Observations of TeV gamma rays from Centaurus A ~ Towards Very High Energy Particle Astronomy 5 ~ 8 Mar, 2004

About Centaurus A
 Observations and Analysis of Centaurus A
 Summary

ICRR CANGAROO group Shigeto Kabuki

Active Galactic Nuclei (AGN)

Galaxy $10\% \Rightarrow AGN$

- AGN Time variation (1000sec)
 - It is 100 or more times brighter than the star of the whole galaxy.
 - A massive black hole (MBH) is in a nucleus.

AGN 10% \Rightarrow Jet (Blazer)

Jet - Radio lobe - Hot spot - Knot

AGN unification model

This model is accepted below the X-ray energy region. How is it in TeV energy?

Active Galaxy Centaurus A

About Centaurus A

Elliptical Radio galaxy Fanaroff-Riley type I Misaligned BL Lac (~ 60°) Distance 3.5 Mpc First source of AGN in the TeV region

Parameter	value
α(J2000)	201°.3650633
δ(J2000)	-43°.0191125
Galaxy Size	18×14 arcmin
Radio Source size	8×4 degrees
Distance	3.5 Mpc
Apparent Magnitude	7.96 mag
Total galaxy mass	$(4\pm1)\times10^{11}{\rm M}$
Outer radio lobe	250 kpc
Inner radio lobe	5 kpc
Inner radio jet	1.35 kpc
Relativistic nuclear jet	1.65 pc
Radio core	0.008 pc
Dust lane radius	7 kpc

The Optical image of Centaurus A (ESO/MPG 2.2-m telescope with WFI)

Multiwave images

Synchrotron self-Compton model

 Double-peaked structure

 synchrotron
 inverse
 Compton
 (Synchrotron Self
 Compton model)

 $\frac{L_{sync}}{L_{IC}} \sim 1$

Observation

Observation by two telescope mode was performed this time. ← The 4th telescope was constricted in March 2004. Three fold coincidence mode was not performed. The stereo events were selected in the offline analysis.

Centaurus A

Observation term	Observation	Observation time	Average zenith
A STATE OF	time (T2-T3)	(T2 - T4)	angle
15 – 28 Mar 2004	603 min	414 min	17 degree
15 – 28 Apr 2004	444 min	468 min	17 degree
Total	1047 min	882 min	

Analysis method : Likelihood cut

Probability density function (PDF)PDF of normalization is unsuitable. \rightarrow Gamma ray \rightarrow Proton

Quantity like probability

Likelihood analysis

L(gamma-ray)=PDF(length1(g))*PDF(width1(g)) *PDF(length2(g))*PDF(width2(g)) ···· L(proton)= PDF(length1(p))*PDF(width1(p)) *PDF(length2(p))*PDF(length2(p)) ····

<u>L ratio</u>

 $Lratio = \frac{L(gamma - ray)}{L(gamma - ray) + L(proton)}$

L ratio distribution of Crab

Hatched : MC (gamma ray) Blank : OFF Points : ON (square cut)

BG region selection

We can gain 6 times as many as statistics.

These circle radius: 0.217° deg ($\theta^2=0.047$)

Centaurus A result

θ^2 distribution

Comparison with the past data

Our limits are 10 times lower flux than previous result.

Possibility on HBL assumption

Estimation of Flux

 $F(0.25-30\text{TeV})=6.4\times10^{-9}\text{erg cm}^{-2}\text{s}^{-1}$: Bai $F(530\text{GeV}<) =2.6\times10^{-12}\text{ erg cm}^{-2}\text{s}^{-1}$: CANGAROO-III

Upper limit on density of CDM

Cen A Giant Galaxy 3.5 Mpc

The annihilation rate of the CDM can be written,

$$<\sigma v>B_{q\bar{q}}n^2$$

The accelerator measurement on the fragmentation function

 $\frac{1}{\sigma_h} \frac{d\sigma}{dE/M_{\chi}}$

is limited to lower energy of such as 100 MeV.

Gamma-ray flux is written

$$\left[\frac{dF}{dE}\right] = \frac{\langle \sigma v B_{q\bar{q}} \rangle \rho_{CDM}^2 \left[V / (4\pi d^2) \right]}{M_{\chi}^3} \cdot \left[\frac{1}{\sigma_h} \cdot \frac{d\sigma}{d(E/M_{\chi})}\right]$$

The limit of Cen A CDM is 100 times bigger than our galaxy.

Conclusion

• In CANGAROO-III, three telescopes were extended and stereo observation started. In this result, the energy threshold is 500GeV and angular resolution is 0.16°. • The significant signal were not detected using 2-dimensional Likelihood. The upper limit of 2 of 0.32×10^{-11} cm⁻²sec⁻¹ was given by the observation of 1050 minutes. Furthermore, when Cen A is HBL, we can give the following limits, $L_{c}/L_{s} < 1/400 < 1$, $U_{\rm B} > 400 \text{ U sync} = 2400 \text{ eV/cc}$, and $B > 210 \mu G(R/12 kpc)^{-1}$.

In this observation period, the flare was not observed. The variation in a TeV region was also quiet. Although restriction of CDM was 100 times as large as the mass of the Galaxy, this is the first result of Cen A.

Appendix : Radio Structure

Appendix : Data reduciton

Good conditon

Bad condition

Appendix : Difficulties on LBL assumption

Appendix : Relativistic beaming effect

The gamma-ray is undetectable. \rightarrow The problem of angle of the jet? Define beaming factor

 $\delta = \{\gamma (1 - \beta \cos \theta)\}^{-1}$

Blazer $q \sim 1/\gamma$ $\delta \sim \gamma \sim 10$

In this result, gamma-rays were not detected in the TeV region. Cen A may not belong to the unification model of AGN. a typical value, $\gamma \sim 5$, and $p \sim 3$ are used, the flux changes 1.3×10^{-4} .

If Mrk501 assumes that it is in the same distance as Cen A (Mrk501/CenA)²=(0.034/0.0008)² = 1.8 × 10⁴ Even if 60 degrees leans like CenA, the signal should be detected.

Appendix : Time variation of Cen A

Appendix : Time variation of Mrk 421

Appendix : Crab Analysis

Observation date	Observation time (12-T3)	Average zenith angle
15 – 28 Dec, 2003	1215 min	62 degree

Appendix : Likelihood : Result

 θ^2 distribution L : 0.9 <

Integral Flux L:0.9 <

Excess : 123 ± 21 event (@2350GeV) Significance : 6.0σ 1 Crab : 125 event/840.3 min.

Appendix : Crab arrival point map

