

Kunihito IOKA (Osaka, PennState Univ.)

Standard picture
 Recent progress
 UHECR, HEn, HEg, GW
 Summary

Origin has been a puzzle

Time

Great Success of Model

Standard Total Energy

Progenitor

Binary NS merger

Ribc $\sim 6 \times 10^4 \text{ Gpc}^{-3}\text{yr}^{-1}$ Massive stellar collapse $R_m \sim 80 \text{ Gpc}^{-3}\text{yr}^{-1}(\times 7)$ (Hypernova, Collapsar) $R_{GRB} \sim 0.5(250) \text{ Gpc}^{-3}\text{yr}^{-1}$

SN in afterglow

Position in host galaxy Bloom, Kulkarni&Djorgovski (02

Standard Picture

- Cosmological (Long GRBs)
 Relativistic jet is ejected: Γ>100
- 3. Internal shock: GRB (?)
- 4. External shock: Afterglow
- 5. Synchrotron shock model succeeds
- 6. Standard total energy (?)
- 7. Massive star origin (Long GRBs)

But, ...

Jet Breakout from Star

8.— Resolution study in two dimensions. The jets in Models 2B and 21 had identical meters, but the calculation was carried out in cylindrical grids having different resolution

Fig. 6.— Equivalent isotropic energy for Model 2B. See also Fig. 5.

Variable Light Curve

- 2. Patchy shell
- 3. Refreshed shock -

GRB Cosmology

Massive star origin

High redshift GRBs

COSMIC TIME LINE

FROM THE DARK AGES Like QSO After the emission of the cosmic microwave background radiation [about 400,000 years after the Like SN Star formation 🌇 Microlensing Reionization

12 TO 14 BILLION YEA big bang), the universe grew increasingly cold and dark. But cosmic structure gradually 1 BILLION YEARS evolved from the density fluctuations left over from the big bang. 100 MILLION YEARS 1 MILLION YEARS Emission of cosmic background Dark ages radiation First stars First supernovae ... TO THE RENAISSANCE and black holes The appearance of the first stars and protogalaxies Protogalaxy (perhaps as early as 100 million years after the big bang) set off mergers z ~ 100 a chain of events that transformed the universe. Modern galaxies GRB Larson&Bromm(02)QSO, galaxy

GRBs are useful for probing high z

Cosmic Reionization

ig. 4. Stages in the reionization of hydrogen in the intergalactic medium.

Complex Reionization

Double reionization

Inhomogeneous reionization

Ciardi, Ferrara & White (03)

Cen(03)

Dispersion Measure (DM)

s the free electron column density along the light path

DM from Afterglow

High energy photon

In a plasma, a light signal is delayed.

 $\Delta t = 415 \text{ s} \left(\frac{\mathbf{n}}{1 \text{ GHz}}\right)^{-2} \left(\frac{\text{DM}}{10^5 \text{ pc cm}^{-3}}\right)^{-2}$

Luminosity $t \sim \Delta t$ time Distortion in light curve DM Reionization History

Ioka(03), Inoue(04)

GRB cosmology

Problems

- 1. Fireball content: Kinetic or magnetic ?
- 2. GRB emission mechanism: Synchro or not
- 3. GRB jet structure: Uniform or not ?
- 4. Jet acceleration: How to launch ?
- 5. Environment: What is in front ?
- 6. Shock parameters: Universal or not ?
- 7. Short GRBs: What ?
- 8. Other emissions: UHECR, HEv, HEy, GW ?
- 9. GRBs & cosmology: How to use ?
- Etc...

UHECR

Event rate

- 10^3 events/(3 Gpc $)^3$ /yr
- $\approx 1 \text{ event}/(100 \text{Mpc})^3/30 \text{yr}$
- \Rightarrow Dispersion \geq 100yr in the arrival time
- Time delay due to magnetic field $t(e_p, D) \approx 10^5 e_{p,20}^{-2} D_{100Mpc}^2 I_{Mpc} B_{-9}^2 \text{ yr}$

 $\Delta \boldsymbol{e}_p / \boldsymbol{e}_p \approx 1 \text{ for } \boldsymbol{e}_p \ge 10^{20} \text{ eV due to } p - \boldsymbol{g}$

.....

....

GRB model prediction

Miralda-Escude&Waxman(96

High Energy n

$$\frac{Photo-meson interaction}{pg \to \Delta \to np^+, pp^0}$$

$$p^+ \to m^+ + n_m \to e^+ + n_e + \overline{n}_m + n_m, p^0 \to gg$$

$$e_g e_p \approx 0.2\Gamma^2 \text{GeV}^2, e_n \approx 0.05e_p$$

- Internalshock
- $\mathbf{e}_{g} \approx 1 \text{MeV}, \Gamma \approx 300 \Rightarrow \mathbf{e}_{p} \approx 10^{16} \text{eV} \Rightarrow \mathbf{e}_{n} \approx 10^{14} \text{eV}$
 - •Externalshock(reverse shock)
- $\boldsymbol{e}_{\boldsymbol{g}} \approx 1 \text{keV}, \Gamma \approx 250 \Rightarrow \boldsymbol{e}_{p} \approx 10^{19} \text{eV} \Rightarrow \boldsymbol{e}_{n} \approx 10^{18} \text{eV}$

High Energy $g_{\text{TeV}\gamma}$

GeV _γ

>MeV Tail in GRB941017

One of 26GRB

High energy decays more slowly

Photon numbe index: -1 (hard

IR Background

HE gin Afterglow

Long-dash: e-sy, short-dash: p-sy, dots: SSC Fimes: trigger, 1 min, 1 hr, 1day, 1 month =1, p=2.2, ε =1, Γ =300, z=1 flat Zh

Zhang&Meszaros(01

Gravitational Wave

GW Memory of Jet point, $\Delta \theta = \gamma^{-1} = 0.01$ GW 4 $\Delta \theta = 0.1$ $\Delta \theta = 0.2$ h∕h₀ ≈ GW is not emitted forward Photor 0 but laterally 0.6 0.2 0.4 0.8 0 θ, $\Delta h: 2E/r: 8 \times 10^{-24} E_{51.5} r_{20Mpc}^{-1}$

Detectability

∆t ~ 10s $f \sim \Delta t^{-1}$ ~ 0.1Hz **BBO** or **DECIGO**

LIGO band cannot see the whole jets

Beyond Einstein

DECIGO/BBO

THE GRAVITATIONAL WAVE SPECTRUM

Event Rate

1 GRB/yr within : 300Mpc
1 SN/yr within : 20Mpc

SN1998bw: 40Mpc, SN2002ap: 10Mpc

Summary

A puzzle is being solved **Field structure: Polarization** Jet structure: X-ray flush, HEg **GRB cosmology: 1st star, z>10** UHECR, HEn, HEg New frontier **GW: DECIGO/BBO** Swift satellite: Short GRB, 2004