

An Introduction to the Science Potential of Hanohano

Presented by John G. Learned *University of Hawaii at Manoa*

Outline

- Detector Development
- Neutrino Geophysics
 - U/Th mantle flux
 - Th/U ratio
 - Georeactor search
- Neutrino Oscillation Physics
 - Mixing angles θ_{12} and θ_{13}
 - Mass squared difference Δm_{31}^2
 - Mass hierarchy

NUMBER

20120121

Destaine to Reacher init

MeV-Scale Electron Anti-Neutrino Detection

Production in reactors and natural decays

Nucleus with one more proton and one less neutron

- Standard inverse β-decay coincidence
- E_v > 1.8 MeV
- Rate and spectrum no direction

Deep Ocean Anti-Neutrino Detection

- Overburden 'free'
 - Invest excavation time and cost in detector
 - Much investment in ocean oil field technolgy
- Location flexibility, aim at 1 year cycles
 - Far from continental crust and reactors for neutrino geophysics- Hawaii, So. Pacific
 - Offshore of reactor for neutrino oscillation physics- California, Taiwan examples
 - Engineering / technology challenges
 - Deployment / recovery/ repair
 - Remote operation via fiber optics
 - High pressure / low temperature
- Hawaii Anti-Neutrino Observatory
 - Hanohano (distinguished in Hawaiian)
 - One year science and engineering design study completed.

Engineering Studies

- Studied vessel design up to 100 kilotons, based upon cost, stability, and construction ease.
- Construct in shipyard
- Fill/test in port
- Tow to site
- Deploy ~4-5 km
- Recover/ repair or relocate and redeploy
- Can traverse Panama Canal

Addressing Technological Issues

- Scintillating oil studies in lab
 - $P=450 \text{ atm}, T=0^{\circ} C$
 - Testing PC, PXE, LAB and dodecane
 - No problems so far, LAB favorite
- Implosion studies
 - Design with energy absorption
 - Computer modeling
 - At sea
 - No stoppers

ĊI.

SCINTILLATOR

ACCESS HATCH

STAINLESS STEEL

16 March 2007

Neutrino Geophysics Primary question: from where comes the heat that drives crustal motion and ghe geomagnetic field?

- Overview of some relevant geology
 - Geophysics
 - Geochemistry
 - Terrestrial heat flow
- Geoneutrinos
 - Flux measurement from mantle
 - Th/U ratio measurement
- Georeactor search

Geophysics: Preliminary Reference Earth model

Knowledge of earth interior from seismology: measure velocity, guess composition, infer density

Dziewonski and Anderson, *Physics of the Earth and Planetary Interiors* **25** (1981) 297-356.

Geochemistry: Bulk Silicate Earth Model

Knowledge of Earth composition largely model dependent. "Standard Model" based on 3 meteorite samples.

Abundance of uranium uncertain to 20%, maybe more.

McDonough and Sun, Chemical Geology 120 (1995) 223-253.

16 March 2007

Terrestrial Heat Flow: 31-44 TW

Present controversy over hydrothermal flow

Geologists believe Uranium and Thorium are dominant heat source, But much controversy about how much U/Th and where it resides.

Pollack, Hurter, and Johnson, *Reviews of Geophysics* **31**(3) (1993) 267-280. Hofmeister and Criss, *Tectonophysics* **395** (2005) 159-177.

Geoneutrino - Parent Spectrum

Threshold for inverse β-decay

Only U: allows Th/U ratio measurement

thorium chain 🗱

Potassium

- Spectrum below threshold
- Possible energy source and light element in core
- -New detection technique needed

Predicted Geoneutrino Event Rate

F. Mantovani et al., Phys. Rev. D 69 (2004) 013001.

Simulated event source distribution Signal mostly from <1000 km Geonu Major Background – Reactor AntiNeutrinos

Anti-neutrino energy, E_v (MeV)

Reactors present a major source of background near many heavily populated areas

16 March 2007

Geo-V + Background Spectra

Background manageable Depths >3KM preferred for geonus

Hanohano: Mantle Measurement

Major background from crustal geonus

S.T. Dye *et al.*, hep-ex/0609041

	Events (10 kT-y) ⁻¹		
	SNO+	Borexino	Hanohano
⁹ Li	0 ± 0	3 ± 1	3 ± 1
²¹⁰ Po	8 ± 2	8 ± 2	8 ± 2
Accidental	42 ± 1	42 ± 1	42 ± 1
Reactor	528 ± 21	295 ± 12	12 ± 1
Crust Geo-vs	368 ± 74	279 ± 56	31 ± 6
Background	946 ± 77	627 ± 57	96 ± 7
Mantle	79	79	79
Total $(N \pm \sqrt{N})$	1025 ± 32	706 ± 27	175 ± 13
Expected Signal	79 ± 109	79 ± 84	79 ± 20
	15 y	48 y	

LENA will have similar background to SNO if in Finland, but at larger scale.

Hanohano: Mantle Measurement

Limit: 20% systematic uncertainty in U/Th content of crust Hanohano ultimate sensitivity of <10% Continental detectors ultimate sensitivity >50%

LENA backgrounds similar to SNO+ if in Finland

Earth Th/U Ratio Measurement

Project	δR/R	Th/U	Years to 10%
crust type	(1 yr exposure)	(1 yr exposure)	measurement
KamLAND <i>island arc</i>	2.0	4 ± 8	390
Borexino <i>continental</i>	1.1	4 ± 4	120
SNO+ continental	0.62	3.9 ± 2.4	39
Hanohano <i>oceanic</i>	0.20	3.9 ± 0.8	3.9

Statistical uncertainties only; includes reactors LENA, similar to Hanohano, depending upon location and size

16 March 2007

Antineutrinos From the Core?

Herndon hypothesis- natural fission reactor in core of Earth P=1-10 TW Controversial but not ruled out

Herndon, *Proc. Nat. Acad. Sci.* **93** (1996) 646. Hollenbach and Herndon, *Proc. Nat. Acad. Sci.* **98** (2001) 11085.

16 March 2007

Georeactor Search

LENA similar to SNO+, depending upon scale and location.

16 March 2007

Neutrino Oscillation Physics

• Precision measurement of mixing parameters

 Determination of mass hierarchy (newly proposed method)

3-v Mixing: Reactor Neutrinos

$$\begin{split} P_{ee} = &1 - \{ \cos^4(\theta_{13}) \sin^2(2\theta_{12}) [1 - \cos(\Delta m_{21}^2 L/2E)] \\ &+ \cos^2(\theta_{12}) \sin^2(2\theta_{13}) [1 - \cos(\Delta m_{31}^2 L/2E)] \\ &+ \sin^2(\theta_{12}) \sin^2(2\theta_{13}) [1 - \cos(\Delta m_{32}^2 L/2E)] \} / 2 \end{split}$$

wavelength close, 3%

- → Each of 3 amplitudes cycles (in L/E ~ "t") with own periodicity (Δm² ~ "ω")
 amplitudes 13.5 : 2.5 : 1.0 above
 - wavelengths ~110 km and ~4 km at reactor peak ~3.5 MeV
- ¹/₂-cycle measurements can yield
 - Mixing angles, mass-squared differences
- Multi-cycle measurements can yield
 - Mixing angles, precise mass-squared differences
 - Potential for mass hierarchy
 - Less sensitivity to systematics

ν_e Mixing Parameters: Present Knowledge

- KamLAND combined analysis: $\tan^2(\theta_{12})=0.40(+0.10/-0.07)$ $\Delta m^2_{21}=(7.9\pm0.7)\times10^{-5} \text{ eV}^2$ Araki et al., *Phys. Rev. Lett.* 94 (2005) 081801.
- CHOOZ limit: $\sin^2(2\theta_{13}) \le 0.20$ Apollonio et al., *Eur. Phys. J.* C27 (2003) 331-374.
- SuperK and K2K:

 $\Delta m_{31}^2 = (2.5 \pm 0.5) \times 10^{-3} \text{ eV}^2$ Ashie et al., *Phys. Rev.* D64 (2005) 112005 Aliu et al., *Phys. Rev. Lett.* 94 (2005) 081802

16 March 2007

Suggested ¹/₂-cycle $\theta_{\underline{12}}$ measurement with Hanohano

- Reactor experiment- \overline{v}_e point source
- $P(v_e \rightarrow v_e) \approx 1 \sin^2(2\theta_{12}) \sin^2(\Delta m_{21}^2 L/4E)$
- 60 GW kT y exposure at 50-70 km
 - $-\sim 4\%$ systematic error
 - from near detector
 - $-\sin^2(\theta_{12})$ measured with $\sim 2\%$ uncertainty

Bandyopadhyay et al., *Phys. Rev.* D67 (2003) 113011. Minakata et al., hep-ph/0407326 Bandyopadhyay et al., hep-ph/0410283

oscillation maximum at ~ 60 km

16 March 2007

Energy Spectra, Distance and Oscillations

Reactor Anti-Neutrino Spectra at 50 km

suggests using Fourier Transforms

Proposed $\frac{1}{2}$ -cycle θ_{13} Measurements other than Hanohano

- Reactor experiment- v_e point source
- $P(v_e \rightarrow v_e) \approx 1 \sin^2(2\theta_{13}) \sin^2(\Delta m_{31}^2 L/4E)$
- Double Chooz, Daya Bay, RENOmeasure θ_{13} with "identical" near/far detector pair
 - $-\sin^2(2\theta_{13})$ ≤0.03-0.01 in few years
 - Solar and matter insensitive
 - Challenging systematic errors

Anderson et al., hep-ex/0402041 Mikaelyan and Sinev, *Phys. Atom. Nucl.* **62** (1999) 2008-2012.

Suggested Mass Hierarchy Determinationvia Reactor Neutrino Spectral Distortion

Earlier suggestions

Petcov and Piai, Phys. Lett. B533 (2002) 94-106.

Schoenert, Lasserre, and Oberaurer, Astropart. Phys. 18 (2003) 565-579.

Fourier Transform on L/E to Δm^2

Preliminary-50 kt-y exposure at 50 km rangesin²(2θ₁3)≥0.02Δm²31=0.0025 eV² to 1% level

Learned, Dye, Pakvasa, Svoboda hep-ex/0612022

16 March 2007

Measure Δm_{31}^2 by Fourier Transform Determine v Mass Hierarchy

Learned, Dye, Pakvasa, and Svoboda, hep-ex/0612022

Hierarchy Determination

Ideal Case with 10 kiloton Detector off San Onofre Distance variation: 30, 40, 50, 60 km

John G. Learned at VHEPA6 in Hilo

Sin22013 Variation: 0.02 – 0.2

Hanohano- 10 kT-y Exposure

- Neutrino Geophysics- near Hawaii
 - Mantle flux U/Th geo-neutrinos to $\sim 25\%$
 - Measure Th/U ratio to $\sim 20\%$
 - Rule out geo-reactor of P>0.3 TW
- Neutrino Oscillation Physics- ~55 km from reactor
 - Measure $\sin^2(\theta_{12})$ to few % w/ standard ½-cycle
 - Measure $\sin^2(2\theta_{13})$ down to ~0.05 w/ multi-cycle
 - $-\Delta m_{31}^2$ to less than 1% w/ multi-cycle
 - Mass hierarchy if $\theta_{13} \neq 0$ w/multi-cycle & no near detector; insensitive to background, systematic errors; complimentary to Minos, Nova
 - Lots to measure even if $\theta_{13}=0$
- Much other astrophysics and PDK too....

Hanohano Summary

- Proposal for new portable, deep-ocean, 10 kiloton, liquid scintillation electron anti-neutrino detector.
- Unique geophysics, particle physics and astrophysics, all at nuclear energies.
- Program under active engineering, Monte Carlo simulations, and studies in laboratory and at sea.
- Collaboration within a year, aimed at decade or more multi-disciplinary program between physics and geology.
- Meeting in Hawaii, 23-25 March 2007, http://www.phys.hawaii.edu/~sdye/h ano.html

v_e flux measurement uncertainty

- Flux from distant, extended source like Earth or Sun is fully mixed
- $P(v_e \rightarrow v_e)$ =1-0.5{ $\cos^4(\theta_{13})\sin^2(2\theta_{12})+\sin^2(2\theta_{13})$ } =0.592 (+0.035/-0.091)

Lower value for maximum angles Upper value for minimum angles

• $\Phi_{\text{source}} = \Phi_{\text{detector}} / P(\nu_e \rightarrow \nu_e)$ Uncertainty is +15%/-6%

Standard model: mantle has most U/Th and core has none.

Radioactivity (arbitrary units)

Geo-neutrino projects: targets

Proposed LENA may have 50 kilotons, 5x Hanohano, but will be probably on continental location.

16 March 2007

Geo-neutrinos + backgrounds

John G. Learned at VHEPA6 in Hilo

16 March 2007

Geo-neutrino projects: rates

Event fractions

KamLAND

SNO+

Hanohano

Borexino, LENA

Mantle and Other Rates at SNO+ and Borexino

16 March 2007

John G. Learned at VHEPA6 in Hilo

Beauty of Employing Fourier (new realization, by us anyway)

- Normal statistical sqrt(n) Poisson errors apply to peak amplitude (mixing angle),
- but **NOT** to peak **location**... allows possibility for very precise measurement of Δm^2 (<1%?)
- Beats χ² and normal Max£, I think. (?)
 Employ signal processing tricks to maximize information extraction (ie. matched filter).