

Main Features of Ashra Image Pipeline

Mar 16 2007 Tsutomu CHONAN (ICRR) VHEPA-6 @ SUBARU Hilo Base

Ashra Detector

- Optics:
 - Modified Baker-Nunn

Components:

- Correcting lens (1.0~1.2mφ)
 3 acrylic lenses
- Spherical mirror (2.2m\u00f6)

7 segment mirrors on adjustable mechanism

 Photoelectric Lens Image Tube (0.5m\u03c6) on adjustable mechanism

=> arcmin. resolution
=> FOV 0.42sr

Ashra Image Pipeline

Function: obtains event images by using self-trigger system

Consists of...

1.

2.

3.

- Photoelectric Lens Image Tube
 - scales down an input image size
- Amplification Image Intensifier
 - Amplifies the image brightness
- Relay Lens Systems
- splits the image and transfers these images
- 4.

5.

Fiber System

- transfers images to trigger sensor
- **Trigger Sensors**
 - issues trigger pulses
- 6.

7.

Delay Image Intensifier

- makes trigger decision time
- CMOS Sensor
 - obtains the AS images

Independently, an untriggered image sensor obtains star images.

Photoelectric Lens Image Tube

Functions: 1. Scales down images by the electric lens (x 1/20)

- 2. Amplifies image brightness (100 ph/pe)
- 3. Preserves image resolution

Amplification process

- 1. An input photon is converted to a photoelectron by the photoelectric effect.
- 2. The photo-electron is accelerated by high voltage.
- 3. The accelerated photoelectron is re-converted to photon.

Key technology for the uniqueness of the Ashra

Relay Lens Systems

<u>Requirements:</u>

- 1. High collection efficiency
- 2. High resolution
- 3. Mechanical limit
- 4. High cost performance
- Features of relay lens for the trigger :
- Consists of only 4 kinds of lenses
- The design meets our requirements.

We have completed design of all lens systems.

Fiber Transmission System

Functions: 4 images are combined to one image.

We can obtain higher sensitivity than only one light collector.

Trigger Sensor

Trigger sensor consists of:

- 1. Electron tube
 - scales down images (x 1/5)
- 2. 64x64 pixel silicon detectors
 - converts photoelectrons to current
- 3. LSI readout circuits
 - discriminates AS signals

Fast pattern recognition can be performed by the trigger sensor.

9.8mm

CMOS Fine Sensor

- Made by Standard CMOS process
- Number of pixels 2048×2048
- Number of Cells 128×128
 - Pixels in the Cell 16×16
- Pixel size

18.8mm

- Readout

- 8×8μm
- 12.8µs/Cell

Results of Image Pipeline Test

Untriggered image

Triggered Cherenkov image

We have confirmed image pipeline was operated as we expected.

We will move on to the observation step.