

Ashra報告50: 観測報告及びトリガー開発の現状

13aSD-9

日本物理学会2009年秋季大会 甲南大学岡本キャンパス 東大宇宙線研 野田浩司 for Ashra-1共同研究者

Ashra-1 共同研究者

会田勇一, 青木利文, 浅岡陽一, 安生純^A, P.Binder^B, T.Browder^C, 長南勉, S.Dye^C, R.Fox^B, J.Hamilton^B, 東悠平, 石川巨樹^A, 木村孝之^D, 久世宏明^E, J.Learned^C, 増田正孝, 松野茂信^B, 森元祐介, 野田浩司, 小川了^A, S.Olsen^C, 佐々木真人, 渋谷寛^A, 篠宮浩平^E, 杉山直^F, 矢吹正教, G.Varner^C, 渡邊靖志^G, 渡邉由以^A

- 東京大学宇宙線研究所
- ^ 東邦大学
- ^B Univ. of Hawaii Hilo
- ^c Univ. of Hawaii Manoa
- D 茨城大学
- ^E 千葉大学 CEReS
- F 名古屋大学 G 神奈川大学

Ashra = 全天高精度素粒子望遠鏡 ≫光+電子によって、42度径の視野を1インチ径 にまで縮小する超広角光学系 ≫光電撮像パイプラインとCMOSセンサによる 高精度トリガ撮像

圧倒的な画素コスト効率の実現
 == 未開拓のフィールドに先鞭をつける
 超高エネルギー素粒子天文学
 時間領域の天文学 (transient)

<u>Ashra集光器</u> @ ML Site

平成21年度の目標

昨年度達成項目の継続 光学閃光の広視野監視観測 山かすリタウニュートリノからの チェレンコフ光パイロット観測 > TeVガンマ線の試験観測 トリガー関連の開発項目を最終化 (ファイバ束、HPD、精細撮像センサ) 集光器への実装

> 光学閃光の広視野監視

- トリガーなし
- 2008年6月28日-2009年6月5日の約1年間、
 高効率で実施 = Observation-1と定義
- ▶ タウニュートリノのパイロット観測
 - トリガーあり
 - 2008年10月28日-2009年12月10日
 - 解析 論文執筆中

12FOVで全天の77%を監視

光学閃光監視 Observation-1実績

Fermi は誤差円が大きいので、

Ashra報告52(会田発表)

広視野のAshraに有利

解析については

衛星	時間領域ごとの、視野に入ったGRB衛星トリガー数		
	プリカーサ閃光 (24時間以内)	プロンプト閃光 (T0-contained)	残光 (3時間以内)
Swift	19	3	1
Fermi	16	2	2

VHEニュートリノパイロット観測

"山かすり"v_τからの大気チェレンコフ光を狙う

- ・水、氷よりも大きなターゲット質量
- ・宇宙線バックグラウンドのフィルターとして機能
- v_{τ} を選択的に検出可能 大気 がない。水・氷による v_{μ} 観測(<100PeV)と相補的

PeV-EeV vの初の大気チェレンコフ観測 v検出器で最高の解像度 = v点源の物理への可能性

検出器性能評価

性能評価のための宇宙線観測を実施 視野以外は観測と同じ条件(天頂角は65°)

< シミュレーション>
 CORSIKAシャワー + 検出器 シミュレーション
 1. シミュレーション発生面積 × 検出効率

 → 実効検出面積 (Aeff)

 2. シャワー像からのエネルギー推定

 → エネルギー分解能分布

シミュレーション:1EeV 陽子 (Rp: シャワー軸までの距離)

ニュートリノ観測結果 (Preliminary)

<観測時間> Season5: **75.3時間**(2008/10/28~11/11) Season6:**140.5時間**(2008/11/15~12/10)

メル観測流量の上限 (95% C.L.)Preliminary (w/o syst.)論文執筆中GRB081203Aについて、

- プリカーサ (t₀-2.83時間~t₀-2.13時間) wind-like ISMモデルを仮定 Eφ(E) < 5.4×10⁻⁸[cm⁻²] (<5EeV)
- アフターグロー (24時間後)
 E²φ(E) < 4.3 [erg cm⁻²] (2400sec)

>100PeV点源 に対し、Ashraチェレンコフ 感度は競合可。点源探査は高解像度が優位

Ashraのトリガー撮像

TeV 線観測に向けて

Ashra TeV 線観測の意義

- 広視野:42度径
- 高解像度:数分角
- ブレーザーなどの突発天体の監視 陽子BG除去効率の改善可能性

- < requirements >
- 広視野化
 - ·PMTアレイ HPD 開発完了、実装中
 - *·ファイバー束8層 64層* Ashra報告51(石川発表)
- 高頻度・多チャンネルのエレキ
 - ・LSI 開発完了、実装中 ・FPGA トリガ論理の改善完了、実装中

トリガー関連ハードウェア実装を進めている

まとめ

> 昨年度達成項目の継続

- 光学閃光の広視野監視観測
 高い観測効率 衛星とのコインシデンス事象 解析は会田発表
 山かすりv、からのチェレンコフ光パイロット観測 トリガー制御による宇宙線空気シャワー精細撮像に成功 GRBなどからの 放射流量への制限(論文執筆中)
 撮像パイプライン実証を兼ねつつ、物理成果が出始めている
 TeV 線の試験観測
 AshraでTeV = 高解像度での監視観測
 - PMTアレイでのトリガー撮像に成功
 - 広視野・高頻度化への開発を最終化中 ファイバ東石川発表
 集光器への実装、TeVガンマ線の試験観測へ