Jan. – 4 Feb. in 2013
 Only Arm2 had been operated.
 ~2x10⁸ shower events were taken.

Event sample

Photons at 7TeV p-p

- No model can reproduce the LHCf data perfectly.
- Data points are on the middle of MC predictions except E < 500GeV.

Neutral Pions at 7TeV p-p

Results in 2009~2012

- Operation
 - □ 2009-2010 : pp,√s=900GeV and 7TeV
 - \square 2013 : pPb, $\sqrt{s}{=}5\text{TeV}$ and pp, $\sqrt{s}{=}2.76\text{TeV}$
- Published Results
 - □ Forward photon spectra @ pp√s=0.9, 7TeV
 - □ Forward neutral pion spectra @ pp, √s=7TeV

✓ Electromagnetic Components in the products ⇒Data favors EPOS1.99

] How about baryons ? ⇒ Inelasticity measurement

How about p-A collisions ?

⇒ Nuclear effect

Neutron event reconstruction

Neutron energy reconstruction

ΔE/E ~40%

Neutron energy is reconstructed by a sum of energy deposits.
Detector simulation based on

Preliminary

(arXiv:1312.5950)

- Detector simulation based on QGSJET2 for hadronic shower reproduces the test beam data better than that on DPMJET3.
- Difference between QGSJET2 and the test beam data is taken into account as a systematic error in the latter analysis.

- With two variables, L90% and L20%, PID performance is improved to reduce the photon contamination in neutron events.
- PID efficiency and purity are >90%.
- Energy spectra are corrected for PID inefficiency and BG contamination.

Preliminary Neutron energy spectra in p-p collisions

- LHCf Arm1 and Arm2 agree with each other within systematic error, in which the energy scale uncertainty dominates. In $\eta > 10.76$ huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result. In other rapidity regions, the LHCf results are enclosed by the variation of models.

π^0 event analysis in p-Pb collisions

Momentum distribution of the UPC induced $s \leq 1$ is a ynartic is nesting bed a 1. energy distribution of virtual photons is estimated by the view of the willing the proton set of the proton of virtual photons is estimated by the SOHIA model (E > pion threshold). 2. photon-proton collisions are simulated by the SOHIA model (E > pion threshold). 3. produced mesons and baryons by γ -p collisions are boosted along the proton beam.

Dominant channel to forward π^0 is $\gamma + p \rightarrow \Delta(1232) \rightarrow p + \pi^0$

About half of the observed π^0 may originate in UPC, another half is from soft-QCD.

Preliminary

π^0 event reconstruction in p-Pb collisions

$\pi^0 p_T$ spectra after the UPC subtraction

- The LHCf results in p-Pb (filled circles) show good agreement with DPMJET and EPOS. Note that UPC induced events are not involved in DPMJET and EPOS.
- The LHCf results in p-Pb are clearly harder than the LHCf results in p-p at 5.02TeV (shaded area) which are interpolated from the results at 2.76TeV and 7TeV.

Preliminary

Nuclear modification factor

- Future Operations .HC
 - **Future Operations**
 - **D** p-p collisions at $\sqrt{s} = 13$ TeV in 2015 ⇒Energy Scaling
 - \Rightarrow Enlarge the P_T Acceptance
 - p-light A (O) collisions in 2019?
 - Operation at RHIC, Proposing to RHIC p-p at $\sqrt{s}=500$ GeV, p-N at $\sqrt{s}_{NN}=200$ GeV Submitted LOI in May \Rightarrow Energy Scaling from the low energy region

Extend capability of verification of interaction models Higher and Lower energy collisions, Nuclear effect

Starting discussion

Summary

- LHCによって各種Dataが取得されており、 CR-AS ハドロン相互作用モデルの検証が進んでいる
 - Description Total/Inelastic cross-section
 - D Multiplicity
 - Forward Energy Flux
 - D Spectra of each particle
- LHCfの最新結果
 - □ Neutron Measurement at pp, √s=7TeV
 - Nuclear Effect of neutral pions at p-Pb
- (個人的な感想)
 - LHCから各種データが揃って来た。

⇒モデルとの違いを生み出しているソース(現象)を探るフェーズに進ん で行く。

- また宇宙線観測でも空気シャワーを多角的に研究が進んでいる。
- 相互作用モデルの特徴と空気シャワーの関係性を再度まとめる必要がある。

Summary

- LHC are providing excellent results and they are important for study of HECRs.
- LHCf measures spectra of neutral particles at zero degrees.
 - Photons, Neutral Pions published
 - Neutrons, Nuclear Effect at p-Pb : preliminary
- Discussing with UHECR experiments and model developer to understand the results of UHECRs.

Backup

pp Energy Flow with CASTOR

- First time energy flow at very high pseudorapidities 5.2 to 6.6 studied at LHC
- Combined with central CMS track jets
- {0.9, 2.76, 7} TeV
- Energy deposit in CASTOR as function of centre-of mass energy and track jet p_T

JHEP 04 (2013) 072

Colin Baus – Forward Physics with CMS

C.Baus @ Seminar in Nagoya

- Models have too small slope
- QGSJetII-03 describes data best
- Cosmic ray models do good job often better than collider models

20/61

TOTEM For Diffraction Total/Inelastic Cross-section

Roman Pots:

Energy Scan at LHC and RHIC

HC

Photons at 900GeV p-p

Good agreement of X_F spectrum shape between 900 GeV and 7TeV. →weak dependence of <p_T> on E_{CMS} Note : No systematic error is considered in both collision energies yet. 21% of the luminosity determination error allows vertical shift.

Diffraction @ CR-AS

- Cross section fraction differs largely in models (~10^11eV → 10^20eV)
 - Sibyll: $12\% \rightarrow 1\%$
 - $\quad \text{QGSJet } 13\% \rightarrow 16\%$
 - DPMJet $1\% \rightarrow 5\%$ (but rising at mid energies)

C.Baus @ Seminar in Nagoya

Diffraction with CASTOR

- Rapidity gap distribution measured at $|\eta| < 4.7$
- 0.4 units Δη more than ATLAS

Diffraction with CASTOR

low diffractive masses or large rapidity gap

- Differential single- and double-diffractive cross sections measured as function of longitudinal momentum loss ξ
- CASTOR used as tag for rapidity gap
- Phenomenological behaviour of diffractive cross section important for muon maximum in air showers

Colin Baus