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0. Notation and units

In this lecture, Greek indices of vectors and tensors refer to four space-time coordinates,

and Latin ones refer to three spatial coordinates.
v, ... =0,1,2,3 (0.1)
0, 7,...=1,2,3. (0.2)

We use the time-like convention for the metric tensor, that is

G = <+7_7_7_7> (03)

For units, we use so-called natural units. In the natural units the light velocity ¢, the

Planck constant i and the Boltzmann constant kg are all set to unity,
c=h=hkg=1. (0.4)

There is one fundamental dimension which is energy. Furthermore we take GeV as
energy unit ( 1GeV = 1.6022 x 107'°J ). Thus, the standard units of mass, length, time

and temperature are related to GeV in the following way:

e Mass:
g = 5.61 x 10% GeV, (0.5)
GeV =1.78 x 10" * g. (0.6)

o Length:

cm = 5.07 x 10" GeV ™, (0.7)
GeV™! = 1.97 x 10" cm. (0.8)

e Time:
sec = 1.52 x 102 GeV™ 1, (0.9)
GeV™! = 6.58 x 1072 sec. (0.10)



o Temperature:

K =8.62 x 107" GeV, (0.11)
GeV = 1.16 x 10" K. (0.12)

For example, the mass of the sun M, is given by Mg = 1.989 x 1033 g = 1.12 x 1057 GeV.

One important scale is the Planck mass which is defined as

Mg = 1/V87G = 2.4 x 10" GeV. (0.13)



1. Standard Cosmology

1.1. Homogeneous and isotropic space

The standard cosmology based on the following two observational facts.

o The universe is spatially homogeneous on large scales. That means that there is

no preferred locations in the universe.

o The universe is spatially isotropic on large scales. That means that there are no

preferred directions in the universe.

Of coures on small scales we can see inhomogenities such as stars, galaxies and clusters
of galxies. However, if we smooth the universe over about 100 Mpc, the universe looks
homogeneous and isotropic. This was called cosmological principle in the past when
the observations were limited. Now we can observed our universe on scales as large as
0O(1000) Mpe.

There are three types of spatially homogeneous and isotropic space, 1) flat Euclidean
space, 2) space with constant positive curvature and 3) space with constant negative

curvature. It is obvious that the Euclidean space is homogeneous and isotropic.

1.1.1. Flat space

In a flat Euclidian space the element of length d¢ between (z,y, z) and (x+dz, y+dy, z+

dz) is given by the familiar Pythagorean theorem as
dl* = da® + dy* + dz*. (1.1)

In the polar coordinates (r, 0, ¢), x,y and z are written as

z = arcosf, (1.2)
x = arsinf cos ¢, (1.3)
y = arsin @ sin ¢, (1.4)



where we introduce the scale parameter a for later convenience. Then the element of

length (or spatial metric) is given by
de* = a® [dr® + r*(d6? + sin® 0d¢?)) .

1.1.2. Space with positive constant curvature

(1.5)

Space with constant positive curvature is constructed by considering a sphere in 4 di-

mensional Euclidean space. Using Cartesian coordinates (z, vy, z,w), the 3 dimensional

surface of the sphere with radius a is described by
° +y? + 22+ w? = a’
Since 4 dimensional space is Euclidean, the spatial metric d¢? is given by

dl* = dz* + dy® + dz* + dw?.

The surface of the sphere (1.6) is expressed by the following polar coordinates:

W = aCcos X,
z = asiny cosf,
x = asin y sin 6 cos ¢,

Yy = asin x sin #sin ¢.
With use of the above polar coordinate Eq.(1.7) is written as
ar* = a* [dx2 + sin x? (d92 + sin? 6d¢2)} :

Defining r as r = sin y, we obtain

dr = cos xydx = /1 —sin? ydy = V1 — r2dy,

dr?
1—1r2

which leads to

de* = a® [ + 7% (d6? + sin® 0 d¢2)] :

(1.6)

(1.7)

(1.12)

(1.13)

(1.14)

This is the spatial metric which describe homogeneous and isotropic space with positive

curvature. The space is compact and hence called closed.



1.1.3. Space with negative constant curvature
The space with negative constant curvature is constructed by embedding a hyperbola
22+ y* + 22— w? = —ad?, (1.15)
in 4 dimensional psude-Euclidean space with metric
di? = da® + dy® + dz* — dw?. (1.16)

This space is obtained from the constant positive curvature space (Egs.(1.6) and (1.7))

by the following substitution:

a — ia, (1.17)
w = iw, (1.18)
X — ix- (1.19)

Thus, we obtain the spatial metric which describe homogeneous and isotropic space with

negative curvature as
2

de? = >

e + 7% (d6* + sin® 0 do”) | . (1.20)

This space extends infinitely and the universe with such space is called open.

1.1.4. Robertson-Walker metric

Now we know homogeneous and isotropic space and taking into account that our universe

is expanding, the space-time metric of the universe is given by

dr?

2 2 2
dS —dt —a(t) m

+ 7% (df® + sin® 0 d¢?) | | (1.21)

This is called Robertson-Walker metric. Here a(t) is the scale factor which represents

the size of the universe. K represents the spatially curvature as

1 closed universe with positive curvature
K =4¢ 0 flat universe . (1.22)

—1 open universe with negative curvature

From Robertson-Walker metric (1.21) the Ricci tensor is calculated as

Ry = —3-, (1.23)
a
a a? K



where " = d/dt. The Riccu scalar is given by

a a?  a?

.. . 2 K

R=—6 FJFG_JF_}' (1.25)
Let us consider the spatial distance between two points A and B whose coordinates

are A(t,0,0,0) and B(¢,7,0,0). (Without loss of generality, A can be taken as the origin

from homogeneity of the space and we can take angular coordinates of B = 0 from

spatially isotropy. ) The physical distance between A and B is

B r 1
d,,:/ dt=a(t) | ar'—— (1.26)

A 0 1—Kr?
This is called “proper distance”. Notice that the proper distance is given by (coordinate
distance )x (scale factor).
Here we derive the Hubble law which says that distant galaxies go away from us with
velocities proportional to their distances. Suppose that the distance to some galaxy is d
given by

d = a(t) /OV%W (1.27)

If the galaxy is comoving with the cosmic expansion, i.e. their spatial coodinates are

constant, the recession velocity is

- " dr’ a
v=d=a / —— = —d.
0o V1— Kr? a

This shows the distance d is proportional to the recession velocity v with proportional

(1.28)

factor a/a which is called Hubble parameter H. The Hubble parameter is defined as

H(t) = % . (1.29)

Please notice that it is time-dependent. Sometimes the present Hubble parameter is

called Hubble constant Hy whose observed value is
Hy = (67.4+1.4) km/s/Mpc. (1.30)
The present Hubble parameter is often expressed in units of 100 km/s/Mpc as
h = Hy/(100 km/s/Mpc). (1.31)

So the observed value of A is h = 0.674 £+ 0.014.



Another important consequence of the Robertson-Walker metric is that the wavelength
of light increases as the universe expands. Suppose that light emitted at r = r, (0 = ¢ =
0) and ¢t = t. observed at r = 0 and ¢ = ¢, (the present time). From the light geodesics,
d’s =0, and Eq. (1.21)

dt dr
—_— = 1.32
) = VI—Ke (1:32)

Thus, we obtain

/toi__/o—drl _/Te—drl (1.33)
woat) L VI—Kr? o ), 1— Kr? .

Similarly, for light which is emitted at ¢ = t. 4 dt. and r = r. and observed at » = 0 and

t:t0+(5t0, A
0 0 dt Te d /
/ At / __a (1.34)
te+Ote a(t) 0 1— Kr?

Subtracting Eq. (1.33) from the above equation and assuming dt, < t. and oty < to,

we find 5 5
t te
0 T (1.35)
a(to)  afte)
If we take 0t.(dtp) as a period [the time between successive wave crests] of the emitted
(observed) light,
ote vy alte)
5t0 n Ve N a(t0)7

where v, and v are the frequencies of the light at ¢, and ¢y,. Thus, frequency v of light

(1.36)

decreases as the universe expands. In other words, wavelength A\ of light increases as the

universe expands (A o< a). The redshift z is defined as

)\0 — )\ . a(to)
A alt)

z

— 1, (1.37)

where A and )y the wavelengths of the light at ¢ and ¢,.

In quantum theory, the redshift means that the momentum p of a photon decreases
as 1/a because the momentum is given by p = 2wh/\. Actually this applies to a generic
particle with momentum p and mass m. Its momentum decreases as p o< 1/a in the

expanding universe.



1.1.5. Energy momentum tensor

In the homogeneous and isotropic universe the energy momentum tensor takes the perfect

fluid form:
T = p(t), 1.38)
TV = —g" P(t), (1.39)
or
p 0 0 0
0 —-P 0 0
wo_
T = 0O 0 —-P O ’ (1.40)

0 O 0 -P
where p and P are the energy density and pressure of the universe. Using the velocity
four vector u’ = 1, u’ = 0 (four-velocity of an observer who is comoving with the cosmic

expansion), the energy momentum tensor T+ is also written as

T" = —Pg" + (p+ P)u'u”. (1.41)

1.2. Einstein equation

We are ready for considering the Einstein equation which is written as

1

1
GMV = RP«V - —gij = STGTHZ, = M—é

T,
2

iz

(1.42)

where G, is the Einstein tensor, G is the Newton constant and Mg is the reduced
Planck mass (= 1/v87G = 2.4 x 10'® GeV).
Here is a remark on the cosmological term originally introduced by Einstein in 1917.

Including the cosmological term the Einstein equation is written as
1
R, — §gWR — Ag = 87GT,,, (1.43)

where A is the cosmological constant. However, the cosmological term can be absorbed

. . . A . . .
in the energy momentum tensor if we introduce 7}, which is given by

T;fu = _PAguV + (PA + PA)UMU,,, (144)
A

Py=—pr=—-——+ 1.45

A PA R ( )

Rereading T, + T}, as T, Eq (1.43) is reduced to Eq.(1.42).



Now let us derive the basic equations which describe the dynamical evolution of the

universe. From the (0,0) component of the Einstein equation we obtain

a> K
G()() =3 ) + -5 = 87TGT00 = 87TG/), (146)
a a
which leads to
> K 8nG
— 4 == — . 1.47

This equation is called the Friedmann equation. From (i,j) component,

a a® K
Gij = (25 tet —) 9y = 87GTyj = —87GPgy, (1.48)
which leads to
4d7G
4 = —WT(p—l—Z%P)a . (1.49)

Another useful equation is obtained from Egs. (1.47) and (1.48) as follows. First, mul-
tiplying Eq. (1.47) by a? and differentiating it with respect to t,

B G
EY

B G
3

204 = —— (pa?)’

3 aap (1.50)

(pa®)

Using Eq. (1.48) in LHS of the above equation we obtain

(a®p) = —P(a®) | . (1.51)

1.3. Density of the universe

As is seen from the Friedmann equation, the cosmic expansion is determined by the
density of the universe. Let us introduce an equation of state which describes the

relation between density and pressure as
P=wp |, (1.52)

where w is the parameter that specifies the equation of state. Using Eq. (1.52), Eq. (1.51)

is written as

(a’p) = —wp(a®)",

S P aew) ) (1.53)



Thus, we obtain
p ox a0+ (1.54)

This describes how the density (energy) component with w evolves as the universe
expands. In cosmology there are three kinds of important density components: matter,

radiation and dark energy.

o Matter
Matter consists of non-relativistic particles which (mostly) are not in thermal
equilibrium. Since the velocity of matter particles is small, their pressure is almost

zero (P = 0), which means w = 0. So the matter density py evolves as
pm o< a? . (1.55)

This is understood as follows. Since the energy of a non-relativistic particle is
given by its rest mass, the energy density is inversely proportional to the volume

~ a’.

« Radiation
Radiation consists of relativistic particles which are thermal or non-thermal. The
equation of state for relativistic particle is given by P = p/3 (w = 1/3), so the
radiation energy pr evolves as
pr o< a t . (1.56)

The energy of a relativistic particle is given by its momentum which decreases by
redshift or adiabatic expansion [see Eq. (1.109)] as ~ a~!. This explains the extra
factor of a~! in Eq. (1.56) compared with Eq. (1.55).

e Dark energy
Dark energy is an energy component that drives accelerated expansion of the
universe. From Eq. (1.49), the accelerated expansion, d > 0, requires p + 3P < 0,
which leads to

1
w< —= . (1.57)
3
In particular, dark energy with w = —1 is called cosmological constant because it

is equivalent to the cosmological term —Ag,, introduced by Einstein as mentioned

in Sec 1.2. The energy momentum tensor of the dark energy p, with w = —1 is
written as
A
Tw/ = PAGuv = %guu . (158)

10



In this lecture we only consider the cosmological constant as dark energy because
the recent observations strongly suggest the present universe is dominated by some

dark energy and its equation of state is given by w ~ —1. Then, from Eq. (1.54)

pa o< a’ = constant . (1.59)

Let us define the density parameter €2 as

8tGp  p
Q= = — 1.60
3H? pe |’ (1.60)
where p. is the critical density given by
3H?
e = —— 1.61
pe=g o (1.61)

and its present value is p.o = 1.054h? x 10* eV cm 2. Using the density parameter the

Friedmann equation (1.47) is rewritten as

K
H? + — = QH? (1.62)
a
2 _
= Q-1)H*= i (1.63)
Therefore the curvature of the universe is related to the cosmic density as
> 1 +1
Q =1 < K =0 (1.64)
<1 -1

The present abundances of the density components are shown in Table 1.1 and the
fraction of each component is shown in Fig. 1.1. It is seen that radiation (photons and
neutrinos) has large number density but gives a negligible contribution to the energy
density of the present universe. Among known particles the baryons have the largest
energy density which amounts to about 5% of the critical density. As has been known
for a long time, dark matter has a significant density of the universe. Matter ( baryons
and dark matter) accounts for 23% of the present energy density. The present universe
is dominated by dark energy, which amounts to about 67% of the critical density. Sur-
prisingly, the total density of (radiation, matter and dark energy) is equal to the critical
density within observational errors (~ 1%). Therefore, our universe is almost flat.

0

Since the dark energy, matter and radiation evolve as a°, a=® and a~* respectively,

matter or radiation dominates the universe in the early universe depending on the scale

11



baryon 0.1%
\ / neutrino

5%

27%
dark matter

dark energy
69%

Figure 1.1.: Fractions of the density components.

Components Temperature | Number Density | energy density Qo

(K) (em ™) (eV em™3)
photon (7) 2.73 415 0.23 4.8 x 107°
neutrino (v) 1.95 113 x 3 0.052 x 3 1.09 x 107° x 3
baryon (B) — 2.5 x 1077 235 0.049
dark matter (DM) — — 1.16 x 10? 0.265
dark energy (DE) — — 3.85 x 10° 0.686

Table 1.1.: Present density components

factor as shown Fig. 1.2. Let us estimate the epoch ¢, when densities of dark energy and

matter are equal as

-3
Ay
o <—) — O, (1.65)
Qg
where a, = a(t.), Quo and Qyo are density parameters of matter and dark energy

(=cosmological constant). Since €79 = 0.314 and Q¢ = 0.686, we obtain a, = 0.77ay.

In the same way, we can estimate the epoch .4 at which matter density equals radiation

-3 —4
Onno (—) — o (—) , (1.66)
Qg ag

where aeq = a(teq) and Sdgp is the density parameter of the present radiation and Qg =
8.1 x 1075, Thus, we obtain aeq = 2.6 x 10™*qj.

In summary, there are three eras in the history of the standard universe.

one as

e a > a, : dark energy dominated universe (DED).

e a, > a > ae : matter dominated universe (MD).

12



radiation
matter

dark energy

> d

deq dsx do

Figure 1.2.: Evolution of the density components.

* Qe > a : radiation dominated universe (RD).

1.3.1. (Remark) Neutrino mass

In Table 1.1 neutrinos are assumed to be massless. However, experiments reveal that
neutrinos have small masses. If neutrinos have masses, flavor eigenstates (eigenstates for
weak interaction) |ve), |v,), |v-) are different from mass eigenstates |v4), [v2), |v3). Thus,
when neutrinos are produced through weak interaction they are in a mixed state of
mass eigenstates. Since the mass eigenstates propagate with different wavelengths, they
interfere and change the state of the produced neutrinos. Thus, neutrinos change their
flavors periodically during their flight, which is called neutrino oscillation.

The neutrino oscillation was first discovered in 1998 by SuperKamiokande which ob-
served atmospheric neutrinos. The atmospheric neutrinos are produced in the atmo-
sphere of the earth through interaction between cosmic rays (mainly protons) and atoms
(Fig. 1.3). In this interactions many pions are produced and they decay into mu neutri-
nos and muons which further decays into electron neutrinos, mu neutrinos and electrons.
Superkamiokande found that the mu neutrino flux coming from below is smaller than
expected, which means that mu neutrinos change into tau neutrinos during their flight

through the earth. From the observation of the atmospheric neutrinos it was found that

13
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Figure 1.3.: Atmospheric and solar neutrinos

the mass squared difference between mu and tau neutrinos is
Im3 —m3| ~ 2.5 x 107% V2. (1.67)

The neutrino oscillation was also discovered for neutrinos emitted from the center of
the sun (solar neutrinos). In this case electron neutrinos change into mu neutrinos and

the mass squared difference between electron and mu neutrinos is
m; —mi~T7.5x107° eV (1.68)

If neutrino masses are hierarchical like quarks, i.e. mg > mq > my, Egs. (1.67) and
(1.68) imply
ms >~ 0.05 eV, my~87x1072eV, (1.69)

from which the present density of neutrinos is estimated as
pro =~ 113 em™ x (0.05 + 0.0087) eV ~ 6.6 ¢V cm™® . (1.70)

Since the present neutrino temperature 7, ~ 1.9K ~ 1.6 x 10~* €V which is the typical
momentum of the neutrinos is much smaller than the neutrinos masses, neutrinos are

non-relativistic at present. However, their density parameter is
Quo~14x107°, (1.71)

which is much smaller than Qpy o and 25 9. On the other hand, neutrinos are relativistic
for T,, > m, and their contribution to the total radiation density is significant. Therefore,

in almost all cases we can consider neutrinos as radiation.

14



1.4. Solusions of Friedmann Equation

Let us solve Fiedmann equation (1.47). Here we write Friedmann equation as

N\ 2
K 8
(2) + — = §7TG (pA + pv + pR) - (1.72)

a a?

Since our universe is found to be almost flat, we neglect the curvature term K/a?.

Dark energy dominated universe

First, we consider the dark energy(=cosmological constant) dominated universe and for

simplicity we neglect pyy and pgr. Then the above equation is given by

<é>2 — ;FGpA. (1.73)

a

Since p, = const., the equation is easily solved and we ontain

a = agexp

So the universe expands exponentially when the cosmological constant dominates the

universe.

Matter dominated universe

In matter dominated universe (py >> pr, pa) the Friedmann equation is written as

(9)2 = ng,OM = gﬂ'GPM,O <a0)3 = Hi Mo (ao)?), (1.75)

a a a

from which we obtain the following solution:

3 2/3
a = Qo (éHO\/ QMp) t2/3. (176)

Here we set the boundary condition as a(t — 0) = 0. Please notice that in MD era the

scal factor a(t) evolve as

a(t) oc 23 . (1.77)

15



Matter or cosmological constant dominated universe

The more accurate formula is obtained when both matter and cosmological constant give
significan contributions to the total cosmic density as in the present universe. Neglecting

only the radiation component, the Friedmann equation is written as

a\’ a(t)\ ’
(—) = HgQM70 <—) + HgQA70 (178)
a ao
. 3 1/2 —3/2
t t
- 2-m, Q40 (@> + o <ﬂ) : (1.79)
a ag ag
Defining = = a/ay,
d
d_f = Hox Y2y 07° + Qaro] V2, (1.80)
which is integrated with boundary condition a(t — 0) = 0 as
a/ag 71/2
= Ht. (1.81)

0 Qo3+ o

Using the following formula

y1/2dy 9
7 = Zlog(\VP+ VP + A), (1.82)
ViP+A 3

we obtain

Q 1/3 . 3
a(t) = aop ( Ql\/f(())) sinh?/3 [5, /QA,OHOt} ) (1.83)

In the limiting cases of ¢t > H; ' and t < H;y'', the above solution is estimated as

0 1/3
4o (491\//[\’0()) exp [\/QAVOHOt} (t> Hy') (1.84)

a 3 2/3
— <5\/W,oHot) (t < Hy"), (1.85)

Qo
which correspond to the solutions (1.74) and (1.76), respectively.
The present age of the universe ¢ is estimated by setting ¢t = to in Eq. (1.83),

Qo) V? 3
1= : sinh?? | =/Qa.0Holo | (1.86)
Qa0 2 ’
H?

o | (1.87)
VAU o

Using the observed values Hy' = 1.45 x 1010 yr, Qp9 = 0.69 and Qyo = 0.31, the

present age of the universe is estimated as to = 1.38 x 1019 yr.

which leads to

to = sinh ™t

[GSIN )

16



Radiation dominated universe

In radiation-dominated universe the Friedmannn equation is written as

N2
a G
z = .. 1.
(a) 3 PR (1.88)

Since in most cases relativistic particles in radiation-dominated era are in thermal equi-

librium, it is convenient to write pr as a function of temperature. The energy density

Wy
7

of a relativistic particle in thermal equilibrium with temperature 7; is given by

gi : p .
pi = 2y /ddpm (+ boson, — fermion),

{ g1  (boson)

(1.89)

7 w2

L2501 (fermion)

where g; is the degrees of freedom ( spin and particle-antiparticle). The extra factor 7/8

for fermionic particles is derived in the following way. Let us define I](gn) and ]én) with n

* x"dx * x"dx
I — ”“" I = / . 1.90
AT (1.90

integer (n > 2) as

Subtracting I from 13",

*° 2x"dx 1 [ y"dy 1
- = / =— | 2= = 1.91
B F o €@ —1 2 ev—1 2087 (1.91)

where we have used y = 2x in the second eqaulity. Fron the above equation we obtain

the above relation betqween ]](3n) and Ié") as

n ]' n
I = <1 - Q—n) . (1.92)

For n = 3 (case of energy density) the factor 7/8 is obtained.

The total radiation density is written as

7T2

pr=250.T" |, (1.93)

where T is the photon temperature and g, is the total relativistic degrees of freedom,

- Eal7) 20 (F)

boson fermion

(1.94)
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Temperatute G«

<m. [ 2+2 ()"
Me — My, %3
My — My %7
mq, — TH %
TH — M, %7
Me — My %
m,- — 1y %
my —Mw,z %
Mmw,z — My %
mp — My %
my — Tew %
> Tew %

Table 1.2.: Relativistic degrees of freedom. Ty and Tywgs are the temperatures of qurak-
hadron and electro-weak phase transitions.

Most particles in the radiation have the same temperature as photons, i.e. T; = T, but
some particles that are decoupled from the thermal bath at early epochs have different
temperatures. For example, at temperature 7' = 1 MeV the relativistic particles whose
masses are lighter than T are photons(v), electrons (positrons) (e*) and three species

of neutrinos (3v). They contribute to g, as

— 7 7 43
gi= 2 4+ - X 2 x 24+ - X3 x 2 =—. (1.95)
(helicity) " 8 ) (spin) (e®) " 8 ) (3v) (vo) 3

For the particle content of the standard model of paricle physics, g, is caluculated as
shwon in Table 1.2.
In considering the cosmological evolution of the radiation density and temperature, it

is useful to introduce the entropy S. In thermodynamics we have

1 P
- = 1.
dS = Zd(pV) + ZdV., (1.96)

where V' is the volume of the system we consider. We assume that the energy density
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and pressure are functions of 7" only. Then, from Eq. (1.96)

oS 1
W = T(p—l— P) (1.97)
oS  Vidp

from which we obtain the integrability condition as

0?8 o (1 o (Vdp
9TV ~ aT (?“’* P>> ~ v (fd—T) - (1.99)
Thus, we obtain .
dP = = (p+ P)dT . (1.100)

which is applied to Eq. (1.96) as

qs — %d (p+ P)V] - %dP _ %d (p+ P)V] — —(p+ P)dT

—d [@] . (1.101)

So Eq. (1.96) can be integrated as

S = = (p(T) + P(T)). (1.102)

In the case of the universe, the volume is set to equal to a® and the entropy of the

universe is given by

ds = %d(pa?’) + ;da3, (1.103)
S = %3 (p(T) + P(T)). (1.104)

Furthermore, we define the entropy density s as s = S/a®. Since P = p/3, s is given by

_dp 272

= =" g.1T° |, 1.1
T3 457 (1.105)

where g, is the relativistic degrees of freedom for entropy,

Goe = Y i (%)Z% S (%)3 . (1.106)

boson fermion
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From the Einstein equation which describe the evolution of the energy density [Eq. (1.51)]

given by
dlpa®) d(a®)
=—P
dt dt ’

(1.107)
and Eq. (1.103), we obtain
s
dt
Therefore the entropy is conserved and hence the universe expands adiabatically, which

0. (1.108)

leads to
geT?a® = consant. (1.109)

When g, is regard as constant, the cosmic temperature 7" is proportional to 1/a.
We are now ready to solve the Friedmann equation (1.88). Since T' < 1/a and pg is

given by Eq. (1.93) the equation is written as

T 7T29* 1/2 T2

where we have used Mg = 1/v/87G ~ 2.4 x 10'® GeV. The above equation is easily

solved and we obtain

2r?g.\ T Mg
T —2
= 2.3 sec g, '/? (101—0K> , (1.112)
T -2
= 1.7 sec g /2 (m> . (1.113)

Notice that in radiation-dominated universe the scale factor a evolves as

a(t) o< 1/T o< t12 |, (1.114)

1.5. Thermal History of the Universe

1.5.1. Summary

In Fig. 1.4 summary of the history of the universe predicted in the standard cosmology
is shown. In the standard cosmology the evolution of the universe after about 1 sec is
well understood and the following several important events take place from 1 sec to the

present:
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(Hot Universe]

Big Bang
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Background Rad.

Electron-positron
annihilation

P

Established in standard cosmology

Figure 1.4.: Thermal hisory of the universe.

o Neutrino decoupling
In the early universe (¢t < 0.3 sec), neutrinos are in thermal equilibrium via weak
interactions. However, when the temperature becomes as low as a few MeV (¢ ~
0.3 sec) the interaction rate is not large enough to keep neutrinos in thermal

equilibrium and neutrinos are decoupled from the thermal bath.

e FElectron-positron annihilation
When the temperature 7' is larger than the electron mass m., electrons and
positrons are as abundant as photons. They are annihilated and pair-created
and their densities are given by the thermal values. However, at T" < m, electrons
and positrons cannot be pair-created and only annihilations proceed. As a result
positrons disappear in the universe and a small fraction of electrons remain owing

to charge neutrality.

e Big Bang Nucleosynthesis (BBN)
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From t ~ 1 sec to t ~ 10% sec light elements like D, 3He and “He are synthesized.

o Recombination
At t ~ 0.4 Myr protons and electrons form bound systems, i.e hydrogens, which is
called recombination although this is the first time for them to combine. After that,
photons can freely streams without scattering with electrons and are presently

observed as the cosmic microwave radiations.

o Structure formartion
After recombination the large scaled structure of the universe such as galaxies and

clusters is formed from tiny density fluctuations through gravitational instability.

1.5.2. Neutrino decoupling

In the early universe (7" 2 2 MeV) neutrinos are in thermal equilibrium via the following
weak interaction:

Vit +—— et +e (i=eu,1) (1.115)

The number density of the neutrino n; evolves according to the Boltzmann equation,

—2 4+ 3Hn,, = —(ov) (n, —nle) (1.116)

2

vieq 18 the equilibrium number

where (ov) is the thermal averaged cross section and n
density. The neutrino number density is determined by competition between reaction

rate I' and the cosmis expansion rate H. The rate of the weak interaction is given by

[ = (ov) ~ AGHEY) 3<(3)T3 ~ G2T® (1.117)

97 272

where G is the Fermi coupling constant ~ 1.17x 1075 GeV 2, E the energy of neutrinos
and ((3)(= 1.202...) is the zeta function of 3. On the other hand the expansion rate

\ 4

3v

+ N\
/" \

T < 2 MeV

Figure 1.5.: Neutrino decoupling.
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(=Hubble parameter) is given by

T2 29, 1/2
H=1r (ng ) (1.118)

Therefore at high temperatute I' > H and hence neutrinos are in thermal equilibrium
Ny, = Nyeq While nutrinos are diluted by the cosmic expansion n, o a3 without inter-
acting at low temperature. Thus, when I' ~ H neutrinos decouple from the thermal
bath. The decoupling temperature T, determined from I' ~ G313 ~ T3 /Mg ~ H is

Ty~2 MeV |. (1.119)

So the neutrino sector and the photon-electron sector decouple and no energy exchange

happens (Fig. 1.5).

1.5.3. Neutrinos after decoupling

Let us consider their momentum distribution f,(p). At temperature higher than or equal
to the decoupling temperature (T > T,) f,(p) obeys the Fermi-Dirac distribution given
by

1
fu(p) = W -

However, at T' < T, neutrinos decouple from the thermal bath and they freely stream in

(1.120)

the universe. Thus, the momentum of each neutrino is redshifted and hence decreases

as p < 1/a. Thus, the momentum at ¢ > t; (¢4: decoupling time) is given by

a(td)
= 1.121
p Pd a(t) ) ( )
where pg = p(t4). Since the distribution at ¢ = t4 is given by
1
folpa) = —F—~—- (1.122)
exp (%) +1
we obtain the distribution function at ¢ > ¢4 as
1
f) = — (1.123)
exp (i) +1
Here if we define the “neutrino temperature” T, as
t
1, = 7,200 (1.124)

23



the momentum distribution is written as

1
exp (%) +1

Therefore, the neutrino distribution is the same as the thermal one with temperature

fu(p) = (1.125)

T,. Please notice that the neutrino temperature 7, is always proportinal to 1/a after

the neutrino decoupling.

1.5.4. Electron positron annihilation

After the neutrino decoupling, when the cosmic temperature decreases as low as the elec-
tron mass m.(~ 0.511 MeV), elecrons and positrons which are as abundant as photons

start to annihilate each other,
et +e- — 2v. (1.126)

As a result almost all electrons and positrons disappear in the universe. From charge
neutrality the number density of electrons is slightly lager than that of positrons and its

difference is the same as the proton number density, namely,
N — Net =Ny K Ny (1.127)

Thus, a small number of electrons survive the annihilation.
Let us consider the effect of the e annihilation on the photon and neutrino temper-
atures using entropy conservation. The entropy S, in the photon sector at ¢t = ¢; before

the annihilation is given by
5 272 7 3 3
Sy=a] — |24+ - x2x 2|1} = (wmTh)’ — — (T, > me), (1.128)
45 8 5
where Ty = T'(t1) and a; = a(t;). After e* annihilation the entropy is written as
272 272

S-y = CL% 4—5 (2) Tg = (CLQTQ)S — 2 (T2 < me), (1129)

where 5 is some time after the annihilation. Since the photon and neutrino sectors are

decoupled, the entropy in each sector is conserved separately. The conservation of S,
1/3
aq 11
Th=Ty—||— . 1.130
= () (7) a0
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Figure 1.6.: Evolution of the photon and neutrino temperatures.

On the other hand, the neutrino sector is not affected by the e* annihilation, the con-

servation of its entropy S, gives the following relation between T, (t1) = T,; = 11 and

Tl,<t2) = Tygi
T,y =T (ﬂ) =T (@) . (1.131)
(05} (05}

From Egs. (1.130) and (1.131) we obtain

T,=T (i>1/3 . (1.132)

11

Here notice that we always denote 7" as the photon temperature. The photon tempera-
ture relatively increases due to heating by e annihilation while the neutrino temperature
decreases as T, < 1/a (Fig. 1.6).

We know that the present photon temperature is T' = 2.726 K from which the neutrino
temperature is estimated as 7, = 1.95 K. Using the photon temperature the photon

number density is calculated as

R 1 2¢(3)
= 4rp?d =
o <2w>3/0 T Ty =1 2

Similary the neutrino number density per species is estimated as

— §£(3)T3

Nyo — .
s 4 7'('2 v,0

3. (1.133)

(1.134)
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Using Ty = 2.73 K and T,y = 1.95 K we obtain

n,o =415 cm™ | (1.135)
n,o =113 cm™® . (1.136)
1.5.5. Big bang nucleosynthesis

Big bang nucleosynthesis is the process by which helium 4 (*He) nuclei are synthesized

from neutrons and protons in the early universe (7'~ 1 MeV — 10 keV),
2p+2n — “‘He. (1.137)

In the process small amounts of other light elements like deuterium (D), helium 3 (*He)

and lithium 7 ("Li) are also produced.

Fixing n/p ratio

At high temperature 7' 2 1 MeV, protons(neutrons) are changed to neutrons(protons)

via the following weak interactions:

Vetn «— p+e (1.138)
et +n —— pti, (1.139)
n<+<— pt+e +70, (1.140)

The rate of the above reactions is given by I' ~ G%T°. When the reaction rate T is

larger than the expansion rate H, the chemical equilibrium is established and we have

Hue & fn = fhp + fle= (1'141)

Wy

where p; is the chemical potential of particle “4”. The equilibrium number density of

proton(neutron) is written as

3/2
m (n)T
Np(n) = (pT) exp [=(Mp(n) = tp(m))/T)] - (1.142)
Thus, the neutron-to-proton ratio is

(@) = exp [—m”_mp_“"+“p . (1.143)
Mp ) eq T
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The electron chemical potential is related to the difference between number densities of

electrons and positrons as

Ne——" = / pdp L L
e~ et — 75 -
212 Jo exp((v/p? +mZ — pe)/T) + 1 exp((y/p* +mZ + pe) /T) + 1
(1.144)
where pto = pte- = — e+ and g, is the spin degrees of freedom. When 7" > m,
_ Ye 73| _2H %
Mo —mes = 25T {7? T+ <?> } . (1.145)
From Eq. (1.127)
pe T?
M = Mov 22 5= Ky~ T, (1.146)

which leads to p./T < 1. So the electron chemical potential is negligible in Eq. (1.141).

Moreover, if we assume p,, /T < T, the condition for chemical equilibrium is written as

Hp = [t (1.147)

from which Eq. (1.143) is rewritten as

Ny, My — My
— = —_— . 1.14
(np>eq P |: T 1 ( 8)

Since the neutron mass is slightly larger than the proton mass m,, —m, = 1.293 MeV, the
chemical equilibrium predicts that the neutron-to-proton ratio is less than 1. However,
the weak interaction rate decreases as the universe cools down, and the weak interaction

freezes out at I' ~ H. The freeze-out temperature is estimated as Ty ~ 0.7 MeV, which

Ny, My — My 1
— ] = — |~ = . 1.149
(np)f o [ Ty } 7 ( )

Since most of neutrons existing at 7y form *He, the *He abundance Y, is estimated as

leads to

e 2 n
y, =28 T 095, (1.150)
0B N, + Ny

Thus, the 25% of baryons are synthesized to *He. Fig 1.7 show the precise calculation

of the neutron-to-proton ratio.
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Figure 1.7.: Evolution of neutron-to-proton ratio.

Deuterium bottleneck

After the neutron-to-proton ratio is fixed by freeze-out of the weak interaction, the next

step towards helium synthesis is formation of deuterons via
p+n +— D+~. (1.151)

At high temperature T 2 0.1 MeV, the background photons have energy high enough to
destroy the synthesized deuterons whose binding energy @p is small (Qp = 2.22 MeV).
Thus, the D production does not take place effectively and hence the nucleosynthesis
does not proceed by this obstacle (deuterium bottleneck). The deuteron production

proceeds when the temperature decreases as low as 0.1 MeV,

p+n — D+~. (1.152)
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Helium synthesis

After formation of D, “He is produced by rapid nuclear reactions, e.g. the following

successive reactions:

D+D — PHe+n (1.153)
SHe4+n — *H+p (1.154)
SH+D — “*He+n. (1.155)

Through the reactions (1.152)—(1.155) most of neutrons existing at 7' ~ 1 MeV form *He
nuclei and small numbers of D, 3He and *H nuclei are produced as by-product. (Later,
3H decays into *He + e~ + v, with lifetime 17.8 year.)

Heavier elements are hardly produced in BBN because no stable nuclei with mass
number A = 5 or 8 exist in nature and Coulomb barrier becomes significant. However,

only a tiny amount of “Li nuclei are produced through the reaction,

‘He+*H — TLit+y (1.156)
‘He+°*He — ™Be+y (1.157)
N "Bete” — Lit v, (1.158)

The abundances of light elements depend only on baryon-to-photon ratio,

ns = -2 |. (1.159)
Ny

Fig. 1.8 shows the theoretical prediction for abundances of He, *He, D and "Li together
with ranges of observed abundances. From this figure it is found that the BBN predic-
tions for *He and D are consistent with the observed abundances for np ~ 6 x 1071°,
Therefore, the BBN can determine the baryon density of the universe. As for “Li abun-
dance the BBN predicts too large a value if we take ng ~ 6 x 107!, which is called

“lithium problem”.

1.5.6. Recombination

When the cosmic temperature is about 3000 K (¢ ~ 0.38 Myr), electron and protons

combine to form hydrogen atoms as

p+e — H4+~v. (1.160)
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Figure 1.8.: Abundances of *He, 3He, D and 7 Li predicted by BBN. The yellow bands shows
95% CL range of observed abundances [1].

This process is called recombination following the astrophysics convention although this

is the first time for them to combine. Let us neglect *He for simplicity. Then,

ng =n,+ny , (1.161)
Ny = Ne - (1.162)

Since the chemical equilibrium is established at the beginning of the recombination, we

have the relation among the chemical potentials as

[t = fle + fip - (1.163)
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Here notice that that the chemical potential for photons is zero. Since the electrons,

protons and hydrogen atoms are non-relativistic, their number densities are given by

A 3/2 i — My
n; = gi (m ) exp (M m ) t1=e, p, H, (1.164)

2T T

where g; is the spin degree of freedom (g, = ge = 2,9n = 4). From Egs. (1.163) and
(1.164) we obtain

—3/2 —3/2
( nH ) _ g (meT) exp (mp+me_mH) _ (meT) eB/T 7 (1165)
NpNe /) oq  Ye9p 2 T 2

where B(= m, + m, —mpu = 13.6 V) is the hydrogen binding energy.

Using the ionization fraction defined by

=" _ T (1.166)
np np
Eq. (1.165) is rewritten as
1 — Xeq m I\
= . 1.167
(Xeq)? nB( 21 ) ‘ ( )
Since the baryon number density np is written as
2¢(3
ng = Npn, = 3(2 )T3nB . (1.168)
the ionization fraction satisfies the well-known Saha formura,
1— Xoq 42 T\*?
4 — \/_C(?’)nB — ) BT (1.169)
(Xeq)? VT Me

Figure 1.9 shows the evolution of the electron fraction X, = n./(ng +n,) ~ X. It
is seen that the recombination takes place around T' ~ 4000 K= 0.4 ¢V (z ~ 1300).
The temperature T,.. when the recombination takes place is significantly lower than the
hydrogen binding energy 13.6 eV. This comes from the fact that the number density of
photons is much larger than that of baryons. Even if hydrogen atoms are formed the
background photons with energy larger than B can ionize them, and such high energy
photons are sufficiently abundant unless the temperature is much lower than the binding
energy. Thus, recombination does not proceed effectively until the temperature becomes

as low as ~ 0.4 eV.
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Figure 1.9.: Evolution of the ionization fraction. The fraction X, is larger than 1 at high
temperature because *He is taken into account.

As recombination proceeds the free electrons and protons rapidly decreases and hence
the recombination rate becomes smaller than the cosmic expansion rate. In that case
the Saha formula is no longer satisfied and the ionization fraction is frozen out. Since
the recombination and the expansion rates are proportional to Xnp o< XQph? and
p'/% o< (Q0h?)Y/2, respectively. So the freeze-out ionization fraction X is proportional
to Qllw/g (Qph), more precisely
Do

X~ 107 i
f 3 x 10 QBh

(1.170)

Because free electrons almost disappear due to recombination, the mean free time 7

of the background photons for Thomson scattering becomes long as

T —

1/ T \°
~ 4 x 102 — 1.171
oM, X 107 sec X (103K) ’ (1.171)

where or(= 6.6 x 1072°cm?) is Thomson cross section. The mean free time is longer

than the cosmic time which is given by

2 s (TN
o~ gHngMt/2 (77) ~ 8 x 10" sec (
0

~3/2
1.172
1O3K) ’ (1.172)
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for T < 10% K and X ~ 10~ Here we have used Eq. (1.76) and T o< 1/a. As a result
the background photons freely streams without scattering off the residual background

electrons and they are observed as the cosmic microwave background (CMB).
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2. Inflationary Universe

2.1. Problems of the Standard Big Bang Model

As we have seen the previous chapter, the standard big bang model is very successful in
describing our universe at ¢t = 1 sec. However, if the standard big bang model is applied

to the very early universe it is confronted with several problems listed below.

o Flatness problem

o Large entropy problem

o Horizon problem

e Monopole problem

o Gravitino problem

o Origin of the density fluctuations

Most of theses problems are found to be solved by the inflationary universe.

2.1.1. Flatness problem

The flatness problem comes from the observational fact that the present universe is close
to flat about 13.8 billion years after the big bang. This is quite unnatural if you consider
how the flatness of our universe evolves in time.

Let us begin with the Friedmann equation,

(9)2+5:%p_ (2.1)

a

Using the Hubble parameter H = a/a and the density parameter Q = (8/3)mGpH 2,

the above equation is written as

K
H? + 5= QH? . (2.2)
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Since {2 = 1 corresponds to the flat universe, we can define the “flatness” parameter as

K
Q1= —0s. (2.3)

From Egs. (1.77) and (1.114) a®*H? evolves as
alocT (MD)
a?>ocT? (RD)

, (2.4)

in matter or radiation dominated universe, respectively. Thus, the flatness {2 — 1 evolves

as

a>x T~ (RD) (25)

Since we know that at present 2y < 0.01, we can obtain the flatness at the Planck

acxxT™' (MD)
-1

time (= Mg') which is the earliest time when the classical description (i.e., Einstein

equation) can be applied to the universe,

To\ [ To\ > 10-13GeV\ [/1079GeV > ~
Q—1/<001(=—)(=2) =0.01 ~ 1079 2.
| 500 <Teq) (Tpl> 0.0 ( 10-9GeV 10'8GeV 0 29

MD RD

where T, is the temperature at the matter-radiation-equality time. Eq. (2.6) shows
that the universe should be extremely flat with accuracy 107%° at the Planck time. This

requires an unnatural fine tuning.

2.1.2. Large entropy problem

Let us estimate the entropy S inside a sphere with curvature radius of the universe.!

Since the curvature radius is given by a/+/[K], S is written as

3
) a 1 3/2 1 3/2
Sl — | s=|—+—| s=|—5——| 50, 2.7
(Nﬁym) =] o lmmel 20

where we have used Eq.(2.3) and entropy conservation (S = Sp).

The present entropy density is estimated as

272 7
0= "5 (2 T3, + 5 X2x3 Tjo) (2.8)
= 171572, = 2.8 x 10* cm ™ (2.9)

Tn our convention S = S since |K| = 1. However, we can rescale a, r and K as a — fBa, r — 37 1r
and K — B?K (B: a constant) without changing Robertson-Walker metric. In that case K takes
an arbitrary value and the spatial curvature radius is given by a/+/|K|.
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With use of the present Hubble radius H; ' ~ 4000 Mpc = 1.3 x 10 ¢cm and Q) — 1] <
0.01, we obtain
S > 10%. (2.10)

Therefore, our universe has unnaturally huge amount of entropy. This is the large
entropy problem. It is noticed that the large entropy problem has the same origin as

the flatness problem because both are based on Eq.(2.3).

2.1.3. Horizon problem

Horizon

There are two types of horizons in cosmology; one is the particle horizon and the other
is the event horizon. The particle horizon ¢y is the maximum travel distance of light
from ¢t = 0 to t. The geodesics of light is given by ds? = 0. From the Robertson-Walker
metric [Eq. (1.21)]

dr? dr dt
Tk | I k? ald)

where we assume that the light travels in the ¢ = 6 = 0 direction. Thus, the particle

ds® = 0= dt* — a(t)? (2.11)

horizon is given by

dat’

talt) = alt) /0 " V%W — a(t) /0 t e

where 7y is the coordinate distance for the particle horizon. For a(t) oc t™ (0 <m < 1),

¢ { 2t (RD)

(2.12)

we obtain

=13 o) (2.13)

=1 =
As is seen from the definition the particle horizon is the maximum distance within which
causal relations are established and hence it is very important in cosmology.
The event horizon fy, is the maximum travel distance of light from ¢ to tax. tmax 1S
the maximum time if the universe lasts for a finite time or infinity if the universe exists

forever. (g, is given by

tmax dt/

le(t) = a(t) /t | (2.14)

A finite /g, is obtained for de Sitter universe whose scale factor evolve as a exp(Ht)

with H constant,

> ;1
e = e /t dt' e = 7 (2.15)
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Figure 2.1.: Horizon problem.

If some event happens outside of the event horizon at the time ¢’ > ¢, we never know
the event.

Another useful scale related to the horizon is the Hubble radius given by H~! which

Lot [ (®D)
HH) = _{ 3t/2 (MD)

for the universe with a o< t™. So the Hubble radius is roughly equal to the particle

is written as

(2.16)

horizon if a o< t™, and equal to the event horizon for the de Sitter universe.

Horizon problem

The horizon problem is closely related the fact that the observed CMB radiation is highly
isotropic, which apparently violates causality. Suppose CMB photons coming from the
opposite directions. These photons are emitted from the space-time points P and Q at
the recombination epoch t,. and observed by the observer at O as shown in Fig. 2.1.
In the figure O’ is the point at ts. with same spatial coordinate as O. Using Eq. (2.11),
the proper distance PO’ is given by

o at’ o dt’
dpor = a(trec — o~ t2/3/ — o~ 3 23l 2.17
PO a( >/trec Cl(t/) rec - t/2/3 rec “0 ) ( )

where we assume that the universe is matter dominated from ¢,.. to ty, and used tg > t,ec

at the last equality. From symmetry the distance between P and Q is dpq = 6202 t(l)/ 3,
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On the other hand, the particle horizon at t,e. is
dn = 3 trec - (2.18)
The ratio dpq/dy is evaluated as
wea() (k) (ER) e ew

Therefore, the points P and Q which are far away and have no causal relation emit

photons with same intensity. This is unnatural and called the horizon problem.

2.1.4. Monopole problem

So far we have considered the rather conceptual problems in the standard big bang model.
The next problem we discuss is the monopole problem which is a more practical one. The
standard model of particle physics is based on gauge theory with SU(3) x SU(2) x U(1)
symmetry, where SU(2) x U(1) is the symmetry of the electroweak theory unifying
the weak and electromagnetic interactions. The idea of unification naturally leads to
the grand unified theories (GUTs) which unify the strong and electroweak interactions
within the framework of a gauge field theory based on a symmetry group G e,g, SU(5)
or SO(10). It is expected that the group G is spontaneously broken to SU(3) x SU(2) x
U(1) at low energy by Higgs mechanism. In general when a spontaneous symmetry
breaking takes place topological defects are produced through the Kibble mechanism.
The topological defects are classified to domain walls, strings and monopoles which are
two, one and zero dimensional objects, respectively. When G — SU(3) x SU(2) x U(1)
occurs monopoles are formed.
To understand the spontaneous breaking let us consider a simple real scalar fields ¢
with potential
V(9) = Ao — v*)* + cT?¢” (2.20)

where the second term represents the finite temperature correction with ¢ and A con-
stants. This potential has a Zy symmetry (¢ — —¢). At high temperature (7" > v) the
potential has the minimum at ¢ = 0 (Fig. 2.2(a)), and Z, symmetry is not broken. On
the other hand at low temperature ¢ takes v or —v (Fig. 2.2(a)). The vacuum (¢) = v
is not invariant under ¢ — —¢, so Z, is broken.

When the symmetry breaking occurs, some regions take the field value v and other

regions takes —v as shown in Fig, 2.2(b) because ¢ takes v or —v with equal probability.
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Figure 2.2.: (a) Potential V(H) and (b) formation of domain walls.

Since the field should be continuous there should be a boundary region where the field
value takes ¢ ~ 0 and hence has a large potential energy. In the case of the real field
with Z5 the boundary region is two dimensional and called domain wall.

For a spontaneous symmetry breaking like G — SU(3) x SU(2) x U(1) a point-like
defect called monopole is formed (Fig. 2.3). The size of the region where the scalar field
aligns is called coherent length £&. The monopole number density is larger for a shorter

coherent length, which leads to .

i g (2.21)

Let us estimate the cosmic monopole density. Since the coherent length cannot exceed
the horizon, ie, & < g = 2t;, the number density at the formation epoch (t¢) is given

b
Y 1

> — . 2.22

After formation the monopoles are diluted as oc a™2.

Since the entropy density s(=
272 /45 g, T also decreases as a2, the ratio ny/s (s: entropy density) is constant and

is given by

ny 1 (202 N\ w18 7 \°
M - (2T = g2t o8 =L 2.23

Here we have used t = (45/27%g,)"/?Mq/T. The phase transition takes place at the
GUTs scale (Tt ~ 10'® GeV), which leads to

M > 6% 1078 (2.24)
S
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Figure 2.3.: Formation of a momopole.

At present sy = 2.8 x 103 em ™ and the monopole mass is my; >~ 1017 GeV (see, Sec. A.1),

so the monopole density is given by

pm 2 1.6 x 10"GeVem ™ | (2.25)

-3

which is much larger than the present critical density p.o ~ 5 x 1075 GeV ecm™ and

hence contradicts the obserbation. This is called the monopole problem.

2.1.5. Gravitino problem

One of promissing ideas beyond the standard model of particle physics is supersymmetry
which is a symmetry between bosons and fermions. In supersymmetry every bosonic

(ferionic) particle in the standard model has its fermionic (bosonic) superpartner. For

example,
v (photon) <= 4 (photino) (2.26)
g (gluon) <= ¢ (gluino) (2.27)
e (electron) <= ¢ (selectron) (2.28)
q (quark) <= ¢ (squark) (2.29)

The gravitino is the sperpartner of the graviton which mediates gravity,

g (graviton) <= 1, (gravitino) . (2.30)
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In the standard big bang universe gravitinos are in thermal equilibrium at the Planck

time and their number density ny/3 is given by
Ng/3 ~ Ny . (231)

The gravitino mass mg/, is expected to be O(1) TeV in some class of models and the
lifetime of the gravitino is very long because the gravitino interacts with other particles

olny through gravity. The lifetime for ¢, — v + 7 is

mg/2 -3
~ 4 x 10° ( ) , 2.32
T2 = TR\ T ey (2:32)

Thus when the gravitino decays the ratio of the gravitino density to that of the back-

ground photons is estimated as

P3/2 N mg/213/2
Tn,

ms /2 1TeV
Tdecay keV

>1. (2.33)

Py ldecay decay
This means that huge entropy is produced by the gravitino decay, which dilutes the
baryon density. Since the baryon density should be ng/n, ~ 107! at the BBN epoch,
the present baryon density becomes much smaller than the observed value. This is the

gravitino problem which was first pointed out by Steven Weinberg.

2.1.6. Origin of the density fluctuations

The large scale structures such as glaxies and clusters obserbed at present are thought
to be formed from initial small density fluctuations which grows through gravitational
instabilities. How are those density fluctuations created in the eraly universe? In oreder
to get feeling about the epoch when the density fluctuations are produced let us consider

the fluctuations with galaxy scale. The typical mass of a galaxy My, is about 10" M,
Mgy ~ 10 M, . (2.34)

On the other hand, the matter mass inside the horizon My is given by

4m T\* 327
My = pra—-(26)° = peoo | 7 ) —1t° - 2.35
1= g (20 = peafua (1) (239
Here we assume that the universe is radiation-dominated. Using Eq. (1.111) we ontain
321 /45 \** M0,

My = —~ —E 0o 177 2.36
173 (27r2g*) T3 MO (2.36)

£\ 32
~ O.QM@QNLO (—) s (237)

sec
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where g, = 2.34. The galaxy scale becomes equal to the horizon scale when My, ~ My,
which happens at tg, ~ 4 x 10 sec. Since we do not know any mechanism to produce
density fluctuations at ¢ 2 ¢4, we should suppose that the density fluctuations are
produced at t < tg,. This means that the size (or wavelength) of initial fluctuations
responsible for galaxies is much larger than the horizon. However, it is impossible
for some physical process to produce density fluctuations whose size is over-horizon.
Therefore, it is difficult to explain the origin of the density fluctuations in the standard
big bang model.

2.2. Success of inflationary universe

The most of the problems discussed are solved if there exist a period of accelerated

expansion (= inflation) in the very early universe. The universe that experiences the

period of accelerated expansion at its early stage is called inflationary universe.
Suppose that the universe is dominated by the vacuum energy p,. Here the vacuum

energy is a term in quantum field theory which is the same as the dark energy with

w = —1. In this case, taking into account that p, is constant, the Friedmann equation
N\ 2
a 8T
- =—Gp, 2.38
(%) = (2.38)

has a simple solution

3 1/2 1/2
a(t) o< exp(Hingt), Hine = {—G V} S . (2.39)

3 - V3BMg

Thus, the universe expands exponentially. There are the following two points in the

inflationary universe:
 Existence of the quasi-exponential expansion (= inflation).
o Reheating of the universe after inflation.

Here reheating is the process where the vacuum energy converts to the hot radiation

after inflation.

2.2.1. Flatness problem

Let us see how the inflationary universe solves the flatness problem. We suppose that

the universe exponentially expands from ¢; to t; and it is radiation dominated after
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Figure 2.4.: Timeline of inflationary universe.

inflation until the equal-time ¢, after which the matter dominated universe follows (see

Fig. 2.4). During inflation the scale factor expands as
a(t) = a; exp[Hine(t — 1;)] , (2.40)
where a; = a(t;). At the end of inflation the scale factor increases by

a
Z ==L = exp[Hiu(ty — t;)] = exp|(HisAt)] . (2.41)
Now let us calculate the flatness parameter |2 — 1|. If the flatness at ¢; is |2 — 1]; the

flatness at the end of inflation is given by

a;H; \*
Q-1 = [ 22 -1, 9.42
-1l = (25 ) 2=, (2.42)

where H; = H(t;) and Hy = H(ty). Since the Hubble parameter H is constant during
inflation, H; = Hy = Hiys, and we obtain

2
a; 1

Q—1l=(= Q-1 = =0 —-1|, . 2.4

Q-1 (af)| = 12 -1 (2.43)

After inflation the evolution of the flatness is the same as the standard universe, so the

present flatness is estimated as

QO 1]y = “a) g1 2.44
-t () () 0= (2.41)
106GeV \* / 1079GeV 10%4
— Q-1 = —|Q -1, 2.4
(109Ge\/) (1013Ge\/) | =7zl i (2.45)

where we tale Ty = 10'% GeV. We obtain the present flatness |Q — 1o ~ 0(0.01) for
HineAt 2 65 even if |Q — 1|; ~ O(1). Hereafter, we call H;,;At the total e-folds of
inflation denoted as Ni.;. More precisely, the total e-folds is given by

Ly tr ¢ tr d1
Nmt:/ Hdt:/ gdt:/ “Cat =1L (2.46)
t t; a oo dt

a;

i
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Thus, the flatness problem is solved in the inflationary universe. The point is that
‘H = H(t)a(t) is a increasing function during inflation.
2.2.2. Horizon problem

Next let us consider the horizon problem. For this end we consider the evolution of the
region whose size Ly(t) is equal to the particle horizon at the beginning of the inflation
t; as

Ly(t;) ~t; . (2.47)

This region is enlarged during inflation and its size at the end of inflation is given by

After inflation the region is further enlarged by the cosmic expansion and at present

a(to)
a(ty)
If reheating occurs soon after inflation, the reheating temperature Ty is given by
7T2g* (tR)Té
y = ————= 2.50
p 30 (2.50)

where tp the reheating time. After reheating entropy is conserved, so we have

21295, (tr)Taa(tr)? _ 212 gg. (to) Toa(to)?

2.51
45 45 ) (2.51)
which leads to
a(to) \ _ 9s:(tr)/°Tr _  (100)'°101GeV . 1o (2.5
alty)) - gselto) Ty (A3/1M 3 x 107V ’ '

where we have used Tg = 10 GeV and gg.(tg) ~ 100. As for t; we make a rough

estimation as

_ V3Mg

ti~ H(t) ™ o (2.53)
V3 x 2.4 x 10¥GeV o X
) ~ 107GV ~ 10" em . 2.54
(m2g.(tr)/30)1/2(1016GeV)?2 ¢ cm (2.54)
Here we have used Eq. (2.50). Thus, we obtain
Lu(to) ~ 10Z cm . (2.55)
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Figure 2.5.: Gravitino production.

On the other hand, taking into account that photons from the most distant universe we
can see were emitted at the recombination epoch, the size of the observable universe is
given by

L (to) / ot to ~ Hy' ~ 107 (2.56)
obs = Q _— ~Y [ad cm . .
b. 0 - a(t) 0 0

If Lons < Ly the observable universe was once inside the horizon. This happens if
sufficient duration of inflation, i.e. Ny = HinAt > 62 is realized. Thus, the horizon

problem is solved by inflation.

2.2.3. Monopole and gravitino problems

The monopole problem is solved because monopoles existing before inflation are diluted
by a factor exp(—3N) < 107%5. Therefore there are no monopoles in the present universe.

In the same way gravitinos existing before inflation are diluted away. However, the
situation is a little complicated. Gravitinos are also produced thermally during reheating
after inflation by, e.g. scattering of quarks (¢+¢ — g+1,,)(Fig. 2.5). The number density

of the secondarily produced gravitinos at reheating is estimated as

1 M, T3
713/2 ~ ngaH_l ~ 10_2T16%M%T—}2§ ~ 10_2MIZ’ s (257)

where n,(~ T3) is the quark number density, o(~ 1072/MZ) is the cross section, and
T is the reheating temperature. So the gravitino-to-entropy ratio ngs,/s is given by
n3/2 n3/o 4 TR _12 TR
—= ~ ~ 107" — ~ 10 — ] . 2.58
s 10273 Mg (1010Ge\/ ( )
For gravitinos with mass about 1 TeV, this leads to entropy production when they decay.
At the decay time

@ - mg/ang/2 - 10711 1 TeV TR (2 59)
Thaecay My 1 keV \ 1010GeV / ’ '

P~ decay
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Figure 2.6.: Constraint on the reheating temperature from BBN.

where we have used n, >~ s/7 at T < m.. In order for gravtinos not to produce
large entropy the reheating temperature Tk should be smaller than about 102 GeV.
Furthermore, energetic particles such as photon and gluons produced in the gravitino
decay can destroy the light elements (*He, *He and D) synthesized in BBN, from which

we obtain the more stringent constraint on the reheating temperature,
Tr $10° GeV  for mzps ~ 0.1 — 40 TeV , (2.60)

as seen in Fig. 2.6.

2.3. Chaotic Inflation

In this section, we consider a chaotic inflation model as a concrete model of inflation.

The chaotic inflation model is the simplest among many inflation models proposed so
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Figure 2.7.: Potential of chaotic inflation.

far and inflation takes place by one real scalar field with Lagrangian

L= 0,606~ V(0) (2.61)
V() = %mW : (2.62)

where m is the mass of the scalar field. The potetila V(¢) is shown in Fig. 2.7. In
general, the potential V' for chaotic inflation can be

_ A9
- nMg_4 ’

V(¢) (2.63)

where A\ is the coupling constant. Hereafter, we call a scalar field which causes inflation

inflaton.

2.3.1. Chaotic condition in the early universe

First, let us consider the initial condition at the Planck time. The Heisenberg uncertainty

between energy and time implies
AE At 2 1. (2.64)

Let us apply this relation to the inflaton field. The uncertainty of the energy density of

the inflaton is estimated as
AFE S 1

AP 2 NTE

(2.65)
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where L is the size of the region we consider, but it must be smaller than the horizon,
so L <0y = Mg"' (¢,: Planck length). In addition, At should be less than t, = Mj".

Thus, we obtain

Ap~ Mg |. (2.66)

This is called the chaotic condition in the early universe and means that the inflaton
field at the Planck time has energy density of M¢.
From the Lagrangian (2.61) the energy momentum tensor is written as

T = 5137000 = ke = 0,000 = gL (2.67)
where the metric is g, = diag(1, —a?, —a?, —a*). The energy density of the inflaton is
then given by

po=Too = 5(06) + 5500’ +V(9) (269)
where the first, second and third terms are called kinetic, gradient and potential energies,
respectively. (Notice that 8'¢d;¢ = —(1/a?)0;$0;¢ ....) From Eq. (2.66) we expect

(Bo9)? ~ M (2.69)
o (00)? ~ M (2.70)
V(g) ~ M . (2.71)

In particular, for V = m?$?*/2 the initial value of the inflaton, ¢; satisfies m?¢? ~ M¢
which leads to )

M
¢i ~ —< > Mg for m < Mg . (2.72)
m

Thus, the initial value of the inflaton is much larger than the Planck scale at the Planck
time.
2.3.2. Cosmological evolution of the inflaton

If the inflaton field ¢ dominates the energy density of the universe, from Eq.(2.68) the

Friedman equation is written as

(9)2 = 3]\14é (%¢2 + 2_;(3@)2 + V(¢)> : (2.73)

a

On the other hand the equation of motion for ¢ is derived from the action
S = /d4x vV—g9L = /d4x a’L (2.74)
1
= /d4$ a® (ég“”ﬁuqﬁ@uqb — V(gb)) , (2.75)
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from which we obtain

S _o (8(a3£)) 9(a*L)

3o \0(9,0) 09
, av
= 0,(a""0,0) + o'
3 3 -2 5dV
Thus, the equation of motion is given by
- a-. 1 av
¢+35¢—?A¢——%. (2.77)

Let us suppose that there is a region with size O(Mg") where (9,¢)? < V(¢) and assume
that ¢> < V and ¢ < dV/d$. Then, Eqs.(2.73) and (2.77) are

N 2
a 1
- =—=V 2.78
(%) - mpve 279
a - av
Zh=—"" 2.
Here we neglect terms with spatial derivatives because they decay as 1/a?. From
Eq. (2.78)
: 14 1/2
a V3Mg
which is substituted into Eq. (2.79),
L V2 dv
3p———— = —— . 2.81
v L 4 (2.81)
For the inflaton with potential V(¢) = 3m?¢?, we obtain
Y
= ——mMg , 2.82
¢ /3 Me (2.82)
from which the solution is given by
V2
= ¢ — —=mMeg(t —t;) , 2.83
with initial condition ¢(t;) = ¢;. Using this solution in Eq. (2.78), we obtain
a m m V2
B = i — —=mMg(t —t;)| . 2.84
a \/BMng \/EMG ¢ \/g G( ) ( )
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This can be easily integrated as

n% \/_MG [@( t;) — %mMG(t - tz-)ﬂ (2.85)
4M2 (67 — %) - (2.86)

Finally we obtain
a = a; exp [4M2 (ch ¢2)} ) (2.87)

2.3.3. Slow roll condition

In solving dynamics of the inflaton we have assumed that ¢2/2 < V and |¢| < |dV/dd|.
We now derive the condition for which these inequalities are satisfied. This condition

is called slow roll condition. First let us consider the condition for ¢* < V. From

Eq. (2.79) o

=g '=dv/d 2.
o —om  (VI=dV/de), (2.88)
which leads to . (V’) (V/)
¢ = M 2.
2 = s~ gy Me<V (2.89)
Introducing the slow-roll parameter € defined as
1/V\?
€=3 (7> Mg |, (2.90)
$2/2 < V is satisfied if
e<1. (2.91)

Nest let us consider |@| < |dV/d¢|. Differentiating Eq. (2.88) with respect to t,
V” V’H V'V V'H

b ——— : 2.92
O~ —gm+ ofz T 3me (2.92)
From Eq. (2.78),
: Vv’ (V)2
2HH ~ o~ 2.
3M2¢ IMZH "’ (2.93)
which leads to _ ) ,
H V') (V') o
_ = M == . 2.94
2~ ISMZHY  2v2 ¢ ¢ (2.94)
Using this relation, ¢ is written as
. e
o=V <3VMG + e) . (2.95)
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Therefore, || < |dV/d¢| is satisfied if
<1, (2.96)

where 7 is another slow-roll parameter defined as

V//

n= VMé . (2.97)

When the slow-roll parameters € and || are much smaller than 1, the inflaton so slowly
rolls down the potential that the potential energy is almost constant, which drives in-
flation. Conversely, inflation ends when € ~ 1 or |n| ~ 1.

So far we have derived the slow-roll condition for a generic inflaton potential. Let us
calculate the slow-roll parameters for chaotic inflation with potential V' = m?2¢?/2. ¢

and 7 are given by

1/ m?¢* \*_ , 2M2
2 2M2
Ly G (2.99)

T= e T T

Both slow-roll parameters are much smaller than 1 when ¢ > v/2M. This is perfectly

consistent with the initial chaotic condition which predicts the initial value of the inflaton

o; as

1 M,
V= §m2¢3 ~ Mg = P~ (—G) Mg > Mg form < Mg . (2.100)
m

Thus, chaotic inflation naturally occurs.
As mentioned above, inflation end when € ~ 1 or |n| ~ 1. In the case of chaotic infla-
tion with potential V' = m?¢?/2, inflation ends for ¢ = ¢; ~ v/2Mg. From Eq. (2.87),

during inflation the scale factor increases by

U oxp |2 <¢?—2Mé>}~exp[(%)2] | (2.101)

Later we will see that m ~ 10 GeV which leads to as/a; ~ exp(10'°). This is enough

to solve flatness and horizon problems.?

2 Actually, Eq. (2.87) cannot be used for ¢ > (Mg/m)'/? Mg because fluctuations of the inflaton field
produced by inflation cannot be neglected in the inflaton dynamics. Even taking this into account,
we have sufficient inflation with af/a; ~ exp(Mg/m) ~ exp(109).
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2.4. Slow-roll inflation

In the previous section we have seen that chaotic inflation naturally takes place and
provide sufficient quasi-exponential expansion of the universe which solves the problems
of the standard cosmology. The dynamics of the inflaton field is solved by using the
slow-roll approximation which is valid if slow-roll parameters € and 7 are much smaller
than unity (slow-roll condition). When the slow-roll condition is satisfied, the inflaton
field slowly rolls down the potential and hence the potential energy effectively behaves
as cosmological constant by which inflation takes place. In fact, in almost all inflation
models proposed so far inflation occurs when the slow-roll condition is satisfied. There-
fore this type of inflation is called slow-roll inflation. In this section we consider the

slow-roll inflation without specifying concrete form of the inflaton potential.

2.4.1. Accelerated expansion

In this subsection we derive the condition for accelerated expansion of the universe. The

acceleration of the universe is given by [Eq. (1.49)]

. 1

From the energy-momentum tensor for the homogeneous inflaton field [see, Eq. (2.67)],

the energy density p and pressure P are given by

1.
p= §¢2 +V, (2.103)
1.
P = §¢2 -V, (2.104)
where we have used Ty = p and T;; = —Pg;;. Using Egs. (2.103) and (2.104) we obtain
, 1 19

Thus, the accelerated expansion (@ > 0) is realized if V' > #%. Using the slow-roll

approximation ¢ ~ —V’/(3H), this condition is written as

QBQ (V/)Z 1 V/ 2
1>V:9H2v:§ 2 MZ ~¢. (2.106)

Therefore, the accelerated expansion takes place when the slow-roll parameter e satisfies
€ > 1. For € < 1 the kinetic energy is negligible (¢? < V), which leads to P = V = —p,

so the inflaton potential behaves as cosmological constant.
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2.4.2. e-fold N

The e-fold N is defined by

t
N = ) (2.107)
a(ty)
So eV represents how the scale factor increases from ¢ = ty to the end of inflation
(t =ts). From Eq. (2.107)
a(ty) 1 N dal tn N dt
N:/ da—:—/ dt—a—:—/ dtH:—/ do——H (2.108)

where ¢y = ¢(tn). Using Eq. (2.88),

N H? ON
3 / v (2.109)
¢

N = d = dp ———
A ZarE

;
where we have used H? = V/(3M2) during inflation. Finally, using the slow-roll param-

eter e-fold N is given by

N 0o Vv oN d¢ 1 ( )
N :/ - 2.110
oy V,MCQJ oy \/Q_GMG

If we take the initial value of the inflaton in place of ¢n we obtain the total e-fold N

as

@i 1%
Niw = | ddp——r 2.111
For example, for chaotic inflation with V' = m?¢?/2, Eq. (2.110) gives
N m2¢2 1
SO (P S S 2.112)

87 m2pME&  AME

which is the same result directly calculated using Eqgs. (2.107) and (2.87).

2.4.3. After inflation

Here let us see what happens after inflation. The equation of motion for the inflaton
field is given by .
d+3%+V' =0. (2.113)
a

We assume that after inflation the potential is dominated by the quadratic term, i.e.

V =~ m?2¢?/2. Then the equation of motion is written as

¢9+2%¢+m2¢:0. (2.114)
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Soon after inflation a/a = H becomes much smaller than m (H < m), so as zero-th
approximation we can neglect the second term and obtain the equation for a simple

oscillator as
¢~ —m2p (2.115)

which has a solution
¢ = ®cos(mt+ B) , (2.116)

where @ is the amplitude of the oscillation (~ ¢;) and B is a constant determined by

o(ty) = o5
Next, let us take into account the cosmic expansion. Multiplying Eq. (2.113) by ¢,

0o+ V'd = —3%2 = (lq'b? + V) = —3%2 : (2.117)
a 2 a

where ¢? /2+V is the energy density of the inflaton field p,. Since the time scale of the
inflaton oscillation (~ m™!) is much shorter than the expansion time scale (~ H™'), we

can replace fast oscillating terms by their average over an oscillation period, which leads

to '
. a, .
po = —3-(6") . (2.118)
Using Eq. (2.116) pg and (¢?) are
L 9z2 2 Lo oo 2 Lo o
ps = 5m = cos”(mt + B) + 5™ o sin“(mt + B) = EQ) m (2.119)
. 1
($*) = (m*®?sin®*(mt + B)) = §<I>2m2 = pg - (2.120)
Thus, with effect of the cosmic expansion, the energy density of the inflaton oscillation
is given by '
_ a
Po =3P, (2.121)
which leads to
pyxa® |, (2.122)

So the inflaton oscillation behaves like matter. From Eq. (2.122) the oscillation ampli-

tude of the inflaton decreases as ® oc a=3/2.

2.4.4. Reheating

The inflaton oscillation lasts until it decays through couplings with other particles. Thus,

inflaton decays into other particles whose successive scatterings and decays form thermal
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Figure 2.8.: Timeline of inflationary universe.

plasma with temperature Tr. Ty is called reheating temperature. If we assume that
thermalization takes place immediately when the inflaton decays, the reheating temper-
ature is estimated from H(Tg) = I'y, where I'y is the decay rate. This just means that
the decay occurs when the cosmic time (~ H ') equals lifetime of the inflaton (= T'1).
The Hubble parameter H when the universe is dominated by the thermal radiation with

Ty is given by

1 2T 1/2

which is equal to I'y. So the reheating temperature is estimated as

90 1/4
TR:( ) T, Mg | (2.124)

gumr?

2.4.5. Cosmological scale and e-fold

Let us derive the relation between the present cosmological scale L and the Hubble radius
H(ty)"" at t = ty. The Hubble radius during inflation is often called “horizon” beacuse
the exponentially expanding universe has the event horizon equal to H~!. (Strictly
speaking, however, there is no event horizon because inflation ends in a finite time.)
The scale H(ty)™! is stretched by the cosmic expansion to the present scale given by
la(to)/a(tn)]H (tx)~t. From ¢y to ty the universe experiences several stages of the cosmic

expansion as shown in Fig. 2.8. Correspondingly L is written as

S . e

where t; is the end of inflation and tz is the time of reheating. First, we assume

that the Hubble parameter is almost constant during inflation and is given by Hj, so
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H(ty)™' = H;'. From the definition of the e-fold,

alty) _ n
a(tj;) — e, (2.126)

From t; to tg, the universe is dominated by the oscillation energy of the inflaton which

decreases as a~>. Thus, just before reheating the energy density p, is given by

poltn) = (““f))gpqsuf) ~ (a“f))g 3N (2.127)
a(tr) a(tr)
where we have used H(t7)* = py(ts)/(3MZ) ~ H7. If reheating is instantaneous,
™
po(tr) ~ —ag.T5 . (2.128)
30
Thus, we obtain
a(ty) — \ mg.Tj . '
After reheating, the universe expands adiabatically and the entropy is conserved. This
leads to
s(Tr)a(tr)’ = soa(to)’ (2.130)
from which we obtain
a(ty)  (s(Tr) 1/3 _(2m%g.T} 13 (2.131)
a(tr) S0 N 455 ' '
Therefore, the relation between L and N is written as
M2H2\ Y3 /or2 T3 1/3
L= (2MeHT 9Tk ot (2.132)
29Ty 45s

Using sp ~ 2.8 x 10® cm 3, finally we obtain

L 1 Tr 1 Hi
N=526+In(—"J4-ln(—2 V4 -m(—T )| (2133
P20+ In (IOOOMpC) T3 (1010Ge\/> 3w (1010Ge\/) (2.133)

If H(tn) # H(ts) the above relation is changed to
L 1 Tr
N=526+In(—o )4 -In(—B 2.134
p2.6+1n (1000Mpc) 3w (1010Ge\/> (2.134)
Hiy) \ 2. ( Hy)
UV ) Sy (20 ) 2.1

i <1010Ge\/) 3" (1010Ge\/ (2.135)
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3. Generation and Evolution of Density
Fluctuations

3.1. Generation of density fluctuations

3.1.1. Fluctuations of an inflaton field during inflation

Let us consider quantum fluctuations of an inflaton field. In slow-roll inflation the

effective mass during inflation, which is given by m?; = V" = 3nH2,, is much small

than the Hubble parameter, so for the moment we assume that an inflaton is mass less.
Furthermore, for simplicity, we assume that the Hubble parameter during inflation is

constant. The equation of motion for the inflaton is written as

. a1
$+3%6— SAp=0, (3.1)
a’  a
where a = exp(Ht). The quantum scalar field ¢ is written as
- L : ik-@ % (4 ,—ik-Z
(t, T) = W/d% [akwk(t)e BT algr(t)e R (3.2)

where a; and aL are annihilation and creation operators satisfying
(g, af] = 6O (k- q) , (3.3)
and () is the mode function. In Minkowski space we have

1 >k . = . o
¢(t, 7) = [ake—zkot—l—zk-z + al];ezkot—zk-m] ' (34)

)= @r | Vo

So the mode function is given by 1, (t) = 1/v/2koe~*0t in Minkowski space. The La-

grangian for the inflaton is given by

L=a*0,00"0—V(p)), (3.5)
from which the canonical momentum is derived as

T = % =d’¢ . (3.6)
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The canonical quantization requires

[6(t, 2), 7(t,7)] = 6P 7). (3.7)

The above commutation is calculated using Eq. (3.2) as

— — a’ % —ik-& ik-& I —iq g i G
w@x;ﬂuwp:@ﬂg/@%fquwgk_Hmwek,@%eqy+mwwqﬂ
a® 37. 13 T ] fi(l%'-ifzj-yj) i(k-Z—q-7)
= oy | el auluidee + [y, affvndye’
lal, afuidse FFID 4 [, ag)d,e FF T )
a’ , )
~ o [ i by (35)

which should satisfy Eq. (3.7) and hence we obtain the normalization of the mode func-
tion,

il — s = (39

From equation of motion (3.1) the mode function 1)y satisfies
U+ 3Hiy + k2e 24, =0 . (3.10)

Here let us use the conformal time 7 instead of the usual time ¢. The conformal time is
defined by dr = dt/a(t) = e~ 'dt, so

T = —Hile*Ht = —E . (311)

The conformal time 7 changes from —1/H to 0 as t changes from 0 to co. Using 7 and

redefining ¢ as 7%/2u, Eq. (3.10) is rewritten as

1
u” + =u' + (k2 — i) u=0, (3.12)
T

472

where ' = d/dr. This is the Bessel differential equation and its solution is given by

¢m=§mwpwﬁ@wwmﬁwm (3.13)

where H3 /o and H, /)2 are the Hankel functions,

20

(@) = (Hyy(x)" = —\/%e—“ (1 + %) . (3.14)
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Now we have to determine the integration constants C and C'5. Here we adopt the follow-
ing principle: quantization in de-Sitter space (=exponentially expanding space) should
be the same as that in Minkowski space in the limit of & — oco. That means that at small
scales (k — 00) the quantum field is not affected by the cosmic expansion. In Minkowski
space, the mode function is given by 1/v/2k exp(—ikt) = 1/\/ﬂexp(—ifkdt), so the
mode function v should be
b ita 1
a2k av/2k

Here we have taken the normalization (3.9) into account. On the other hand the solution

Uy e kT (k= 00) . (3.15)

of the mode function Eq. (3.13) is written in the &k — oo limit as

9 kT
B —Hr

V2%
1

av2k

Comparing with Eq.(3.15) we obtain

vy — \/EHTW (— i) [C1 (k)™ + Co(k)e ™ ]

[C1(k)e™*™ + Co(k)e 7]

[C1(k)e™ ™ + Co(k)e ] . (3.16)

This only applies to any mode functions whose wavenumber k is much larger than the
Hubble parameter at the beginning of the universe. As seen later relevant fluctuations
which are responsible for the structure of the universe have such large wavenumber.
Thus, for the mode functions with k we are interested in, we can set Cy =1 and C} =0

and we obtain

o) = 8 ke ™ N o (R H (kN (i
T 2k 2 PAEC ) T Ve \alH P\og)
(3.18)

As the physical wavelength a/k becomes larger than the Hubble radius H !, the mode

function Eq. (3.18) is given by
1H
2k

which no longer oscillates and hence the scalar field behaves as classical one.

Vi(t) — (3.19)

Hereafter we explicitly decomposes the scalar field ¢ into a homegeneous part and its

fluctuation as

o(t,T) = (t) + do(t, T) . (3.20)
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Then (§¢?) is calculated as

2\ _ 23, 1 1 E
<5¢>_/ywky Bk = (2ﬂ)3/dlnk<2ka2+2k3)

1 k*  H?
= | &Pk — + =
272 (2@2 - 2 )

HQ

~ dlnk 21

(27)2 / nE (3:21)

where we have used k/a < H in the last line. Therefore, the fluctuation of the inflaton

is given by

H

S~ — |. (3.22)
21

Now we can regard the inflaton fluctuation as classical and express it as Fourier integral,

1 -
6 (T) = ok / BPkogy e (3.23)
((6¢(Z))?) is calculated as
R 1 < 3, iz !
(6000)) = s [ AR Gogbog e )
1 H?
- o / Phys (3.24)
So we obtain
L. H?
(0¢z0¢7) = (2m)°0(k + k’)ﬁ : (3.25)

We introduce the power spectrum of scalar fluctuations Pss which is defined by

4k S o
(2 (097008} = Ok + K)Pao(K) (3.26)
so Pse is given by
H?2
Piso(k) = ] (3.27)

3.1.2. Effect of inflaton mass

Let us consider the effect of the mass term on the fluctuations of the inflaton fields. The

equation of motion for the fluctuation of the inflaton field is written as

; s .1
5+ 3%5¢ — 5056 +m*56 = 0. (3.28)
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So the mode function ), satisfies

Uy, + 3Hy + (K™ 4 m?) gy = 0, (3.29)
which is written using 7 = —1/(aH) and ¢ = 7%/%y as
1 9 _ m?
u = (K- u=0. (3.30)
T T
The generic solution for vy is given by
Yi(t) = =323 gm?)/? [Cy(k)HD (k) + Co(k)HP (kT)] (3.31)
where v is given by
9 m?
Since m < H during inflation v is approximately written as
3 m?

In the same way as the massless case 1, = ﬁe‘i’” for large k. The Hankel function

H,(z) has the following form at large z:

HP(2) = (HD(2))" ~ —\/ge” ) (3.34)

which leads to Uy, = 1 and C'; = 0. Thus, we obtain

Pi(t) = 323 gHTg/QHIEQ)(k’T) : (3.35)
At the long wavelength limit (k/a)~' > H~! ( small k7 limit ), the Hankel function is
written as
2'T
HP(kr) ~ i&(lm')_”
T

m2
:iﬁ(m)*/%%:iﬁ(m*/? LA
VT VT aH

where I'(v) is the gamma function and I'(3/2) = /m/2. Then, after the wavelength

exceeds the Hubble radius the mode function 1, is given by

(3.36)

2

iH [ k32

Therefore, for the case of an inflaton with mass m, the power spectrum of the inflaton

fluctuations is given by

Pas(k) = 1 (TH) . (3.38)
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3.2. Evolution of density fluctuations

So far, we have studied the fluctuations of the inflaton field without taking metric per-
turbations into account. Since fluctuations of the inflaton field affect metrics through
Einstein equations and induce the metric perturbations. Moreover the metric perturba-
tions are closely related to the density perturbations, from which the large scale structure
of the universe is formed. Therefore, it is crucial to understand the evolution of the met-
ric perturbations. Here is a remark. The evolution of the inflaton fluctuations are also
affected by metric perturbations. However, it is found that the back-reaction on the
inflaton fluctuations from metric perturbations is negligible for some time after wave-
lengths of the scalar fluctuations exceed the Hubble radius. Thus, the calculation in the

previous section is justified.
3.2.1. Metric perturbations (scalar)
Let us introduce the metric perturbations,
ds® = a*(1 + ¢)dr* — 2a’w_jdrda? — a®[6;;(1 + 2¢) + 2x ij]dx‘da’ (3.39)

where x;; = (0;0; — 0;;A/3)x. Here we have used the conformal time 7 instead of the
usual cosmic time ¢. Since we only consider linear perturbations, it is convenient to

study Fourier modes of perturbation quantities. So ¢ is written as

O(F) = > o(R)e™ = 3" o(R)QE,#) = 6Q , (3.40)
i i
where Q(E, 7)) = €% We also introduce Q; and @;; defined as
_ 1, ik
Qi = _EQ,Z‘ " Q (3.41)
1 1
Qij = pQ’U + 55@‘@ . (3.42)

If we define the Fourier mode of w and y as

w(@) =k lw(k)e™ (3.43)
X(@) = YRR (3.44)

then
w () =0; Y kT'wk)Q(k,7) = =Y w(k)Q;(k, 7) = —wQ; . (3.45)
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and

- 2 . =
Xij = >k x(k) (Q,ij + %51‘3‘@) = x(k)Qi(k, B) = xQi; -
E

Therefore, the metrics are rewritten as

goo = 0/2{1 + 2(?@}
goj = a2ij

gij = —a?0;;(1 + 20Q) + 2xQy5] -

(3.46)

(3.47)
(3.48)
(3.49)

The definition of metric perturbations is not unique since we are allowed to make coor-

dinate transformations in general relativity. The ambiguity in the metric perturbations

is called gauge freedom. Let us consider the following (scalar) coordinate transformation:

T=7+T1Q
i =1l + LQY .
The above transformation changes the metric g, as

o Ox® 0zP
Gu(T) = in @gaﬁ(ﬂ?) )

which leads to

_ o O0x*0x” ; ;
g#u(ﬂl’ ) = @@%5(7 —TQ,z" — LQ )

= g“l’<7-’ xz) - gOéV(Tv J;Z)(gl‘i - ga,u(Tv x’)éxff, - guu,a(ﬂ $Z)5x

Thus, ggp changes as

Joo — Goo = —29040537?0 — 900,002
= —29005$?o - 900,0596‘0
= —2a°T'Q — 2ad'TQ
= a’[-2T'Q — 2HTQ)] ,

where H = d’/a. go; is transformed as

Joj — 90j — 90Ty — 9a00T"; — goj.adT"
= —gz‘jfsmfo - 90051E?j
= a’6;;L'Q" + a’TkQ);
= a’[L' + kT)Q; .
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Therefore, the metric perturbations are transformed as

b=0¢—T —HT (3.56)
O=w+L +kT (3.57)
zﬁzzp—%—HT (3.58)
X=X+kL. (3.59)

From Egs. (3.56)-(3.59), it is found that the following variables are gauge invariant:
d=0+ 1d lak™'w — ak™?y] (3.60)
adr '
1
U =1+ X+ H [k 'w—k7%X] . (3.61)
It is easy to see Egs. (3.60) and (3.61) are gauge invariant. ® and ¥ transform as

®=(¢—T —HT) + [ak ™ (w+ L + kT) — ak™(x' + kL')]
=¢—T —HT + [ak'w+ ak™'L' + aT — ak™x' — ak™'L')]

1d
=¢+ adr [ak‘lw - ak_zx/} =0, (3.62)
and
. kL 1 . , Y, )
‘I’I(w—?—HT)+§(X+kL)+%[k (W+ L' +kT) — k72X + kL)]
kL 11
=¢—?—’HT+§X+§I<;L—|—’H[k’lerk*lL’JrT—k*2X’—k*1L’]
1
=Y+ o+ H vk =0 (3.63)

3.2.2. Energy-momentum tensor

The energy-momentum tensor including perturbations is written as
T = (p+ P)utu, — P + 114 | (3.64)
where II# is the anisotropic stress tensor and four velocity u* is given by
u' = a1 — ¢Q,vQ") . (3.65)

As for u, we obtain
Uy = g’ =a(l+¢Q, (w—v)Q;) . (3.66)

64



Notice that uu, = 1 in the first order. So, the energy-momentum tensor is rewritten as

T = p(1+6Q) (3.67)
T} = —(p+ P)(v - w)Q, (3.68)
Ti = (p+ P)vQ’ (3.69)
T; = —P (6} + 7,Q0; + T1Q5) (3.70)

where § = dp/p and w;, = §P/P. Here notice that p and P are homogeneous energy
density and pressure. (Contrarily p and P in Eq. (3.64) include inhomogeneous parts
dp and JP.)

Gauge transformation of the energy-momentum tensor is given by

~ » O+ OxP . ~
T (7, 2') = %(%,,TE(T —TQ,x" — LQ")
~ Th (7, a') 4+ T (7, a")6at, — TH(r, 2" )6, — T bx* . (3.71)

Using this transformation law, we obtain
90— T = Tgoa, — Tooxty — Tg 02
=—pTQ
=3H(p+ P)TQ , (3.72)
and
TO—T9 = Tyoal, — T8 = T0,0°
= T;M:?i - T(?éx?j
= —P(~kTQ;) — p(—FTQ;)
=k(p+P)TQ, . (3.73)

Here we have used the following equation for p'(p):

p'=-=3H(p+P), (3.74)
p=-3H(p+P), (3.75)
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which are derived from Eq. (1.51). Therefore, dp, v, 6 P and II are transformed as

0=0+3(1+wHT, (3.76)

v=v+ 1L, (3.77)
02

=11, (3.79)

where we have used the equation of state w = P/p and the sound velocity ¢ = 6 P/dp.

Obviously II is gauge invariant. The other gauge invariant variables are given by
V=v—k1y\, (3.80)
A=0+3H1+w)k ' (v—w). (3.81)
V in Eq. (3.80) is invariant because
V=@w+L)—kx+kL)
=v—kN=V. (3.82)

V is called gauge-invariant velocity pertubation. Similarly, invariance of A in Eq. (3.81)

is shown as
A= (0+3(1+wyHT) +3HA +w)k (v + L') — (w+ L' +kT)]
=0+ 3H(I+wk'(v—w)=A. (3.83)

A is called gauge-invariant density perturbation.

3.2.3. Newtonian gauge

Since metric perturbations have gauge ambiguities, we need gauge fixing to calculate
perturbative quantities. Most convenient choice of gauge is to set w = xy = 0. This is
called Newtonian gauge. In Newtonian gauge, other metric perturbations are related to

gauge-invariant variables as

=2, (3.84
Y=V, (3.85)

which leads to
ds® = a®[1 4+ 20Q|d7* — a*[1 + 29 Q](dT)* . (3.86)
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Notice that we only consider a flat universe (K = 0). The formula for K # 0 are found

in Appendix A.2. Thus, the metric perturbations in the Newtonian gauge is given by

doo = CL2(1 + 2@@) s
90i =0,
gij = —0,2(1 + 2@@)574 .

The Einstein tensor G, is calculated as

G

3 N\ 2 9 N\ 2 /
=2 (2) —Z203(2) o -3%w - 20| Q,
a? \ a a? a a
2 [d ,
=—— | —kd - kU Q;,
a? | a
2 [a -
S ﬂkcp—kqﬂ] Q.
a? | a
1 i a a 2 '
SR S L N ¥
a’ | a (a)] J
9 " I\ 2 / 2
2R (Y)Y e+ Y v -t v
a? a a a 3

On the other hand the energy-momentum tensor is written as

Th = (1+6Q)p,
T5=—(p+p)VQ;

Ty = (p+p)V@Q',

Tij =—p (5; + 7TLQ5;~ + HQ;)

Einstein equation

(3.87)
(3.88)
(3.89)

(3.90)

(3.91)

(3.92)

/

a

a 1., ;
— =0 — §k \II}(SJ-Q

The homogeneous part of the Einstein equation G, = 87GT),, leads to

8t
H? = —7; a’p |
ArG
H = —=-a’(p+3P) |
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where we have used H = a’/a and H' + H? = a”/a. The above equations correspond to
Egs. (1.47) and (1.49), respectively.

The 1st order contribution from (0, 0)-component of the Einstein equation is
SH?® — 3HY — k*U = —4nGa’p§ . (3.100)
(0, %)-component reads
HO — ' = drGa*(1 + w)k ' pV . (3.101)
The traceless part of (i, j)-component reads
E*(® 4 V) = —87Ga*PII . (3.102)
Thus, for a vanishing anisotropic tensor we have
UV=—-0. (3.103)
From Egs. (3.100) and (3.101) the following Poisson equation is derived:
W = 4rGa’p[§ + 3H(1 + w)k~ V] = 4nGa’pA . (3.104)
Scalar field

For a scalar field ¢ (do not confuse with the metric perturbation ¢), the energy-momentum

tensor is written as
1
T = ¢" ¢, — 0", (59“%,@,5 — V(¢)) . (3.105)

Let us divide the scalar field into homegeneous and fluctuation parts as ¢(7,Z) = ¢(7) +
5 (7, k) Q(k, ). The (0,0)-component of the energy-momentum tensor is then written

as

1 1 ..
Too = —goaﬁb,acb,o + 59”¢,z¢,g‘ +V

2
~ L0060+ V
= %a‘Q(l —20Q)(¢' +6¢'Q)* +V + V460 Q (3.106)

where V = dV/d¢. Thus, the 1st order contribution of T, is

6T = a?[—®(¢')* + ¢/ + a*V09]Q . (3.107)
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The (0, i)-component reads

T = 6 s = a 2(1 - 20Q)d (—kd6 Q) . (3.108)

which leads to
6T = —ka™2¢'50Q; . (3.109)

The (4, 7)-component redas

T = g9 atyj -, [ég”‘)(cb,o)? - V}
=0, Ba’Q(l —20Q)(¢' +0¢'Q)* =V — V¢(S¢Q] : (3.110)
Thus, 07", is given by
0T", =6, a *[®(¢)* — ¢'6¢' + a*Vp09)Q . (3.111)
From Eq. (3.111), for a scalar field anisotropic stress IT vanishes, i.e.,

m=0. (3.112)

From Egs.(3.107), (3.109) and (3.111) p, V and 7, are related to d¢ and ® as

pd=a?[—®(¢) + ¢'6¢' + a*Vyo9)] , (3.113)
(1+w)pV = ka2¢'6¢ , (3.114)
P =a?[-®(¢))* + ¢'0¢' — a*V09) , (3.115)

Here and hereafter we rewrite ¢ as ¢.
Before considering the 1st order Einstein equation, let us write the zero-th order

(homogeneous) Einstein equations. Using the conformal time p and P are given by

p= %(qﬁ/)Q +V, (3.116)
P= zicﬁ(qj’)? -V. (3.117)

From Egs. (3.98) and (3.99) the homogeneous Einstein equations are written as

H? = ? (%(qﬁ’)Z + a2V> : (3.118)
H = % (= (¢ +a®V) , (3.119)
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from which we obtain

As for the 1st order Einstein equation, from (0, 0)-component we obtain

3H?® — 3HY — k*V = —4rxG[—®(¢)* + ¢/5¢' + a® V6] .

H? —H' = 4nG(d)* .

From (0, 7)-component,

HO — U = 47 G5 .

From the traceless part of (i,j) component

which leads to

T+d=0,

.

Using Egs. (3.120) and (3.124), Eq. (3.121) is rewritten as

(H + 2HA) W + 3HY + K2V = 47G(¢'5¢" + a®V466) .

Eq. (3.122) is written as

U+ HY = —4nGd6o

By differentiating this equation with respect to 7 we obtain

U L HY + HT = —47Gd"5¢ — AnGe/ 5

=4A7G(2H¢ + a2V¢)5¢ —4AnG¢'o¢"

where in the last line we have used the equation of motion for ¢,

¢ +2HY +a*Vy=0.

Using Eqgs. (3.125) and (3.126), Eq. (3.127) is written as

Moreover using

U+ HY + H'U = — 2H(V + HD)

— [(H + 2H*) U + 3HV + k>

+ 87Ga2V60 .

2(0 + HYD)
Qb/
= AHY + AH>T + (20’ + 2H D)

81Ga*Vyop = (¢ +2H¢)
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(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)
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we obtain

v+ (27—1, - 227) (2%’ — 2%?;) U4+ EU=0|. (3.131)

In the long wavelength limit £ — 0(k < ‘H) Eq (3.131) has the following solution:

oali-Efeu)aleobfo). o

where "= d/dt. The integration constant A is determined using Eq. (3.126), whihc leads

to

Aot 00 L 09 00 (3.133)

a=? [a?dr ¢/ —1fadt o ¢
where we have used a™! [adt = a™! [a(dt/da)da = a' [ H 'da ~ H™'. Usually A is
estimated when the physical wavelength becomes equal to the Hubble radius (k/a = H)
during inflation,

0¢

A~ H=Z (3.134)

k/a=H
Moreover, Eq. (3.132) does not depend on ¢, so it applies to epochs after inflation. In
particular, after reheating the scale factor evolves as a”(m = 1/2(RD) or m = 2/3(MD)

and hence . A
mt™
UV=A1- t"dt | = —— . 3.135
( t2m / ) m+1 ( )
Therefore, we obtain
QH%‘
377 0 |kja=H (RD)
U=—-¢= (3.136)
éH%‘ MD
5 ¢ k/a=H ( )

3.3. AN Formula

3.3.1. Basic formulation

Wavelengths of the metric perturbations we are interested in become much longer than
the horizon (= Hubble radius) during inflation. The AN formula provides a very simple
method to calculate such long-wave modes of the fluctuations.

Let us consider the following (3 + 1)-decomposition of the metric:
ds® = N2dt* — ~;; (da' + B'dt)(da? + B dt)

= (N? — B*By)dt? — 2B;dtda’ — ~;dx'da? (3.137)
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t+dt

Figure 3.1.: geometrical meaning of the metric (3.137).

where A is the lapse function, 5* is the shift vector, 7;; is the spatial three metric and

Bi = ;8. Their geometrical meaning is shown in Fig. 3.1. Moreover, v;; is written as
Yij = a(t,a? )yt 27) (3.138)

where det?;; = 1 and a is the local scale factor which is further written as
a(t,z’) = a(t) exp[h(t, 27)] . (3.139)

Here a(t) is the usual scale factor (global scale factor) and 4 is the curvature perturba-

tion. As for 7;; it is written as
v =IeX ({ : unit matrix, tr(x) =0), (3.140)

where tr(y) = 0 comes from det[eX] = "™ = 1. Notice that for small ¢ and y, 7;; is
given by
g = a*()[(1 + 2¢); + xig] - (3.141)
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When one considers the metric perturbations with super-horizon scales (k/a < H),
local homogeneity and isotropy are a good approximation. Thus locally measurable

parts of the universe is described by the Robertson-Walker metric
ds® = dt* — a*(t)6;;dx'da’? (3.142)

This implies that f; in Eq. (3.137) vanishes in the limit of k/(aH) — 0, which leads to
k
—7 -

Bi = O(e) where €= (3.143)

Furthermore, we can take the spatial coordinates that comove with the cosmic fluid,
which means that the velocity v satisfies
- dat
' = =0. 3.144
vi=— (3.144)
So the spatial components of the four-velocity u* = da* /dr, (1,: proper time= [ \/N? — ¥ [5,dt)

vanish and using g, u*u” = 1 we obtain

1 1
W = | ———, 0| = |—, 0| +O(é) . 3.145
LW—M ] RO (8145)
The expansion 6 is defined as
1
0=V, u' =——0,(V—gu")

NS

1 Nedva?
:/\/GQwa?’aO(\/AW) . (3.146)

Therefore, the expansion is given by

0= /%[ < i 3¢) +0(e?) . (3.147)

a
From this equation we can call H = /3 as local Hubble parameter.

The energy-momentum tensor is given by
T = (p+ Pluyu, — g P, (3.148)
where we neglect the anisotropic stress tensor. The energy conservation is given by
V., T* = 0 which leads to
w,V,T" =0
=u,V,[(p+ P)u'u” — Pg"]
=u"u, "'V, (p+ P)+ u,(p+ P)u'V, u”
+ (u, Vyu')u’(p + P) — u,g""'V, P . (3.149)
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Using vV, = (dz¥/dr,)0/0x" = d/dr, and u,V,u* = V,(u,u"/2) = 0, the above

equation is written as

p+P)+(p+P)—=-—=0. (3.150)

| ar,

Using Egs. (3.147) and (3.150) and taking into account dr, = \/N? — f*f,dt ~ Ndt,

we obtaion

N0 Lo | (3.151)

Lo 2y _
+ O(€%) 5

3p+ P

Let us calculate the local e-folding number defined as

Nty 5, 7) = / ONdt | (3.152)
Using Eq. (3.151) N(ty,t;, Z) is calculated as

1Y
Nt t:, ) = —5/ %dt
t; p

L
I [a(tf>
a(t;)

Defining Ny and AN as Ny(ts,t;) = Infa(ty)/a(t;)] and AN(ts,t;,Z) = N(ty, t;, %) —
No(tf7ti)a

} +1(ty, @) —Y(t, T) . (3.153)

Y(te, ) — (t;, T) = AN(ts,t;, T) . (3.154)

Now we introduce ¢ which is the curvature perturbation on the uniform density slice as

C=Ylspmo |- (3.155)

If we take the flat slice () = 0) at ¢ = ¢; and the uniform density slice (6p = 0) at t = ty,
we have

¢ =AN(ts, t;, @) . (3.156)
Let us consider the case where the pressure is a function of the energy density, i.e.

P = P(p). This is satisfied when the perturbations are adiabatic. For generic slicing,
Eq. (3.153) is rewritten as

1 [P dp 1 [P dp
U(ty, @) — (L, T) = ——/ ——+ —/ —, (3.157)
! 3Jpteey PP 3oy PP
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where we have used p = —3(a/a)(p + P). This implies that (&) given by

o . op
((Z) = ¢, 7) + 51 (3.158)

is conserved independently of choice of time slicing. ¢ in Eq. (3.155) is consistent with

that in Eq. (3.158). Notice that we have only used the energy conservation and long
wave limit. Therefor the result applies to generic gravitation theories including Einstein

gravity.

3.3.2. Relation to the Newtonian gauge

In the Newtonian gauge the metric is give by
ds® = a*[1 + 2®]dr? — a®0,[1 + 2V]dz'dx? . (3.159)

On the other hand the AN formula the metric is

ds? = -+ —a?e®ydride? = - — a®[(1+ 2905 + X - (3.160)
Thus, ¢ in Newtonian gauge is given by
0p
=Vt —. 3.161
From the Einstein equation in the Newtonian gauge [Eq. (3.100)]
3H® — 3HY — k*V = —47Ga*dp . (3.162)
For a vanishing anisotropic stress tensor, we get
UV=—-o. (3.163)
On super-horizon scale (k < H/a), assuming U’ = 0, we obtain
drGa?
o =— dp . 3.164
Using the Friedmann equation (3.98), ® is written as
16
_ Sy (3.165)
2p
From Eq. (3.161)
op 2P
=+ N S 3.166
¢ 3(p+ P) 3(1 4+ w) ( )
So ¢ and ® are related by
o+ 3w o+ 3w
= — ¢ = v, 3.167
¢ 3(1 4 w) 3(1+w) ( )

Since ( is conserved, the assumption ¥’ = 0 is justified for a constant w.
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3.3.3. Curvature perturbations produced by inflation

Let us estimate the curvature perturbations produced by the inflaton fluctuations. We
take the flat slice at ¢; when the relevant scale becomes super-horizon (k/a ~ H) and the
uniform density slice at t; after reheating. From Eqs. (3.156) and (2.110) the curvature
perturbation at ¢y is given by

V Hinf
= AN = 0p = ——=3¢ . 3.168
¢ e ¢ 5 ¢ (3.168)

Using Eq. (3.167) we obtain

SHuu % . (RD)

P = - : (3.169)
é
S op| - (MD)

Once @ is obtained, the density perturbation is calculated using the Poisson equa-
tion (3.104),

E*® = —4rGa?p [(5 +3H(1+ w)%]
= —4nGad’pA | (3.170)

where A is the gauge invariant density perturbation. Using the Friedmann equation the

density perturbation A in the matter dominated era is written as

92 k2 2 k2 5¢
e :Gmﬂmfg (MD) . (3.171)

The power spectrum of the density perturbations P (k) is then given by

(AR)A(R)) = (2m)38(k + E’)Qk—fp(k) . (3.172)

Using Eqs(3.25), (3.27) and (3.171) the power spectrum is written as

4 (k2 \? H2,
Thus, we obtain
1 K2\ HE 1 2\ v
Pk) = inf _ . (3.174)
25m? \a?H?) (¢)2  25m* \a?H? 3(V)2ME
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Similarly the power spectrum of the curvature perturbations P; is defined as

. . . . 2
(CR) CURY) = (m)8(F + F) T Pelh) (3175)
From Eqs(3.25), (3.27) and (3.168) we obtain
_ Hy V3
Pelh) = ar2($2  12m2 (V)2 M (3.176)

In Eqs. (3.174) and (3.176) the values of the inflaton potential V" and its derivative V' are
evaluated at k = aH. The curvature and density perturbations produce anisotropies of
the cosmic microwave background (CMB). The observation of CMB by the recent Plank

satellite provide us the precise value of the amplitude of the curvature perturbations,
[P]Y? =4.93 x 107, (3.177)

at k. = 0.002 Mpc—1.

The spectrum index ng of the curvature perturbations is defined as

- dln'Pg(k‘)
which means P, < k"+~1. Using Eq. (3.176) the spectral index is written as
dIn(V32/V")

The relation between the cosmological scale L = k~! and the efold N is given by

N ~ 50 + In ( (3.180)

1
1000Mpc) ’
which leads to

v

do . (3.181)
Thus,
dIn(V3/2 V")

(V/V")dé

V/ 3V/ V//
=20ty (57 - 1)

ng—1=—-2M%

Vv’ 2 Vv
= —3M¢ (7) + 2Mg7 : (3.182)

With use of the slow-roll parameters € and 7 [(2.90 and (2.97)] the spectral index ng can

be expressed as

[ ne=1—06e+2n |. (3.183)
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3.3.4. Curvature perturbations produced by chaotic inflation

Now let us apply the result in the previous section to chaotic inflation. For a simple
chaotic inflation model with potential V' = %m2¢2, using Eq. (3.176) the power spectrum

of the curvature perturbations at k£ = k, is given by

12 _ (3m2¢2)™” _ mg?

P - I
P 0/Brm2e, M3 ANGME

(3.184)

where ¢, is the inflaton field value when the mode with k, crosses the horizon during
inflation (k. = aHiue). The corresponding e-fold N, is estimated from Eq. (2.133) with
L, = k! = 500Mpc as

N, ~ 50 . (3.185)
Since N, is given by .
N, ~ 2 3.186

from which we get ¢, ~ 2Mg\/ N, ~ 14M. Therefore, we estimate the amplitude of

the curvature perturbations as

1/2 ~ m(14MG’)2

[P (k)] ~ Wor i (3.187)
TG

Requiring that it agrees with the observed value Eq.(3.177) we can determine the inflaton

mass as

| m~19x10"% GeV | (3.188)

The slow-roll parameters are given by n = € = 2M¢/$?, so using Eq. (3.183) the spectral
index is -

ns(k.) =1~ ¢2@ ~ 0.96 . (3.189)

3.4. Tensor perturbations

In this section we consider tensor perturbations (gravitational waves) produced during
inflation. The amplitude of the tensor perturbations is directly related to the inflation
energy scale as we will see later. Therefor, the detection of the tensor mode is crucial to

prove inflation.
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3.4.1. Generation of tensor perturbations

Let us consider the Einstein-Hilbert action,

M,
Sp = G/dw“\/_—gR. (3.190)

T2
Introducing tensor metric perturbations h;;, the line element is given by
ds® = a(7)?[dr* — (04 + hy;)da'da?] . (3.191)
h;; satisfies the following traceless and transverse conditions:
hi=0 d'hij =0 . (3.192)

Using the above metric the second order action for h;; is given by

— _M_CQ? 4.2 AR RLI
Sy = 2 d*xa [(‘Lh”a h'] . (3.193)

Here the indices of h;; are raised or lowered with flat metric 6;;. From the action (3.193)

the equation of motion for h;; is written as
hi; + 2HhY, — V?hy; =0 . (3.194)

Let us expand h;; into Fourier modes as

A3k o
h7,] (T, f) = / (27T)3/2 |:€Z(;")h(+) (T) + egjx)h(X)(T)] e—zk~a¢ : (3195)
where eE}L) and el(-jx) are polarization tensors corresponding two polarization mode +(plus

mode) and x (cross mode). Using two orthogonal unit vectors ) and € that are

ortghogonal to k (i.e., @ 1&® g1 | k), eg;r) and egjx)e are written as

1 - . - .

el = 7 [ei(”(k)ej(”(k) _ ei(z)(k:)ej@)(k)] (3.196)
X 1 = — - =

e = 7 D@ (F) - eP@eF)] (3.197)

which satisfy

ey = e = 1,

If we take k = (0,0, k), el(»;r) and eﬁj)e are given by

ePe) =0 . (3.198)

iy ij

1 1 0 0 oo 010

—+ X

eP=—"0 -1 0 ed="[100 (3.199)
v2\ g o o v2\ g 0 0
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The mode functions At and h*) satisfy
R L o p 207 g2p ) = | (3.200)

which is the same equation as that for a massless scalar field, so it has a solution like
h ~ H;,¢ at long wave limit. In order to get the correct normalization we have to write

the action in the form as
1 21,5 Wi ij
52 = — dxa 5@}%8 h 3 (3201)

where iLij is the canonical field. Comparing with Eq. (3.193)

M, ~
5 hy = A=

Mg

hi; = 5 R (3.202)

Since for the canonical field we get the power spectrum P; (k) = H2:/(47?), we obtain

the power spectra for h(+>) as

2 \"Hy  Hi
Prenr (k) = Proo (k) = ( MG) Wf = Mfg = S (3.203)

The total power spectrum of the tensor mode is given by

2HY, 2V

7T2Mé - 37T2Mé

Pr(k) = P (k) + Proo (k) = (3.204)

Notice that the tensor mode only depends on the Hubble parameter during inflation
(Hine = \/V/3/M¢). Therefore, if the tensor mode is observed we can determine the
energy scale of inflation. On the other hand the power spectrum of the curvature pertur-

bations is given by Eq.(3.176) and it depends on V’ as well as V. The tensor-to-scalar

ration 7 is
4%
r= 7;—’; =38 (7> Mg = 16¢ |. (3.205)
The tensor spectral index nr is given by
dIn P, ,V'dlnV V\?
= = -M;———-=—|— | M:. 3.206
" ik SV " dg v) e (3.206)
With use of r, nr is written as
nr = —g . (3.207)
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A. Appendix

A.1. Monopole in SO(3) gauge theory

In this appendix we show the monopole solution in a SO(3) gauge theory.

A.1.1. SO(3) gauge theory

Under SO(3) gauge symmetry, a real scalar field ® is transffered as
d(z) — Ulx)d(z) [0 — Uyd' (A1)
U(x) = exp[—i0*(x)T?] , (A.2)

where ¢ is the gauge coupling constant, #*’s are the transformation parameters and 7%’s

are the generators which satisfy
(T, 1) = ifeTe (A3)

where f3%s are the structure constants. In the case of SO(3), we have

(T)p = €™ (A.4)
fabc — _Eabc (A5)
Tr[T*T?) = 26 . (A.6)

The gauge field Afi(z) is transffred as
Ayw) = Ul@)Ay(a)U () + éU(x)@uUT(x) , (A7)
where A, = A7T*. We introduce the covariant derivative defined as
D, =0, —igA, , (A.8)
which leads to

(D, @) = 9,0 — igAl(T%)qc® = 9, D" — g™ AL &° . (A.9)
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Under SO(3), the covariant derivative is transformed as
D, — UD,U™". (A.10)

The field strength of the gauge field and its transformation are given by

Fi = < (D Du] = 0y = 0w — igl Ay, A, (A1)
F;V = 8MA?/ - a,,AZ - geabcAZAlc, (A]_Q)
F, — UF,U". (A.13)

Let us consider the following SO(3) invariant lagrangian:

L= %(D“(I))“(Ducb)“ - ingFa V(@) (A.14)
V(@) = 2@t o) (A15)

where )\ is a constant. The potential V' has the minimum for
|®| = (9992 =05 . (A.16)

When & takes the vacuum expectation value, SO(3) symmetry is spontaneously broken
to SO(2) = U(1). This is seen by a concrete example. Suppose ® takes (0,0, 0), then

we still have the following transformation which does not change the vacuum:

®) =cos B @) —sinf Py (A.17)
O, =sin 3 ®; + cos 3 Dy . (A.18)

This is the SO(2) transformation. If we define a complex scalar field ¢ as ¢ = ®; + D,

the above transformation is written as
© . (A.19)

This is U(1) transformation and shows that SO(2) = U(1).
Here let us see that the gauge bosons get mass after spontaneous symmetry breaking.

The kinetic term of the scalar field contains A? term as

1 1
§(Duc1>)a(DH<1>)“ ) §g2€abceangZAf HPEPY (A.20)
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When the scalar field takes & = (0,0, 0),

1 1
é(D,fI))“(D“(I))“ E) §g2026abgeaf3AZAf“

1
— 5920‘2(5@‘ — (Sbg(;fg)AZAf‘u
1
= S9P0% (A,AT + AL A% (A.21)

Thus, A' and A? obtain a mass go while A3 remains massless, which implies that A3 is

the gauge field for remaining U(1) symmetry.

A.1.2. Gauge invariant electromagnetic field

Gauge invariant electromagnetic field is written as [3]

11
Fiw = ~®uFjy, + —5€uc®a(D,@)s(D,®). . (A.22)

The gauge invariance of F,,, is is seen as follow. The 2nd term in LHS of Eq. (A.22)) is
transformed as
Eabcq)a(D,u(I))b(Du(I))c — EachaiUbchk(I)i(Duq)>j<Duq))k
= €1 Pi(D,®);(Dy @) (A.23)
where we have used €,4,CiCpjCer = (det C)e;j for a arbitrary matrix C'. As for the 1st

term,

a ha 1 a a 1 % a
P"Fy, = 5@ tr[F,, T — 5 Vai® tr[UF,, U T
1 .
= §Uaiq)ZUbde Td [/vckjl%7

puv= gk

1.
= — §¢ZF5V Uai Ub] UckedjkeaCb

1, -
= i@leyedjkeijk ='F, . (A.24)

Thus, the both terms are gauge invariant and hence F,, .

If the scalar field ® takes vacuum expectation value ® = (0,0, 0), F,,, is calculated as
1
Fuw = Fg,, + Eégbc@“@b — gebgmA£®m)(8V@c — gecpg AL DY)
= 0,A3 — &,Ai — ge%CAZASﬁ + ge%cebggecpgAﬁAl’i
= 8MA§ — &,Ai — ge;),bcAZAS,f + geeps AL AL
= 0,A) — 0,4 . (A.25)

This is the field strength of electromagnetic field. Notice that with ® = (0,0, ) only A3

is massless coresponding to U(1) symmetry into which SO(3) is broken.
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A.1.3. Monopole solution

In order find a monopole solution let us take the static “Hedgehog” configuration (Ay =
0),

OUr) ~ oFy =0t (A.26)
r
T T
Af ~ €Cab—— — Cigb— 5 A2
i(r) Ciar 1 = Ciab (A.27)
at r > o1, With the Hedgehog configuration,
0,5%(r) ~ 0, (‘”) ~ LG — il . (A.28)
r r
and
geabcAi?q)c ~ g@mw(ﬂ’} - z((S(L”L'écd - 6ad5ic)fdfc - z((sai - fzzfi) . (A29)
qr r r
Thus, at r > 0~ we obtain
(D;®)* ~ 0, V(®) ~ 0, (A.30)

which shows that the energy of the scalar field is localized around the center (r ~ 0).

As for the gauge field, we obtain

z 1 .
@A? ~ (91 (Ejab_b) - W(Ei]’a - 26jab7ni7ab) ) (A31)

and

€ibdTd €jcfTf
gr gr

b pc
geabcAiAj ~ (J€abc

1 .
= W(éaidcd - 5ad56i)rdrf€jcf
1

= P((Smf o f€jef = TaCjifTs)
1
= WEiijAa”gb . (A32)
From Egs. (A.31) and (A.32)
a 1 A A A A A
P~ W(Q%a — 26,0 iTb2€iabTTh — €ijpTalp) (A.33)
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from which we obtain the “magnetic” field,

1
BZ = §€kijﬂ(;‘ (A34)
1 . .
~ W(%ka — 2(0kalib — Okpdia)TiTh — OxpTals) (A.35)
1
= Wﬂﬂ% : (A.36)

From Eq. (A.22) the gauge invariant magnetic field is obtained as

1 1
By = —®°B ~ —7y . (A.37)

o gr?

This shows that the configuration Eqs. (A.26) and (A.27) has a magnetic charge Qs
given by

Qu = /d2S7’AiBi = %T - (A.38)

Therefore this is the configuration which represents a magnetic monopole The energy of

the monopole is written as

Ey = /Hd?’x = —/Edsx , (A.39)

where H is the Hamiltonian density. Taking

£ =gor (A.40)

O = o H(£)7 (A.41)
1

Ay = g—rﬁaz’jfj(l - K(9)) , (A.42)

where H () and K (&) are functions of £ (H — 1, K — 0 asr — oo) which are determined

by minimizing the energy,

_ Admo oo ' (K* —1)? N2 A oo 2
E_7 i dgl(K)2+2—£2+H2K2+(§H) +8—92§ (H* —1)*| . (A.43)

From the above equation the mass of the monopole is estimated as

My ~ 279 | (A.44)
g

85



A.2. Newtonian Gauge
A.2.1. Metric perturbations

Metrics in the Newtonian gauge are given by!

goo = a*(1 + 20Q),
goi = 0,
gij = —a*(1+29Q);

Correspondingly, g"” are

gOO = a_Q(l - 2©Q)7

g7 = —a*(1 - 29Q);
From them the Christoffel symbols are written as
o
Fgo = o +'Q,
ng = —k®Q;,
Iy, = —k®Q',

. a' .
Iy, = (E + \IJ’Q) 55,

/ / /
o — [“— + (—2“-@ +250 4w
a a a

/> Q] Yij

Th, =) T = kU(55Q% + 0,Q; — 14 Q")

Here (S)Fj-k is the Christoffel symbol on the time slice w

ith metric ;.

(A.45)
(A.46)
(A.47)

Einstein tensor is written as G, = GW +0G,,, where G uw and G, are homogeneous

and 1st order fluctuation parts, respectively. The homogeneous part is written as

)

. 3 [/a\?
Gy==|[— K
b (5)

o 1 " I\ 2

a

Fomula in this appendix are taken from [4] with some modifications of notation.
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The 1st order fluctuations are written as

9 [ I\ 2 /
G = —= |3 (3) o320 — (12— 3K)¥| Q,
a a a
2 ./
560 = —= | Lhd - k\If} Q;,
a’ | a
. 2 / .
e [ﬁm = k\ll} Q'
a a
A 9 " I\ 2 / 2
sGi— — 22 () o+ Lo — v - o -
J a? a a a 3

1 , 1 ,
—g(kQ — 3K)\IJ} 05Q + gk:?(@ +1)Q’,

A.2.2. Energy-momentum tensor

al

a

—y’

The first order perturbations of the energy momentum tensor are given by

T% = (1+6Q) p,
TG =—(p+p)VQi
T = (p+p)VQ',

Tij =—p (5; + ’/TLQ5; + HQ;)

From the energy conservation T“(_’# = (, we obtain

_ 0 _ 0 0 af a 08
0="TM, =9, + 0,7 4+ T T

— (80T00 4 (917"0) 4 (FOOOTOO + QFOOiTOi T FOZJTU)

+ (DT + T, T + T, T% 4+ T, T%)

— aOTOO + aZTZO _|_(s) FZ”TOJ + QFOOOTOO + FOUTU + Fiz‘OTOO
— aOTOO 4 TZ0|1 4 2F000T00 =+ FOl]Tz] 4 FiiOTOO
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where

T = a7 2(1 4 6Q — 20Q)p,

T =a? |(1+6Q — 20Q) (% — 2%) + (6" — 2@’@)} P,
T% = a’2(i + w)kVQp,

li —

./
[ T% = a™? %(1 +6Q — 20Q) + ‘I)/Q} P

!/

[T = 3a"w {

Q|8

(14 7,Q — 20Q) + \IJ’Q} 0,
[y T% = 3072 [%(1 +0Q —20Q) + W’@] p.

from which O-th and 1st order equations are onbtained as

/

a
pl=-=3(1+ w)gﬂ

§' = —(1+w)(kV + 30) — 3%5w .

Here dw is the fluctuation in the equation of state.

The momentum conservation TH p= 0 is written as

0="TM,=08,T" +T' 1% +T°,T%
= (0T + 0;T7") + (I oo T* + 21"\, T + T ;, T")
+ (FOOOTOi + Foojsz‘ + FjjOTOi + Fkijij)
— 9T + Tjilj + F’iOOTOO + 2Fi0jT0j + FOOOTOi + FoojTji + FjjOT()z‘ :

where

/

OT" = a2 { {(1 + w) (%/ - 2%) + w'] VQ' + (1+ w)V’QZ} p

T
|7

2 ,
=a? |:—7TL + 5(1 — 3K/K*)I + 2111} wkQ'p

[T = —a?k®Q'p
Cl/

. . . 1. . .

This leads to

/ / 3p/8 2
V= —%(1 ~ 3w)V — 1l+”—wv + %ké - §1+Lw<1 — 3K/K)KIL + k®
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(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)
(A.80)

(A.81)
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A.2.3. Einstein equation

Let us write the 1st order Einstein equation. From (0,0) component,

a 2 a
3 (—) ®—3—V — (k¥ = 3K)V = —4nGa’pd
a a

From (0,4) component,

/
Co — 0 = 4rGa*(1 + w)pV/k
a
From traceless (i, j) component,
E*(® 4+ U) = —87Ga’pll

From Eqgs (A.83) and (A.84) we obtain Poisson equation,

!/

(k2 — 3K)W = 4nGa?p |5 + 3%(1 +w)V/k
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(A.84)

(A.85)

(A.86)



Bibliography

[1] PARTICLE DATA GROUP collaboration, K. A. Olive et al., Review of Particle
Physics, Chin. Phys. C38 (2014) 090001.

[2] A. D. Sakharov, Violation of CP Invariance, ¢ Asymmetry, and Baryon Asymmetry
of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35.

[3] G.’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B79
(1974) 276-284.

[4] W. T. Hu, Wandering in the Background: A CMB Ezplorer, Ph.D. thesis, UC,
Berkeley, 1995. astro-ph/9508126.

90


https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1016/0550-3213(74)90486-6
https://arxiv.org/abs/astro-ph/9508126

	Notation and units
	Standard Cosmology
	Homogeneous and isotropic space
	Flat space
	Space with positive constant curvature
	Space with negative constant curvature
	Robertson-Walker metric
	Energy momentum tensor

	Einstein equation
	Density of the universe
	(Remark) Neutrino mass

	Solusions of Friedmann Equation
	Thermal History of the Universe
	Summary
	Neutrino decoupling
	Neutrinos after decoupling
	Electron positron annihilation
	Big bang nucleosynthesis
	Recombination


	Inflationary Universe
	Problems of the Standard Big Bang Model
	Flatness problem
	Large entropy problem
	Horizon problem
	Monopole problem
	Gravitino problem
	Origin of the density fluctuations

	Success of inflationary universe
	Flatness problem
	Horizon problem
	Monopole and gravitino problems

	Chaotic Inflation
	Chaotic condition in the early universe
	Cosmological evolution of the inflaton
	Slow roll condition

	Slow-roll inflation
	Accelerated expansion
	e-fold N
	After inflation
	Reheating
	Cosmological scale and e-fold


	Generation and Evolution of Density Fluctuations
	Generation of density fluctuations
	Fluctuations of an inflaton field during inflation
	Effect of inflaton mass

	Evolution of density fluctuations
	Metric perturbations (scalar)
	Energy-momentum tensor
	Newtonian gauge

	N Formula
	Basic formulation
	Relation to the Newtonian gauge
	Curvature perturbations produced by inflation
	Curvature perturbations produced by chaotic inflation

	Tensor perturbations
	Generation of tensor perturbations


	Appendix
	Monopole in SO(3) gauge theory
	SO(3) gauge theory
	Gauge invariant electromagnetic field
	Monopole solution

	Newtonian Gauge
	Metric perturbations
	Energy-momentum tensor
	Einstein equation



