March 7-8, 2005, Kashiwa

Gamma-ray Astronomy, Origin of Cosmic rays, and Energy region higher than TeV tadashi kifune (shinshu)

 Status and Prospect for TeV γ-ray astronomy ?:
 ~10 sources will increase to ~100, and then ~1000 sources ?

Origin of Cosmic Rays ?
 in the era of the new generation of IACTs

Energy region from "knee" to "ankle"
 of cosmic rays ?

Motivation

ASHRA and Purpose of this Work Shop?

 Ground-based γ-rays has abandoned the PeV region (Cyg X-3, Her X-1,...?); some day we shall return?

Ultra High Energy Region: beyond TeV energy up to 10²⁰eV

Only resident in the PeV region at present:
 Observation for Highest energy CRs,
 High energy neutrino

 Often said by neutrino people:
 "Final answer" for PP→πproduction will be given by neutrino detection

Origin of CRs:

why VHE region not share sources with EGRET?

- SNRs associated with EGRET unID
- Are they too old ?

Cut-off energy of acceleration ? Is it consistent with CR spectrum ?

 Electrons as progenitor? : IC-synchrotron regime
 Point-like sources vs diffuse disc emission ? How can we identify "proton sources"? New era of TeV γ-ray astronomy: CANGAROO, H.E.S.S., MAGIC, VERITAS,

 Fine mapping of TeV gamma-ray sky with arc of minutes angular resolution Explore the energy region down below
 100 GeV by challenging to
 huge aperture
 IACT

A decade of years, since TeV window was opened.

1000 sources ?

- "all the factors integrated" at the age of 20 years old: X-ray:10³, GeV γ:300 ground-based telescope continually improved
- Extrapolation from other bands
 GLAST: ~10⁴ (>5σ) from all sky survey
 Highest energy CRs ? (likely extended)
- SNRs : 10^{3~5}/10² ≈ 10^{2~3}
- Blazars: ~10⁴ ; more with larger distances
- galaxies : s/s₀ ?
- **GRBs** : transient and ~10³ per years
- unID (binaries, μ quasar,..?) : 10~100?

the goal of "Origin of Cosmic Rays" ?: "established" theories/models ?

 Proto-type of VHE γ-ray sources? : personal retrospect Kifune(1990: Astrophysical Aspects of the most Energetic CRs(Kofu Conf)) Extrapolation from "EGRET SNRs" by α≈2.7

 Standard model α ≈ 2.0 ???: γ-rays E⁻² from SNRs? Naito, Takahara(1992); Drury, Aharonian, Völk(1992)

 Acceleration Region; Emission Regions (B, n_p,...); Near-by Region; something like a "Nested leaky box" Galactic Disc emission

Confinement time; diffusion

 M.Oda: (1)Acc. Source? (2)Propagation? (3)Ptcl. Int.(phys.law; relevance to Evolution of Universe) All these are now not separately solved; mixed and integrated.

A "tough" but exciting time to overcome

Earlier detection to be confirmed

- SN1006: H.E.S.S. Upper Limit < 8% of CANGAROO flux</p>
- How about other objects?
- H.E.S.S., with better sensitivity at lower threshold energy, detected TeV sources from which CANGAROO had difficulty to obtain signal in spite of long-continued efforts :
- PKS2155-304 (necessary to be blessed by outburst)
- PSR1259-63 (emission only near at periastron?)

Frontier Science

14-19 June, 2004, Mondragone and Frascati, Rome

What will follow from now on (my private view)?

(4.6±0.6±1.4) × 10⁻¹²cm⁻²s⁻¹: E>1.7±0.5 TeV
 (2.4±0.6±0.7) × 10⁻¹²cm⁻²s⁻¹: E>3±1 TeV
 (Tanimori et al. ApJ 497 L25(1998)
 Repeated observation of CANGAROO is going on

with better $\Delta \Theta$ and reduced E_{threshold}

Details of H.E.S.S

Estimation of the flu

- ΔΘ: depending c source" or "extend
- Spectral shape as
- (Effects due to sk

—

Soft/hard spectrum arc of minutes morphology Correlation with X-rays Or molecular clouds

The efforts for solving the above "problems" hopefully lead to

- better knowledge on the spectral shape and morphology of TeV γ -ray emission
- Confirmation of newer sources with improved sensitivity

Frontier Science

14-19 June, 2004, Mondragone and Frascati, Rome

Time and spatial scales, energy spectra, Time variable signal from SNR etc ? IC-synchrotron regime ?

 $\Delta x_{0.1pc}/c < 1year$ $\tau_{acc}; \tau_{escape}; \tau_{energy loss};$

 $dE/dt = E/\tau_{acc} - E/\tau_{loss}$ $dN/dt = -N/\tau_{escape} + D\Delta N$

• $\tau_{\text{sync}} = 4 \cdot 10^{13} \text{B}^{-2}_{-6} \text{E}^{-1}_{10 \text{TeV}} \text{ sec}$

 $T_{\text{escape}} = 3 \cdot 10^8 \cdot B_{-6} E^{-1}_{10 \text{TeV}} \cdot (\Delta x_{0.1 \text{pc}})^2 \text{ sec}$

 variation time scale of B ? small spatial (random) scale: turbulence
 jitter radiation

Origin of CRs: PeV~EeV region

 Retreat of gamma-rays in ~ 1990 from observing: Cyg X-3, Her X-1, Cen X-3; GRB, SGR,....
 Akeno, CASA, HEGRA,

Can we expect point-like sources at energies higher than TeV ? (1) limited size of SNRs

 π⁰ γ-rays and ν require sufficient matter, Is it available in acceleration region?
 τ_{escape} ~ x₀²/D ~ E^{-δ}, thus emission is likely to be more extended at higher energies and to be merged in disk emission
 Consisitency with γ-ray observation at lower energies
 neutrino?

- morphology: angular resolution
- disc emission of ν ?

Can we expect point-like sources at PeV energies ? (2) limited active time of SNRs: Eacc < knee Acceleration by Shock of Galactic scale 10^{3-4} yrs, and Eacc < 10^{15} eV? Modification of standard theory? acc<10¹⁵eV? Modificatiion of standard theroy ? ■ 10³⁻⁴ yrs radiation by shock of Galactic scale Galactic wind from e.g. GC reacceleration? X-ray binaries such as Cyg X-3 **Transient sources**? 14 Extragalactic courses

MAGIC inauguration

October 10, 2003, La Palma

Cascade in cosmic space

10-100 TeV
Angular spread
B in extraglactic space?

シミュレーション結果1

17

 α = 2.0

EeV electrons emit radiation at longer wavelengths Synchrotron radiation Cascade of electrons and gamma-rays Synchrotron radiation $K_{sync} \approx 2.10^{6} B_{-10} (E_{e}/1EeV)^{2} eV$ E⁻¹ spectrum

IC and synchrotron radiation

summary: sources beyond TeV energy 10⁻¹² erg cm⁻² s⁻¹ from all the sky ? Absorption by 2.7K NWB and the Effect of "cosmic cascade" energy spectrum, angular size, B-field,

Scheptical about neutrino Morphology of gamma ray sky

- Galactic sources:
 - not easy to expect
 - transient and unknown population of sources
 - mapping of good angular resolution necessary
- Extragalactic case:
 - Normal galaxies : better sensitivity required
 - AGN/GRBs etc.
 - Absorption effect : neutrino !

A personal view to my liking

Wide FoV IACT of arc of minutes resolution A realistic path to 10³ sources : factor of $10^3 = /$ $\mathbf{0}$ some notable resultants If diffuse/extended objects transient phenomena ◊ explore higher energies with "small" dishes Use for bridging TeV and highest energy CRs (easier, inexpensive)

 Of course, the main stream is to achieve novelty in technique; to be always pursued huge dishes: promising path but expensive ²¹

Questions to ASHRA

ASHRA challenges what? GZK neutrino shower ? gamma rays above TeV ?

On the above dependsWhat will be to be concluded.

Conclusion

100 sources: Galactic 1' mapping of TeV sky spectral index α , cutoff energy? SNRs as extended sources extension will increase with energy CBS of X-rays: proton & transient ? CBS of X-rays: proton & transient ? 1000 sources: extragalactic Deeper observation at large distances structure formation; 宇宙進化と加速; B の起源