

グラビティーノ問題 不安定粒子に対する宇宙論的電磁・ <u>ハドロンシャワーからの</u>制限

東京大学大学院理学系研究科附属 ビッグバン宇宙国際研究センター 川崎 雅裕

> 共同研究者:郡 和範 (大阪大学) 諸井 建夫 (東北大学)

> > MK. Kohri, Moroi astro-ph/0402490

Introduction

Fermion \longleftrightarrow Boson Supersymmetry (SUSY) Hierarchy Problem Keep electroweak scale against radiative correction

Coupling Constant Unification in GUT quark $\leftrightarrow squarks$ lepton \iff slepton photon \longleftrightarrow photino

Gravitino $\psi_{3/2}$ Superpartner of graviton

In Supersymmetric Inflationary Universe

Constraint on T_R

Plan of Talk

- 1. Introduction
- 2. Gravitino Problem
- 3. Radiative Decay of Gravitino
- 4. Hadronic Decay of Gravitino
- 5. Conclusion

Gravitino Problem

Gravitino Problem

Gravitino is only gravitationally suppressed int.

$$\tau(\psi_{3/2} \to \tilde{\gamma} + \gamma) \simeq 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3}$$

Standard Big Bang Cosmology $n_{3/2} \sim n_{\gamma}$ if gravitino decays after BBN ($m_{3/2} < 100 \text{TeV}$) \longrightarrow Too Large Entropy Production Gravitino Problem (Weinberg 1982)

 $\overline{n_{3/2}}/n_{\gamma} \sim \sigma n_q t \sim (1/M_p^2) T_R^3(M_p/T_R^2)$

SUSY Breaking Scheme Low Energy SUSY $(m_{\tilde{q}}, m_{\tilde{\ell}} \sim 1 \text{TeV} \gg m_q, m_{\ell})$ (A) Gravity Mediated SUSY Breaking

SUSY
sector
M_{SUSY}Observable
sector
gravity

Squark, slepton masses $m_{\tilde{q}}, m_{\tilde{\ell}} \sim \frac{M_{
m SUSY}^2}{M_p} \sim 10^{2-3} {
m ~GeV}$

 $M_{\rm SUSY} \sim 10^{11-13} {\rm GeV}$

 $m_{3/2} \sim 10^{2-3} \text{ GeV}$

Gravitino

Gravitino Decay and BBN $\psi_{3/2}$ Gravitino in Gravity Med. SUSY Breaking $m_{3/2} \sim 10^{2-3} \text{ GeV}$ \square Unstable • Radiative Decay $\psi_{3/2}
ightarrow ilde{\gamma} + \gamma$ $\tau(\psi_{3/2} \to \tilde{\gamma} + \gamma) \simeq 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3}$ • Hadronic Decay $\psi_{3/2}
ightarrow \widetilde{g} + g$ $\tau(\psi_{3/2} \to \tilde{g} + g) \simeq 6 \times 10^7 \operatorname{sec}\left(\frac{m_{3/2}}{100 \operatorname{GeV}}\right)^{-3}$

Decay Products (photons, hadrons) Disastrous Effect on **Big Bang Nucleosynthesis** Stringent Constraint on T_R

Ellis, Nanopoulos,Sarkar (1985) Reno, Seckel (1988) Dimopoulos et al (1989) MK, Moroi (1995)

.

Big Bang Nucleosynthesis In the early universe (T=1 - 0.01MeV)

 $2p + 2n \rightarrow {}^{4}\text{He}$

+ small D ³He ⁷Li

Abundances of Light Elements

Baryon-Photon ratio $\eta = \frac{n_B}{n_\gamma}$

 η

Observational Abundances of Light Elements • He4 $Y_p = 0.238 \pm 0.002 \pm 0.005$ Fields, Olive (1998) $Y_p = 0.242 \pm 0.002(\pm 0.005)$ Izotov et al. (2003) • D/H $D/H = (2.8 \pm 0.4) \times 10^{-5}$ Kirkman et al. (2003) • Li7/H $\log_{10}(^{7}Li/H) = -9.66 \pm 0.056 \ (\pm 0.3)$ Bonifacio et al. (2002) Li6/H $^{6}Li/H < 6 \times 10^{-11}$ (2 σ) Smith et al. (1993) He3/D $^{3}He/D < 1.13~(2\sigma)$ Geiss (1993)

 η

Gravitino Decay and BBN $\psi_{3/2}$ Gravitino in Gravity Med. SUSY Breaking $m_{3/2} \sim 10^{2-3} \text{ GeV}$ \square Unstable • Radiative Decay $\psi_{3/2}
ightarrow ilde{\gamma} + \gamma$ $\tau(\psi_{3/2} \to \tilde{\gamma} + \gamma) \simeq 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3}$ • Hadronic Decay $\psi_{3/2}
ightarrow \widetilde{g} + g$ $\tau(\psi_{3/2} \to \tilde{g} + g) \simeq 6 \times 10^7 \operatorname{sec}\left(\frac{m_{3/2}}{100 \operatorname{GeV}}\right)^{-3}$

Radiative Decay

Radiative Decay

High Energy Photons *

Electromagnetic Cascade

1) Photon-photon pair creation $\gamma + \gamma_{\rm BG} \rightarrow e^+ + e^-$ 2) Inverse Compton $e + \gamma_{\rm BG} \rightarrow e + \gamma$ 3) Photon-photon scattering $\gamma + \gamma_{\rm BG} \rightarrow \gamma + \gamma$ 4) Thomson scattering $\gamma + e_{\rm BG} \rightarrow \gamma + e$

- Ala

 $\psi_{3/2}$

Photon Spectrum

MK, Moroi (1995)

etc

	Photodissociation Reactions	1- σ Uncertainty	Threshold Energy
1.	$D + \gamma \rightarrow p + n$	6%	$2.2 \mathrm{MeV}$
2.	$T + \gamma \rightarrow n + D$	14%	$6.3~{ m MeV}$
3.	$T + \gamma \rightarrow p + 2n$	7%	$8.5 { m MeV}$
4.	$^{3}\mathrm{He} + \gamma \rightarrow p + \mathrm{D}$	10%	$5.5~{ m MeV}$
5.	$^{3}\mathrm{He} + \gamma \rightarrow n + 2p$	15%	$7.7~{ m MeV}$
6.	$^{4}\mathrm{He} + \gamma \rightarrow p + \mathrm{T}$	4%	$19.8 \mathrm{MeV}$
7.	$^{4}\mathrm{He} + \gamma \rightarrow n + \ ^{3}\mathrm{He}$	5%	$20.6~{ m MeV}$
8.	$^{4}\mathrm{He} + \gamma \rightarrow p + n + \mathrm{D}$	14%	$26.1~{ m MeV}$
9.	$^{6}\text{Li} + \gamma \rightarrow \text{anything}$	4%	$5.7 { m MeV}$
10.	$^{7}\text{Li} + \gamma \rightarrow 2n + \text{anything}$	9%	$10.9~{ m MeV}$
11.	$^{7}\mathrm{Li} + \gamma \rightarrow n + {}^{6}\mathrm{Li}$	4%	$7.2 \mathrm{MeV}$
12.	$^{7}\text{Li} + \gamma \rightarrow ^{4}\text{He} + \text{anything}$	9%	$2.5~{ m MeV}$
13.	$^{7}\mathrm{Be} + \gamma \rightarrow p + \ ^{6}\mathrm{Li}$	4%	
14.	$^{7}\mathrm{Be} + \gamma \rightarrow \text{ anything except } ^{6}\mathrm{L}$	i 9%	

Non-thermal Production of Li6

Dimopoulos et al (1989) Jedamzik (2000)

$${}^{4}\mathrm{He} + \gamma \rightarrow \begin{cases} n + {}^{3}\mathrm{He} \\ p + T \end{cases}$$

$$T + {}^{4}He \rightarrow {}^{6}Li + n \quad [4.03MeV]$$

 ${}^{3}He + {}^{4}He \rightarrow {}^{6}Li + p \quad [4.8MeV]$

T,He3 enegy loss He4

 $\frac{dE}{dx} = \frac{Z^2 \alpha}{v^2} \omega_p^2 \ln\left(\frac{\Lambda m_e v^2}{\omega_p}\right)$

 $\omega_p^2 = 4\pi n_e \alpha / m_e$

Constraint

 $Y_{3/2} \equiv \frac{n_{3/2}}{n_{\gamma}} \simeq 10^{-11} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$

 $\tau(\psi_{3/2} \to \tilde{\gamma} + \gamma) \simeq 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3}$

Hadronic Decay

Hadronic Decay

Reno, Seckel (1988) Dimopoulos et al (1989)

 $B_h \sim 1$ $\psi_{3/2}$ Two hadron jets 000000 with E = m/2Even if gravitino only decay into photino $B_h \sim \alpha/4\pi \sim 0.001$ $\psi_{3/2}$ Two hadron jets with E = m/3

However, a reliable constrain was not obtained for hadronic decay

Process is very complicated
Hadron spectrum in hadron jets
hadonic cascade processes
Energy loss processes by background plasma

New Calculation

MK. Kohri, Moroi astro-ph/0402490

- Take into account energy loss processes for high enrgy neuclei
- Take into account energy distribution of nucleons in elastic processes
- Take a reasonable value for energy of nucleus after inelastic processes with use of many experimental data
- JETSET is used for obtaining initial hadron spectrum
- Take account of neutron decay
- Evaluate uncertainties in reaction rates and so on

Spectrum of hadron jets

JETSET 7.4

Kohri 2001

Energy Loss

High energy hadrons lose their energy by Coulomb and Compton scatterings off background photons and electrons before they interacts with nuclei

Non-relativistic Nucleus

 $|v_N > \langle v_e \rangle$

 $\Lambda \sim O(1)$

 $v_N < \langle v_e \rangle$

Inefficient Energy Loss!

Final Energy of T

Final Energy of He3

Estimate non-thermal production and destruction rates for D, T, He3, He4, Li6, Li7 Run BBN code Compare theoretical and observational abundances of light elements Constraint on abundance and lifetime of gravitino

ξ_i : number of nuclei "i" produced per one massive particle decay

ξ_i : number of nuclei "i" produced per one massive particle decay

Constraint on Abundance and Lifetime

Constraint on Abundance and Lifetime (2)

Non-thermal Production of Li6

 $^{4}\text{He} + N \rightarrow N' + ^{3}\text{He}, N' + T$

$$T + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n \quad [4.03\text{MeV}]$$
$${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + p \quad [4.8\text{MeV}]$$

Conclusion

Decay products destroy He4, which leads to overproduction of D, He3, Li6
In particular, for hadronic decay, the constraint on reheating temperature is

very stringent

 $T_R \lesssim 10^4 - 10^7 \text{ GeV}$ for $m_{3/2} = 100 \text{ GeV} - 3 \text{ TeV}$