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0. Notation and units

In this lecture, Greek indices of vectors and tensors refer to four space-time coordinates,
and Latin ones refer to three spatial coordinates.

µ, ν, . . . = 0, 1, 2, 3 (0.1)

i, j, . . . = 1, 2, 3. (0.2)

We use the time-like convention for the metric tensor, that is

gµν = (+,−,−,−, ) (0.3)

For units, we use so-called natural units. In the natural units the light velocity c, the
Planck constant ~ and the Boltzmann constant kB are all set to unity,

c = ~ = kB = 1. (0.4)

There is one fundamental dimension which is energy. Furthermore we take GeV as
energy unit ( 1GeV = 1.6022× 10−10J ). Thus, the standard units of mass, length, time
and temperature are related to GeV in the following way:

• Mass:

g = 5.61× 1023 GeV, (0.5)

GeV = 1.78× 10−24 g. (0.6)

• Length:

cm = 5.07× 1013 GeV−1, (0.7)

GeV−1 = 1.97× 10−14 cm. (0.8)

• Time:

sec = 1.52× 1024 GeV−1, (0.9)

GeV−1 = 6.58× 10−25 sec. (0.10)
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• Temperature:

K = 8.62× 10−14 GeV, (0.11)

GeV = 1.16× 1013 K. (0.12)

For example, the mass of the sun M� is given by M� = 1.989×1033 g = 1.12×1057 GeV.
One important scale is the Planck mass which is defined as

MG = 1/
√
8πG = 2.4× 1018 GeV. (0.13)
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1. Standard Cosmology

1.1. Homogeneous and isotropic space

The standard cosmology based on the following two observational facts.

• The universe is spatially homogeneous on large scales. That means that there is
no preferred locations in the universe.

• The universe is spatially isotropic on large scales. That means that there are no
preferred directions in the universe.

Of coures on small scales we can see inhomogenities such as stars, galaxies and clusters
of galxies. However, if we smooth the universe over about 100 Mpc, the universe looks
homogeneous and isotropic. This was called cosmological principle in the past when
the observations were limited. Now we can observed our universe on scales as large as
O(1000) Mpc.

There are three types of spatially homogeneous and isotropic space, 1) flat Euclidean
space, 2) space with constant positive curvature and 3) space with constant negative
curvature. It is obvious that the Euclidean space is homogeneous and isotropic.

1.1.1. Flat space

In a flat Euclidian space the element of length d` between (x, y, z) and (x+dx, y+dy, z+

dz) is given by the familiar Pythagorean theorem as

d`2 = dx2 + dy2 + dz2. (1.1)

In the polar coordinates (r, θ, φ), x, y and z are written as

z = ar cos θ, (1.2)

x = ar sin θ cosφ, (1.3)

y = ar sin θ sinφ, (1.4)
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where we introduce the scale parameter a for later convenience. Then the element of
length (or spatial metric) is given by

d`2 = a2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
. (1.5)

1.1.2. Space with positive constant curvature

Space with constant positive curvature is constructed by considering a sphere in 4 di-
mensional Euclidean space. Using Cartesian coordinates (x, y, z, w), the 3 dimensional
surface of the sphere with radius a is described by

x2 + y2 + z2 + w2 = a2. (1.6)

Since 4 dimensional space is Euclidean, the spatial metric d`2 is given by

d`2 = dx2 + dy2 + dz2 + dw2. (1.7)

The surface of the sphere (1.6) is expressed by the following polar coordinates:

w = a cosχ, (1.8)

z = a sinχ cos θ, (1.9)

x = a sinχ sin θ cosφ, (1.10)

y = a sinχ sin θ sinφ. (1.11)

With use of the above polar coordinate Eq.(1.7) is written as

d`2 = a2
[
dχ2 + sinχ2

(
dθ2 + sin2 θdφ2

)]
. (1.12)

Defining r as r = sinχ, we obtain

dr = cosχdχ =

√
1− sin2 χdχ =

√
1− r2dχ, (1.13)

which leads to
d`2 = a2

[
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (1.14)

This is the spatial metric which describe homogeneous and isotropic space with positive
curvature. The space is compact and hence called closed.
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1.1.3. Space with negative constant curvature

The space with negative constant curvature is constructed by embedding a hyperbola

x2 + y2 + z2 − w2 = −a2, (1.15)

in 4 dimensional psude-Euclidean space with metric

d`2 = dx2 + dy2 + dz2 − dw2. (1.16)

This space is obtained from the constant positive curvature space (Eqs.(1.6) and (1.7))
by the following substitution:

a→ ia, (1.17)

w → iw, (1.18)

χ→ iχ. (1.19)

Thus, we obtain the spatial metric which describe homogeneous and isotropic space with
negative curvature as

d`2 = a2
[
dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (1.20)

This space extends infinitely and the universe with such space is called open.

1.1.4. Robertson-Walker metric

Now we know homogeneous and isotropic space and taking into account that our universe
is expanding, the space-time metric of the universe is given by

ds2 = dt2 − a(t)2
[

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (1.21)

This is called Robertson-Walker metric. Here a(t) is the scale factor which represents
the size of the universe. K represents the spatially curvature as

K =


1 closed universe with positive curvature
0 flat universe
−1 open universe with negative curvature

. (1.22)

From Robertson-Walker metric (1.21) the Ricci tensor is calculated as

R00 = −3
ä

a
, (1.23)

Rij = −
[
ä

a
+ 2

ȧ2

a2
+ 2

K

a2

]
gij, (1.24)
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where ˙ ≡ d/dt. The Riccu scalar is given by

R = −6
[
ä

a
+
ȧ2

a2
+
K

a2

]
. (1.25)

Let us consider the spatial distance between two points A and B whose coordinates
are A(t, 0, 0, 0) and B(t, r, 0, 0). (Without loss of generality, A can be taken as the origin
from homogeneity of the space and we can take angular coordinates of B = 0 from
spatially isotropy. ) The physical distance between A and B is

dp =

∫ B

A
d` = a(t)

∫ r

0

dr′
1√

1−Kr′2
. (1.26)

This is called “proper distance”. Notice that the proper distance is given by (coordinate
distance )× (scale factor).

Here we derive the Hubble law which says that distant galaxies go away from us with
velocities proportional to their distances. Suppose that the distance to some galaxy is d
given by

d = a(t)

∫ r

0

dr′√
1−Kr2

. (1.27)

If the galaxy is comoving with the cosmic expansion, i.e. their spatial coodinates are
constant, the recession velocity is

v = ḋ = ȧ

∫ r

0

dr′√
1−Kr2

=
ȧ

a
d. (1.28)

This shows the distance d is proportional to the recession velocity v with proportional
factor ȧ/a which is called Hubble parameter H. The Hubble parameter is defined as

H(t) ≡ ȧ(t)

a(t)
. (1.29)

Please notice that it is time-dependent. Sometimes the present Hubble parameter is
called Hubble constant H0 whose observed value is

H0 = (67.4± 1.4) km/s/Mpc. (1.30)

The present Hubble parameter is often expressed in units of 100 km/s/Mpc as

h ≡ H0/(100 km/s/Mpc). (1.31)

So the observed value of h is h = 0.674± 0.014.
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Another important consequence of the Robertson-Walker metric is that the wavelength
of light increases as the universe expands. Suppose that light emitted at r = re (θ = φ =

0) and t = te observed at r = 0 and t = t0 (the present time). From the light geodesics,
d2s = 0, and Eq. (1.21)

dt

a(t)
= − dr√

1−Kr2
. (1.32)

Thus, we obtain ∫ t0

te

dt

a(t)
= −

∫ 0

re

dr′√
1−Kr′2

=

∫ re

0

dr′√
1−Kr′2

(1.33)

Similarly, for light which is emitted at t = te+ δte and r = re and observed at r = 0 and
t = t0 + δt0, ∫ t0+δt0

te+δte

dt

a(t)
=

∫ re

0

dr′√
1−Kr′2

. (1.34)

Subtracting Eq. (1.33) from the above equation and assuming δte � te and δt0 � t0,
we find

δt0
a(t0)

=
δte
a(te)

. (1.35)

If we take δte(δt0) as a period [the time between successive wave crests] of the emitted
(observed) light,

δte
δt0

=
ν0
νe

=
a(te)

a(t0)
, (1.36)

where νe and ν0 are the frequencies of the light at te and t0. Thus, frequency ν of light
decreases as the universe expands. In other words, wavelength λ of light increases as the
universe expands (λ ∝ a). The redshift z is defined as

z ≡ λ0 − λ
λ

=
a(t0)

a(t)
− 1 , (1.37)

where λ and λ0 the wavelengths of the light at t and t0.
In quantum theory, the redshift means that the momentum p of a photon decreases

as 1/a because the momentum is given by p = 2π~/λ. Actually this applies to a generic
particle with momentum p and mass m. Its momentum decreases as p ∝ 1/a in the
expanding universe.
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1.1.5. Energy momentum tensor

In the homogeneous and isotropic universe the energy momentum tensor takes the perfect
fluid form:

T 00 = ρ(t), (1.38)

T ij = −gijP (t), (1.39)

or

T µν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 , (1.40)

where ρ and P are the energy density and pressure of the universe. Using the velocity
four vector u0 = 1, ui = 0 (four-velocity of an observer who is comoving with the cosmic
expansion), the energy momentum tensor T µν is also written as

T µν = −Pgµν + (ρ+ P )uµuν . (1.41)

1.2. Einstein equation

We are ready for considering the Einstein equation which is written as

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν =

1

M2
G

Tµν , (1.42)

where Gµν is the Einstein tensor, G is the Newton constant and MG is the reduced
Planck mass (= 1/

√
8πG = 2.4× 1018 GeV).

Here is a remark on the cosmological term originally introduced by Einstein in 1917.
Including the cosmological term the Einstein equation is written as

Rµν −
1

2
gµνR− Λgµν = 8πGTµν , (1.43)

where Λ is the cosmological constant. However, the cosmological term can be absorbed
in the energy momentum tensor if we introduce TΛ

µν which is given by

TΛ
µν = −PΛgµν + (ρΛ + PΛ)uµuν , (1.44)

PΛ = −ρΛ = − Λ

8πG
. (1.45)

Rereading Tµν + TΛ
µν as Tµν , Eq (1.43) is reduced to Eq.(1.42).
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Now let us derive the basic equations which describe the dynamical evolution of the
universe. From the (0, 0) component of the Einstein equation we obtain

G00 = 3

(
ȧ2

a2
+
K

a2

)
= 8πGT00 = 8πGρ, (1.46)

which leads to
ȧ2

a2
+
K

a2
=

8πG

3
ρ . (1.47)

This equation is called the Friedmann equation. From (i, j) component,

Gij =

(
2
ä

a
+
ȧ2

a2
+
K

a2

)
gij = 8πGTij = −8πGPgij, (1.48)

which leads to

ä = −4πG

3
(ρ+ 3P )a . (1.49)

Another useful equation is obtained from Eqs. (1.47) and (1.48) as follows. First, mul-
tiplying Eq. (1.47) by a2 and differentiating it with respect to t,

2ȧä =
8πG

3
(ρa2)˙=

8πG

3a
(ρa3)˙− 8πG

3
aȧρ (1.50)

Using Eq. (1.48) in LHS of the above equation we obtain

(a3ρ)˙= −P (a3)˙ . (1.51)

1.3. Density of the universe

As is seen from the Friedmann equation, the cosmic expansion is determined by the
density of the universe. Let us introduce an equation of state which describes the
relation between density and pressure as

P = wρ , (1.52)

where w is the parameter that specifies the equation of state. Using Eq. (1.52), Eq. (1.51)
is written as

(a3ρ)˙= −wρ(a3)˙ ,

⇒ ρ̇

ρ
= −(1 + w)

(a3)˙

a3
. (1.53)
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Thus, we obtain
ρ ∝ a−3(1+w) . (1.54)

This describes how the density (energy) component with w evolves as the universe
expands. In cosmology there are three kinds of important density components: matter,
radiation and dark energy.

• Matter
Matter consists of non-relativistic particles which (mostly) are not in thermal
equilibrium. Since the velocity of matter particles is small, their pressure is almost
zero (P = 0), which means w = 0. So the matter density ρM evolves as

ρM ∝ a−3 . (1.55)

This is understood as follows. Since the energy of a non-relativistic particle is
given by its rest mass, the energy density is inversely proportional to the volume
∼ a3.

• Radiation
Radiation consists of relativistic particles which are thermal or non-thermal. The
equation of state for relativistic particle is given by P = ρ/3 (w = 1/3), so the
radiation energy ρR evolves as

ρR ∝ a−4 . (1.56)

The energy of a relativistic particle is given by its momentum which decreases by
redshift or adiabatic expansion [see Eq. (1.109)] as ∼ a−1. This explains the extra
factor of a−1 in Eq. (1.56) compared with Eq. (1.55).

• Dark energy
Dark energy is an energy component that drives accelerated expansion of the
universe. From Eq. (1.49), the accelerated expansion, ä > 0, requires ρ+ 3P < 0,
which leads to

w < −1

3
. (1.57)

In particular, dark energy with w = −1 is called cosmological constant because it
is equivalent to the cosmological term −Λgµν introduced by Einstein as mentioned
in Sec 1.2. The energy momentum tensor of the dark energy ρΛ with w = −1 is
written as

Tµν = ρΛgµν =
Λ

8πG
gµν . (1.58)
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In this lecture we only consider the cosmological constant as dark energy because
the recent observations strongly suggest the present universe is dominated by some
dark energy and its equation of state is given by w ' −1. Then, from Eq. (1.54)

ρΛ ∝ a0 = constant . (1.59)

Let us define the density parameter Ω as

Ω ≡ 8πGρ

3H2
=

ρ

ρc
, (1.60)

where ρc is the critical density given by

ρc =
3H2

8πG
, (1.61)

and its present value is ρc,0 = 1.054h2 × 104 eV cm−3. Using the density parameter the
Friedmann equation (1.47) is rewritten as

H2 +
K

a2
= ΩH2 (1.62)

⇒ (Ω− 1)H2 =
K

a2
. (1.63)

Therefore the curvature of the universe is related to the cosmic density as

Ω


> 1
= 1
< 1

⇔ K


+1
= 0
−1

(1.64)

The present abundances of the density components are shown in Table 1.1 and the
fraction of each component is shown in Fig. 1.1. It is seen that radiation (photons and
neutrinos) has large number density but gives a negligible contribution to the energy
density of the present universe. Among known particles the baryons have the largest
energy density which amounts to about 5% of the critical density. As has been known
for a long time, dark matter has a significant density of the universe. Matter ( baryons
and dark matter) accounts for 23% of the present energy density. The present universe
is dominated by dark energy, which amounts to about 67% of the critical density. Sur-
prisingly, the total density of (radiation, matter and dark energy) is equal to the critical
density within observational errors (∼ 1%). Therefore, our universe is almost flat.

Since the dark energy, matter and radiation evolve as a0, a−3 and a−4 respectively,
matter or radiation dominates the universe in the early universe depending on the scale
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69%

27%

5%

dark energy

dark matter

baryon 0.1%

neutrino

Figure 1.1.: Fractions of the density components.

Components Temperature Number Density energy density Ω0

(K) (cm−3) (eV cm−3)
photon (γ) 2.73 415 0.23 4.8× 10−5

neutrino (ν) 1.95 113× 3 0.052× 3 1.09× 10−5 × 3
baryon (B) — 2.5× 10−7 235 0.049
dark matter (DM) — — 1.16× 103 0.265
dark energy (DE) — — 3.85× 103 0.686

Table 1.1.: Present density components

factor as shown Fig. 1.2. Let us estimate the epoch t∗ when densities of dark energy and
matter are equal as

ΩM0

(
a∗
a0

)−3

= ΩΛ0, (1.65)

where a∗ = a(t∗), ΩM0 and ΩΛ0 are density parameters of matter and dark energy
(=cosmological constant). Since ΩM0 = 0.314 and ΩΛ0 = 0.686, we obtain a∗ = 0.77a0.
In the same way, we can estimate the epoch teq at which matter density equals radiation
one as

ΩM0

(
aeq

a0

)−3

= ΩR0

(
aeq

a0

)−4

, (1.66)

where aeq = a(teq) and ΩR0 is the density parameter of the present radiation and ΩR0 =

8.1× 10−5. Thus, we obtain aeq = 2.6× 10−4a0.
In summary, there are three eras in the history of the standard universe.

• a > a∗ : dark energy dominated universe (DED).

• a∗ > a > aeq : matter dominated universe (MD).
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aa0aeq a*

matter
radiation

dark energy

ρ

Figure 1.2.: Evolution of the density components.

• aeq > a : radiation dominated universe (RD).

1.3.1. (Remark) Neutrino mass

In Table 1.1 neutrinos are assumed to be massless. However, experiments reveal that
neutrinos have small masses. If neutrinos have masses, flavor eigenstates (eigenstates for
weak interaction) |νe〉, |νµ〉, |ντ 〉 are different from mass eigenstates |ν1〉, |ν2〉, |ν3〉. Thus,
when neutrinos are produced through weak interaction they are in a mixed state of
mass eigenstates. Since the mass eigenstates propagate with different wavelengths, they
interfere and change the state of the produced neutrinos. Thus, neutrinos change their
flavors periodically during their flight, which is called neutrino oscillation.

The neutrino oscillation was first discovered in 1998 by SuperKamiokande which ob-
served atmospheric neutrinos. The atmospheric neutrinos are produced in the atmo-
sphere of the earth through interaction between cosmic rays (mainly protons) and atoms
(Fig. 1.3). In this interactions many pions are produced and they decay into mu neutri-
nos and muons which further decays into electron neutrinos, mu neutrinos and electrons.
Superkamiokande found that the mu neutrino flux coming from below is smaller than
expected, which means that mu neutrinos change into tau neutrinos during their flight
through the earth. From the observation of the atmospheric neutrinos it was found that
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Figure 1.3.: Atmospheric and solar neutrinos

the mass squared difference between mu and tau neutrinos is

|m2
3 −m2

2| ' 2.5× 10−3 eV2. (1.67)

The neutrino oscillation was also discovered for neutrinos emitted from the center of
the sun (solar neutrinos). In this case electron neutrinos change into mu neutrinos and
the mass squared difference between electron and mu neutrinos is

m2
2 −m2

1 ' 7.5× 10−5 eV2. (1.68)

If neutrino masses are hierarchical like quarks, i.e. m3 � m2 � m1, Eqs. (1.67) and
(1.68) imply

m3 ' 0.05 eV, m2 ' 8.7× 10−3 eV , (1.69)

from which the present density of neutrinos is estimated as

ρν,0 ' 113 cm−3 × (0.05 + 0.0087) eV ' 6.6 eV cm−3 . (1.70)

Since the present neutrino temperature Tν,0 ' 1.9K ' 1.6× 10−4 eV which is the typical
momentum of the neutrinos is much smaller than the neutrinos masses, neutrinos are
non-relativistic at present. However, their density parameter is

Ων,0 ' 1.4× 10−3 , (1.71)

which is much smaller than ΩDM,0 and ΩB,0. On the other hand, neutrinos are relativistic
for Tν > mν and their contribution to the total radiation density is significant. Therefore,
in almost all cases we can consider neutrinos as radiation.
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1.4. Solusions of Friedmann Equation

Let us solve Fiedmann equation (1.47). Here we write Friedmann equation as(
ȧ

a

)2

+
K

a2
=

8

3
πG (ρΛ + ρM + ρR) . (1.72)

Since our universe is found to be almost flat, we neglect the curvature term K/a2.

Dark energy dominated universe

First, we consider the dark energy(=cosmological constant) dominated universe and for
simplicity we neglect ρM and ρR. Then the above equation is given by(

ȧ

a

)2

=
8

3
πGρΛ. (1.73)

Since ρΛ = const., the equation is easily solved and we ontain

a = a0 exp

[√
8πG

3
ρΛ (t− t0)

]
. (1.74)

So the universe expands exponentially when the cosmological constant dominates the
universe.

Matter dominated universe

In matter dominated universe (ρM � ρR, ρΛ) the Friedmann equation is written as(
ȧ

a

)2

=
8

3
πGρM =

8

3
πGρM,0

(a0
a

)3
= H2

0ΩM,0

(a0
a

)3
, (1.75)

from which we obtain the following solution:

a = a0

(
3

2
H0

√
ΩM,0

)2/3

t2/3. (1.76)

Here we set the boundary condition as a(t→ 0) = 0. Please notice that in MD era the
scal factor a(t) evolve as

a(t) ∝ t2/3 . (1.77)

15



Matter or cosmological constant dominated universe

The more accurate formula is obtained when both matter and cosmological constant give
significan contributions to the total cosmic density as in the present universe. Neglecting
only the radiation component, the Friedmann equation is written as(

ȧ

a

)2

= H2
0ΩM,0

(
a(t)

a0

)−3

+H2
0ΩΛ,0 (1.78)

⇒ ȧ

a
= H0

[
ΩΛ,0

(
a(t)

a0

)3

+ ΩM,0

]1/2(
a(t)

a0

)−3/2

. (1.79)

Defining x ≡ a/a0,
dx

dt
= H0x

−1/2[ΩΛ,0x
3 + ΩM,0]

1/2, (1.80)

which is integrated with boundary condition a(t→ 0) = 0 as∫ a/a0

0

x1/2√
ΩΛ,0x3 + ΩM,0

= H0t. (1.81)

Using the following formula∫
y1/2dy√
y3 + A

=
2

3
log(

√
y3 +

√
y3 + A), (1.82)

we obtain

a(t) = a0

(
ΩM,0

ΩΛ,0

)1/3

sinh2/3

[
3

2

√
ΩΛ,0H0t

]
. (1.83)

In the limiting cases of t� H−1
0 and t� H−1

0 , the above solution is estimated as

a

a0
'
(

ΩM,0

4ΩΛ,0

)1/3

exp
[√

ΩΛ,0H0t
]

(t� H−1
0 ) (1.84)

a

a0
'
(
3

2

√
ΩM,0H0t

)2/3

(t� H−1
0 ), (1.85)

which correspond to the solutions (1.74) and (1.76), respectively.
The present age of the universe t0 is estimated by setting t = t0 in Eq. (1.83),

1 =

(
ΩM,0

ΩΛ,0

)1/3

sinh2/3

[
3

2

√
ΩΛ,0H0t0

]
, (1.86)

which leads to

t0 =
2

3

H−1
0√
ΩΛ,0

sinh−1

[√
ΩΛ,0

ΩM,0

]
. (1.87)

Using the observed values H−1
0 = 1.45 × 1010 yr, ΩΛ,0 = 0.69 and ΩM,0 = 0.31, the

present age of the universe is estimated as t0 = 1.38× 1010 yr.
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Radiation dominated universe

In radiation-dominated universe the Friedmannn equation is written as(
ȧ

a

)2

=
8πG

3
ρR. (1.88)

Since in most cases relativistic particles in radiation-dominated era are in thermal equi-
librium, it is convenient to write ρR as a function of temperature. The energy density
of a relativistic particle “i” in thermal equilibrium with temperature Ti is given by

ρi =
gi

(2π)3

∫
d3p

p

ep/Ti ± 1
(+ boson, − fermion),

=

{
π2

30
giT

4
i (boson)

7
8
π2

30
giT

4
i (fermion)

(1.89)

where gi is the degrees of freedom ( spin and particle-antiparticle). The extra factor 7/8
for fermionic particles is derived in the following way. Let us define I(n)B and I(n)F with n
integer (n ≥ 2) as

I
(n)
B =

∫ ∞

0

xndx

ex − 1
, I

(n)
F =

∫ ∞

0

xndx

ex + 1
. (1.90)

Subtracting I(n)F from I
(n)
B ,

I
(n)
B − I(n)F =

∫ ∞

0

2xndx

e2x − 1
=

1

2n

∫ ∞

0

yndy

ey − 1
=

1

2n
I
(n)
B , (1.91)

where we have used y = 2x in the second eqaulity. Fron the above equation we obtain
the above relation betqween I

(n)
B and I

(n)
F as

I
(n)
F =

(
1− 1

2n

)
I
(n)
B . (1.92)

For n = 3 (case of energy density) the factor 7/8 is obtained.
The total radiation density is written as

ρR =
π2

30
g∗T

4 , (1.93)

where T is the photon temperature and g∗ is the total relativistic degrees of freedom,

g∗ =
∑
boson

gi

(
Ti
T

)4

+
7

8

∑
fermion

gi

(
Ti
T

)4

, (1.94)
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Temperatute g∗

< me 2 + 21
4

(
4
11

)4/3
me −mµ

43
4

mµ −mπ
57
4

mπ − TH
69
4

TH −mc
247
4

mc −mτ
289
4

mτ −mb
303
4

mb −mW,Z
345
4

mW,Z −mh
381
4

mh −mt
385
4

mt − TEW
427
4

> TEW
427
4

Table 1.2.: Relativistic degrees of freedom. TH and TWS are the temperatures of qurak-
hadron and electro-weak phase transitions.

Most particles in the radiation have the same temperature as photons, i.e. Ti = T , but
some particles that are decoupled from the thermal bath at early epochs have different
temperatures. For example, at temperature T = 1 MeV the relativistic particles whose
masses are lighter than T are photons(γ), electrons (positrons) (e±) and three species
of neutrinos (3ν). They contribute to g∗ as

g∗ =

γ︷ ︸︸ ︷
2

(helicity)
+

e︷ ︸︸ ︷
7

8
(fermion)

× 2
(spin)

× 2
(e±)

+

ν︷ ︸︸ ︷
7

8
(fermion)

× 3
(3ν)
× 2

(νν̄)
=

43

3
. (1.95)

For the particle content of the standard model of paricle physics, g∗ is caluculated as
shwon in Table 1.2.

In considering the cosmological evolution of the radiation density and temperature, it
is useful to introduce the entropy S. In thermodynamics we have

dS =
1

T
d(ρV ) +

P

T
dV, (1.96)

where V is the volume of the system we consider. We assume that the energy density
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and pressure are functions of T only. Then, from Eq. (1.96)

∂S

∂V
=

1

T
(ρ+ P ) (1.97)

∂S

∂T
=
V

T

dρ

dT
, (1.98)

from which we obtain the integrability condition as

∂2S

∂T∂V
=

∂

∂T

(
1

T
(ρ+ P )

)
=

∂

∂V

(
V

T

dρ

dT

)
. (1.99)

Thus, we obtain
dP =

1

T
(ρ+ P )dT , (1.100)

which is applied to Eq. (1.96) as

dS =
1

T
d [(ρ+ P )V ]− V

T
dP =

1

T
d [(ρ+ P )V ]− V

T 2
(ρ+ P )dT

= d

[
(ρ+ P )V

T

]
. (1.101)

So Eq. (1.96) can be integrated as

S =
V

T
(ρ(T ) + P (T )) . (1.102)

In the case of the universe, the volume is set to equal to a3 and the entropy of the
universe is given by

dS =
1

T
d(ρa3) +

P

T
da3, (1.103)

S =
a3

T
(ρ(T ) + P (T )) . (1.104)

Furthermore, we define the entropy density s as s = S/a3. Since P = ρ/3, s is given by

s =
4ρ

3T
=

2π2

45
gs∗T

3 , (1.105)

where gs∗ is the relativistic degrees of freedom for entropy,

gs∗ =
∑
boson

gi

(
Ti
T

)3

+
7

8

∑
fermion

gi

(
Ti
T

)3

. (1.106)
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From the Einstein equation which describe the evolution of the energy density [Eq. (1.51)]
given by

d(ρa3)

dt
= −P d(a

3)

dt
, (1.107)

and Eq. (1.103), we obtain
dS

dt
= 0. (1.108)

Therefore the entropy is conserved and hence the universe expands adiabatically, which
leads to

gs∗T
3a3 = consant. (1.109)

When gs∗ is regard as constant, the cosmic temperature T is proportional to 1/a.
We are now ready to solve the Friedmann equation (1.88). Since T ∝ 1/a and ρR is

given by Eq. (1.93) the equation is written as

− Ṫ

T
=

(
π2g∗
90

)1/2
T 2

MG
, (1.110)

where we have used MG ≡ 1/
√
8πG ' 2.4 × 1018 GeV. The above equation is easily

solved and we obtain

t =

(
2π2g∗
45

)−1/2
MG

T 2
, (1.111)

= 2.3 sec g−1/2
∗

(
T

1010K

)−2

, (1.112)

= 1.7 sec g−1/2
∗

(
T

MeV

)−2

. (1.113)

Notice that in radiation-dominated universe the scale factor a evolves as

a(t) ∝ 1/T ∝ t1/2 . (1.114)

1.5. Thermal History of the Universe
1.5.1. Summary

In Fig. 1.4 summary of the history of the universe predicted in the standard cosmology
is shown. In the standard cosmology the evolution of the universe after about 1 sec is
well understood and the following several important events take place from 1 sec to the
present:
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Figure 1.4.: Thermal hisory of the universe.

• Neutrino decoupling
In the early universe (t . 0.3 sec), neutrinos are in thermal equilibrium via weak
interactions. However, when the temperature becomes as low as a few MeV (t ∼
0.3 sec) the interaction rate is not large enough to keep neutrinos in thermal
equilibrium and neutrinos are decoupled from the thermal bath.

• Electron-positron annihilation
When the temperature T is larger than the electron mass me, electrons and
positrons are as abundant as photons. They are annihilated and pair-created
and their densities are given by the thermal values. However, at T . me electrons
and positrons cannot be pair-created and only annihilations proceed. As a result
positrons disappear in the universe and a small fraction of electrons remain owing
to charge neutrality.

• Big Bang Nucleosynthesis (BBN)
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From t ∼ 1 sec to t ∼ 103 sec light elements like D, 3He and 4He are synthesized.

• Recombination
At t ' 0.4 Myr protons and electrons form bound systems, i.e hydrogens, which is
called recombination although this is the first time for them to combine. After that,
photons can freely streams without scattering with electrons and are presently
observed as the cosmic microwave radiations.

• Structure formartion
After recombination the large scaled structure of the universe such as galaxies and
clusters is formed from tiny density fluctuations through gravitational instability.

1.5.2. Neutrino decoupling

In the early universe (T & 2 MeV) neutrinos are in thermal equilibrium via the following
weak interaction:

νi + ν̄i ←→ e+ + e− (i = e, µ, τ) (1.115)

The number density of the neutrino ni evolves according to the Boltzmann equation,

dnνi
dt

+ 3Hnνi = −〈σv〉
(
n2
νi
− n2

νeq
)
, (1.116)

where 〈σv〉 is the thermal averaged cross section and n2
νieq is the equilibrium number

density. The neutrino number density is determined by competition between reaction
rate Γ and the cosmis expansion rate H. The rate of the weak interaction is given by

Γ = 〈σv〉 ' 4G2
F 〈E2〉
9π

3ζ(3)

2π2
T 3 ∼ G2

FT
5 (1.117)

where GF is the Fermi coupling constant ' 1.17×10−5 GeV−2, E the energy of neutrinos
and ζ(3)(= 1.202 . . .) is the zeta function of 3. On the other hand the expansion rate

e± � 3⌫

T < 2 MeV

Figure 1.5.: Neutrino decoupling.
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(=Hubble parameter) is given by

H =
T 2

MG

(
π2g∗
90

)1/2

(1.118)

Therefore at high temperatute Γ � H and hence neutrinos are in thermal equilibrium
nνi = nνeq while nutrinos are diluted by the cosmic expansion nν ∝ a−3 without inter-
acting at low temperature. Thus, when Γ ' H neutrinos decouple from the thermal
bath. The decoupling temperature Td determined from Γ ∼ G2

FT
5
d ∼ T 2

d /MG ∼ H is

Td ' 2 MeV . (1.119)

So the neutrino sector and the photon-electron sector decouple and no energy exchange
happens (Fig. 1.5).

1.5.3. Neutrinos after decoupling

Let us consider their momentum distribution fν(p). At temperature higher than or equal
to the decoupling temperature (T ≥ Td) fν(p) obeys the Fermi-Dirac distribution given
by

fν(p) =
1

exp
(
p
T

)
+ 1

. (1.120)

However, at T < Td neutrinos decouple from the thermal bath and they freely stream in
the universe. Thus, the momentum of each neutrino is redshifted and hence decreases
as p ∝ 1/a. Thus, the momentum at t > td (td: decoupling time) is given by

p = pd
a(td)

a(t)
, (1.121)

where pd ≡ p(td). Since the distribution at t = td is given by

fν(pd) =
1

exp
(
pd
Td

)
+ 1

. (1.122)

we obtain the distribution function at t > td as

f(p) =
1

exp
(
p
Td

a(t)
a(td)

)
+ 1

. (1.123)

Here if we define the “neutrino temperature” Tν as

Tν ≡ Td
a(td)

a(t)
, (1.124)
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the momentum distribution is written as

fν(p) =
1

exp
(
p
Tν

)
+ 1

. (1.125)

Therefore, the neutrino distribution is the same as the thermal one with temperature
Tν . Please notice that the neutrino temperature Tν is always proportinal to 1/a after
the neutrino decoupling.

1.5.4. Electron positron annihilation

After the neutrino decoupling, when the cosmic temperature decreases as low as the elec-
tron mass me(' 0.511 MeV), elecrons and positrons which are as abundant as photons
start to annihilate each other,

e+ + e− −→ 2γ . (1.126)

As a result almost all electrons and positrons disappear in the universe. From charge
neutrality the number density of electrons is slightly lager than that of positrons and its
difference is the same as the proton number density, namely,

ne− − ne+ = np � nγ . (1.127)

Thus, a small number of electrons survive the annihilation.
Let us consider the effect of the e± annihilation on the photon and neutrino temper-

atures using entropy conservation. The entropy Sγ in the photon sector at t = t1 before
the annihilation is given by

Sγ = a31
2π2

45

(
2 +

7

8
× 2× 2

)
T 3
1 = (a1T1)

3 2π2

45

11

2
(T1 > me), (1.128)

where T1 = T (t1) and a1 = a(t1). After e± annihilation the entropy is written as

Sγ = a32
2π2

45
(2)T 3

2 = (a2T2)
3 2π2

45
2 (T2 < me), (1.129)

where t2 is some time after the annihilation. Since the photon and neutrino sectors are
decoupled, the entropy in each sector is conserved separately. The conservation of Sγ
leads to

T2 = T1

(
a1
a2

)(
11

4

)1/3

. (1.130)
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Figure 1.6.: Evolution of the photon and neutrino temperatures.

On the other hand, the neutrino sector is not affected by the e± annihilation, the con-
servation of its entropy Sν gives the following relation between Tν(t1) = Tν1 = T1 and
Tν(t2) = Tν2:

Tν2 = Tν1

(
a1
a2

)
= T1

(
a1
a2

)
. (1.131)

From Eqs. (1.130) and (1.131) we obtain

Tν = T

(
4

11

)1/3

. (1.132)

Here notice that we always denote T as the photon temperature. The photon tempera-
ture relatively increases due to heating by e± annihilation while the neutrino temperature
decreases as Tν ∝ 1/a (Fig. 1.6).

We know that the present photon temperature is T = 2.726 K from which the neutrino
temperature is estimated as Tν = 1.95 K. Using the photon temperature the photon
number density is calculated as

nγ,0 =
2

(2π)3

∫ ∞

0

4πp2dp
1

exp(p/T0)− 1
=

2ζ(3)

π2
T 3
0 . (1.133)

Similary the neutrino number density per species is estimated as

nν,0 =
3

4

2ζ(3)

π2
T 3
ν,0 . (1.134)
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Using T0 = 2.73 K and Tν,0 = 1.95 K we obtain

nγ,0 = 415 cm−3 , (1.135)

nν,0 = 113 cm−3 . (1.136)

1.5.5. Big bang nucleosynthesis

Big bang nucleosynthesis is the process by which helium 4 (4He) nuclei are synthesized
from neutrons and protons in the early universe (T ' 1 MeV− 10 keV),

2p+ 2n −→ 4He . (1.137)

In the process small amounts of other light elements like deuterium (D), helium 3 (3He)
and lithium 7 (7Li) are also produced.

Fixing n/p ratio

At high temperature T & 1 MeV, protons(neutrons) are changed to neutrons(protons)
via the following weak interactions:

νe + n ←→ p+ e− (1.138)

e+ + n ←→ p+ ν̄e (1.139)

n ←→ p+ e− + ν̄e (1.140)

The rate of the above reactions is given by Γ ∼ G2
FT

5. When the reaction rate Γ is
larger than the expansion rate H, the chemical equilibrium is established and we have

µνe + µn = µp + µe− , (1.141)

where µi is the chemical potential of particle “i”. The equilibrium number density of
proton(neutron) is written as

np(n) = 2

(
mp(n)T

2π

)3/2

exp
[
−(mp(n) − µp(n))/T

]
. (1.142)

Thus, the neutron-to-proton ratio is(
nn
np

)
eq

= exp

[
−mn −mp − µn + µp

T

]
. (1.143)
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The electron chemical potential is related to the difference between number densities of
electrons and positrons as

ne−−ne+ =
ge
2π2

∫ ∞

0

p2dp

[
1

exp((
√
p2 +m2

e − µe)/T ) + 1
− 1

exp((
√
p2 +m2

e + µe)/T ) + 1

]
,

(1.144)
where µe = µe− = −µe+ and ge is the spin degrees of freedom. When T � me

ne− − ne+ =
ge
6π2

T 3

[
π2 µ

T
+
(µ
T

)2]
. (1.145)

From Eq. (1.127)

ne− − ne+ '
µe
T

T 3

3
� nγ ∼ T 3 , (1.146)

which leads to µe/T � 1. So the electron chemical potential is negligible in Eq. (1.141).
Moreover, if we assume µνe/T � T , the condition for chemical equilibrium is written as

µp = µn , (1.147)

from which Eq. (1.143) is rewritten as(
nn
np

)
eq

= exp

[
−mn −mp

T

]
. (1.148)

Since the neutron mass is slightly larger than the proton mass mn−mp = 1.293 MeV, the
chemical equilibrium predicts that the neutron-to-proton ratio is less than 1. However,
the weak interaction rate decreases as the universe cools down, and the weak interaction
freezes out at Γ ' H. The freeze-out temperature is estimated as Tf ' 0.7 MeV, which
leads to (

nn
np

)
f

= exp

[
−mn −mp

Tf

]
' 1

7
. (1.149)

Since most of neutrons existing at Tf form 4He, the 4He abundance Yp is estimated as

Yp ≡
ρ4He

ρB
=

2nn
nn + np

' 0.25 . (1.150)

Thus, the 25% of baryons are synthesized to 4He. Fig 1.7 show the precise calculation
of the neutron-to-proton ratio.
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Figure 1.7.: Evolution of neutron-to-proton ratio.

Deuterium bottleneck

After the neutron-to-proton ratio is fixed by freeze-out of the weak interaction, the next
step towards helium synthesis is formation of deuterons via

p+ n ←→ D + γ . (1.151)

At high temperature T & 0.1 MeV, the background photons have energy high enough to
destroy the synthesized deuterons whose binding energy QD is small (QD = 2.22 MeV).
Thus, the D production does not take place effectively and hence the nucleosynthesis
does not proceed by this obstacle (deuterium bottleneck). The deuteron production
proceeds when the temperature decreases as low as 0.1 MeV,

p+ n −→ D + γ . (1.152)
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Helium synthesis

After formation of D, 4He is produced by rapid nuclear reactions, e.g. the following
successive reactions:

D + D −→ 3He + n (1.153)
3He + n −→ 3H + p (1.154)
3H + D −→ 4He + n . (1.155)

Through the reactions (1.152)–(1.155) most of neutrons existing at T ∼ 1 MeV form 4He
nuclei and small numbers of D, 3He and 3H nuclei are produced as by-product. (Later,
3H decays into 3He + e− + ν̄e with lifetime 17.8 year.)

Heavier elements are hardly produced in BBN because no stable nuclei with mass
number A = 5 or 8 exist in nature and Coulomb barrier becomes significant. However,
only a tiny amount of 7Li nuclei are produced through the reaction,

4He + 3H −→ 7Li + γ (1.156)
4He + 3He −→ 7Be + γ (1.157)

↘ 7Be + e− −→ 7Li + νe (1.158)

The abundances of light elements depend only on baryon-to-photon ratio,

ηB ≡
nB
nγ

. (1.159)

Fig. 1.8 shows the theoretical prediction for abundances of 4He, 3He, D and 7Li together
with ranges of observed abundances. From this figure it is found that the BBN predic-
tions for 4He and D are consistent with the observed abundances for ηB ' 6 × 10−10.
Therefore, the BBN can determine the baryon density of the universe. As for 7Li abun-
dance the BBN predicts too large a value if we take ηB ' 6 × 10−10, which is called
“lithium problem”.

1.5.6. Recombination

When the cosmic temperature is about 3000 K (t ∼ 0.38 Myr), electron and protons
combine to form hydrogen atoms as

p+ e− −→ H + γ . (1.160)
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23. Big-Bang nucleosynthesis 3

Figure 23.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis — the bands show the 95% CL range. Boxes
indicate the observed light element abundances. The narrow vertical band indicates
the CMB measure of the cosmic baryon density, while the wider band indicates the
BBN concordance range (both at 95% CL).

August 21, 2014 13:17

Figure 1.8.: Abundances of 4He, 3He, D and 7Li predicted by BBN. The yellow bands shows
95% CL range of observed abundances [1].

This process is called recombination following the astrophysics convention although this
is the first time for them to combine. Let us neglect 4He for simplicity. Then,

nB = np + nH , (1.161)

np = ne . (1.162)

Since the chemical equilibrium is established at the beginning of the recombination, we
have the relation among the chemical potentials as

µH = µe + µp . (1.163)
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Here notice that that the chemical potential for photons is zero. Since the electrons,
protons and hydrogen atoms are non-relativistic, their number densities are given by

ni = gi

(
miT

2π

)3/2

exp

(
µi −mi

T

)
i = e, p, H , (1.164)

where gi is the spin degree of freedom (gp = ge = 2, gH = 4). From Eqs. (1.163) and
(1.164) we obtain(

nH

npne

)
eq

=
gH

gegp

(
meT

2π

)−3/2

exp

(
mp +me −mH

T

)
=

(
meT

2π

)−3/2

eB/T , (1.165)

where B(= mp +me −mH = 13.6 eV) is the hydrogen binding energy.
Using the ionization fraction defined by

X ≡ np
nB

=
ne
nB

, (1.166)

Eq. (1.165) is rewritten as

1−Xeq

(Xeq)2
= nB

(
meT

2π

)−3/2

eB/T . (1.167)

Since the baryon number density nB is written as

nB = ηBnγ =
2ζ(3)

π2
T 3ηB . (1.168)

the ionization fraction satisfies the well-known Saha formura,

1−Xeq

(Xeq)2
=

4
√
2ζ(3)√
π

ηB

(
T

me

)3/2

eB/T . (1.169)

Figure 1.9 shows the evolution of the electron fraction Xe = ne/(nH + np) ' X. It
is seen that the recombination takes place around T ∼ 4000 K= 0.4 eV (z ∼ 1300).
The temperature Trec when the recombination takes place is significantly lower than the
hydrogen binding energy 13.6 eV. This comes from the fact that the number density of
photons is much larger than that of baryons. Even if hydrogen atoms are formed the
background photons with energy larger than B can ionize them, and such high energy
photons are sufficiently abundant unless the temperature is much lower than the binding
energy. Thus, recombination does not proceed effectively until the temperature becomes
as low as ∼ 0.4 eV.
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Figure 1.9.: Evolution of the ionization fraction. The fraction Xe is larger than 1 at high
temperature because 4He is taken into account.

As recombination proceeds the free electrons and protons rapidly decreases and hence
the recombination rate becomes smaller than the cosmic expansion rate. In that case
the Saha formula is no longer satisfied and the ionization fraction is frozen out. Since
the recombination and the expansion rates are proportional to XnB ∝ XΩBh

2 and
ρ1/2 ∝ (ΩM0h

2)1/2, respectively. So the freeze-out ionization fraction Xf is proportional
to Ω

1/2
M0/(ΩBh), more precisely

Xf ' 3× 10−5 Ω
1/2
M0

ΩBh
. (1.170)

Because free electrons almost disappear due to recombination, the mean free time τT

of the background photons for Thomson scattering becomes long as

τT =
1

σTne
' 4× 1012 sec 1

X

(
T

103K

)−3

, (1.171)

where σT(= 6.6 × 10−25cm2) is Thomson cross section. The mean free time is longer
than the cosmic time which is given by

t ' 2

3
H−1

0 Ω
−1/2
M0

(
T

T0

)−3/2

' 8× 1013 sec
(

T

103K

)−3/2

, (1.172)
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for T . 103 K and X ∼ 10−4. Here we have used Eq. (1.76) and T ∝ 1/a. As a result
the background photons freely streams without scattering off the residual background
electrons and they are observed as the cosmic microwave background (CMB).
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2. Inflationary Universe

2.1. Problems of the Standard Big Bang Model

As we have seen the previous chapter, the standard big bang model is very successful in
describing our universe at t & 1 sec. However, if the standard big bang model is applied
to the very early universe it is confronted with several problems listed below.

• Flatness problem

• Large entropy problem

• Horizon problem

• Monopole problem

• Gravitino problem

• Origin of the density fluctuations

Most of theses problems are found to be solved by the inflationary universe.

2.1.1. Flatness problem

The flatness problem comes from the observational fact that the present universe is close
to flat about 13.8 billion years after the big bang. This is quite unnatural if you consider
how the flatness of our universe evolves in time.

Let us begin with the Friedmann equation,(
ȧ

a

)2

+
K

a2
=

8πG

3
ρ . (2.1)

Using the Hubble parameter H = ȧ/a and the density parameter Ω = (8/3)πGρH−2,
the above equation is written as

H2 +
K

a2
= ΩH2 . (2.2)
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Since Ω = 1 corresponds to the flat universe, we can define the “flatness” parameter as

Ω− 1 =
K

a2H2
. (2.3)

From Eqs. (1.77) and (1.114) a2H2 evolves as

a2H2 = ȧ2 ∝

{
a−1 ∝ T (MD)

a−2 ∝ T 2 (RD)
, (2.4)

in matter or radiation dominated universe, respectively. Thus, the flatness Ω−1 evolves
as

Ω− 1 ∝

{
a ∝ T−1 (MD)

a2 ∝ T−2 (RD)
. (2.5)

Since we know that at present Ω0 . 0.01, we can obtain the flatness at the Planck
time (= M−1

G ) which is the earliest time when the classical description (i.e., Einstein
equation) can be applied to the universe,

|Ω− 1| . 0.01

(
T0
Teq

)
MD

(
Teq

Tpl

)2

RD

= 0.01

(
10−13GeV
10−9GeV

)(
10−9GeV
1018GeV

)2

∼ 10−60 , (2.6)

where Teq is the temperature at the matter-radiation-equality time. Eq. (2.6) shows
that the universe should be extremely flat with accuracy 10−60 at the Planck time. This
requires an unnatural fine tuning.

2.1.2. Large entropy problem

Let us estimate the entropy S̃ inside a sphere with curvature radius of the universe.1

Since the curvature radius is given by a/
√
|K|, S̃ is written as

S̃ '

(
a√
|K|

)3

s =

[
1

H2|Ω− 1|

]3/2
s =

[
1

H2
0 |Ω0 − 1|

]3/2
s0 , (2.7)

where we have used Eq.(2.3) and entropy conservation (S̃ = S̃0).
The present entropy density is estimated as

s0 =
2π2

45

(
2 T 3

γ,0 +
7

8
× 2× 3 T 3

ν,0

)
(2.8)

= 1.715T 3
γ,0 = 2.8× 103 cm−3 (2.9)

1In our convention S̃ = S since |K| = 1. However, we can rescale a, r and K as a → βa, r → β−1r
and K → β2K (β: a constant) without changing Robertson-Walker metric. In that case K takes
an arbitrary value and the spatial curvature radius is given by a/

√
|K|.
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With use of the present Hubble radius H−1
0 ' 4000 Mpc = 1.3× 1028 cm and |Ω0− 1| .

0.01, we obtain
S̃ & 1091 . (2.10)

Therefore, our universe has unnaturally huge amount of entropy. This is the large
entropy problem. It is noticed that the large entropy problem has the same origin as
the flatness problem because both are based on Eq.(2.3).

2.1.3. Horizon problem
Horizon

There are two types of horizons in cosmology; one is the particle horizon and the other
is the event horizon. The particle horizon `H is the maximum travel distance of light
from t = 0 to t. The geodesics of light is given by ds2 = 0. From the Robertson-Walker
metric [Eq. (1.21)]

ds2 = 0 = dt2 − a(t)2 dr2

1−Kr2
⇒ dr√

1−Kr2
=

dt

a(t)
, (2.11)

where we assume that the light travels in the φ = θ = 0 direction. Thus, the particle
horizon is given by

`H(t) = a(t)

∫ rH

0

dr√
1−Kr2

= a(t)

∫ t

0

dt′

a(t′)
, (2.12)

where rH is the coordinate distance for the particle horizon. For a(t) ∝ tm (0 < m < 1),
we obtain

`H =
t

1−m
=

{
2t (RD)

3t (MD)
. (2.13)

As is seen from the definition the particle horizon is the maximum distance within which
causal relations are established and hence it is very important in cosmology.

The event horizon `He is the maximum travel distance of light from t to tmax. tmax is
the maximum time if the universe lasts for a finite time or infinity if the universe exists
forever. `He is given by

`He(t) = a(t)

∫ tmax

t

dt′

a(t′)
. (2.14)

A finite `He is obtained for de Sitter universe whose scale factor evolve as a exp(Ht)

with H constant,
`He = eHt

∫ ∞

t

dt′e−Ht
′
=

1

H
. (2.15)
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Figure 2.1.: Horizon problem.

If some event happens outside of the event horizon at the time t′ > t, we never know
the event.

Another useful scale related to the horizon is the Hubble radius given by H−1 which
is written as

H−1(t) =
t

m
=

{
2t (RD)

3t/2 (MD)
, (2.16)

for the universe with a ∝ tm. So the Hubble radius is roughly equal to the particle
horizon if a ∝ tm, and equal to the event horizon for the de Sitter universe.

Horizon problem

The horizon problem is closely related the fact that the observed CMB radiation is highly
isotropic, which apparently violates causality. Suppose CMB photons coming from the
opposite directions. These photons are emitted from the space-time points P and Q at
the recombination epoch trec and observed by the observer at O as shown in Fig. 2.1.
In the figure O’ is the point at tsec with same spatial coordinate as O. Using Eq. (2.11),
the proper distance PO’ is given by

dPO’ = a(trec)

∫ t0

trec

dt′

a(t′)
' t2/3rec

∫ t0

trec

dt′

t′2/3
' 3 t2/3rec t

1/3
0 , (2.17)

where we assume that the universe is matter dominated from trec to t0, and used t0 � trec

at the last equality. From symmetry the distance between P and Q is dPQ = 6t
2/3
rec t

1/3
0 .
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On the other hand, the particle horizon at trec is

dH = 3 trec . (2.18)

The ratio dPQ/dH is evaluated as

dPQ

dH
= 2

(
t0
trec

)1/3

' 2

(
Trec

T0

)1/2

' 2

(
3000K
2.7K

)1/2

' 74 . (2.19)

Therefore, the points P and Q which are far away and have no causal relation emit
photons with same intensity. This is unnatural and called the horizon problem.

2.1.4. Monopole problem

So far we have considered the rather conceptual problems in the standard big bang model.
The next problem we discuss is the monopole problem which is a more practical one. The
standard model of particle physics is based on gauge theory with SU(3)×SU(2)×U(1)
symmetry, where SU(2) × U(1) is the symmetry of the electroweak theory unifying
the weak and electromagnetic interactions. The idea of unification naturally leads to
the grand unified theories (GUTs) which unify the strong and electroweak interactions
within the framework of a gauge field theory based on a symmetry group G e,g, SU(5)
or SO(10). It is expected that the group G is spontaneously broken to SU(3)×SU(2)×
U(1) at low energy by Higgs mechanism. In general when a spontaneous symmetry
breaking takes place topological defects are produced through the Kibble mechanism.
The topological defects are classified to domain walls, strings and monopoles which are
two, one and zero dimensional objects, respectively. When G→ SU(3)× SU(2)×U(1)
occurs monopoles are formed.

To understand the spontaneous breaking let us consider a simple real scalar fields φ
with potential

V (φ) = λ(φ2 − v2)2 + cT 2φ2 , (2.20)

where the second term represents the finite temperature correction with c and λ con-
stants. This potential has a Z2 symmetry (φ→ −φ). At high temperature (T � v) the
potential has the minimum at φ = 0 (Fig. 2.2(a)), and Z2 symmetry is not broken. On
the other hand at low temperature φ takes v or −v (Fig. 2.2(a)). The vacuum 〈φ〉 = v

is not invariant under φ→ −φ, so Z2 is broken.
When the symmetry breaking occurs, some regions take the field value v and other

regions takes −v as shown in Fig, 2.2(b) because φ takes v or −v with equal probability.
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Figure 2.2.: (a) Potential V (H) and (b) formation of domain walls.

Since the field should be continuous there should be a boundary region where the field
value takes φ ∼ 0 and hence has a large potential energy. In the case of the real field
with Z2 the boundary region is two dimensional and called domain wall.

For a spontaneous symmetry breaking like G → SU(3) × SU(2) × U(1) a point-like
defect called monopole is formed (Fig. 2.3). The size of the region where the scalar field
aligns is called coherent length ξ. The monopole number density is larger for a shorter
coherent length, which leads to

nM ∼
1

ξ3
, (2.21)

Let us estimate the cosmic monopole density. Since the coherent length cannot exceed
the horizon, i,e, ξ < `H = 2tf, the number density at the formation epoch (tf) is given
by

nM &
1

8t3f
. (2.22)

After formation the monopoles are diluted as ∝ a−3. Since the entropy density s(=

2π2/45 g∗T
3 also decreases as a−3, the ratio nM/s (s: entropy density) is constant and

is given by

nM

s
&

1

8tf

(
2π2

45
g∗T

3
f

)−1

=
π

4
√
90
g1/2∗

T 3
f

M3
G

' 0.8

(
Tf

MG

)3

, (2.23)

Here we have used t = (45/2π2g∗)
1/2MG/T . The phase transition takes place at the

GUTs scale (Tf ' 1016 GeV), which leads to

nM

s
& 6× 10−8 . (2.24)
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Figure 2.3.: Formation of a momopole.

At present s0 = 2.8×103 cm−3 and the monopole mass is mM ' 1017 GeV (see, Sec. A.1),
so the monopole density is given by

ρM & 1.6× 1013GeVcm−3 , (2.25)

which is much larger than the present critical density ρc,0 ' 5 × 10−6 GeV cm−3 and
hence contradicts the obserbation. This is called the monopole problem.

2.1.5. Gravitino problem

One of promissing ideas beyond the standard model of particle physics is supersymmetry
which is a symmetry between bosons and fermions. In supersymmetry every bosonic
(ferionic) particle in the standard model has its fermionic (bosonic) superpartner. For
example,

γ (photon) ⇐⇒ γ̃ (photino) (2.26)

g (gluon) ⇐⇒ g̃ (gluino) (2.27)

e (electron) ⇐⇒ ẽ (selectron) (2.28)

q (quark) ⇐⇒ q̃ (squark) (2.29)

The gravitino is the sperpartner of the graviton which mediates gravity,

gµν (graviton) ⇐⇒ ψ̃µ (gravitino) . (2.30)
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In the standard big bang universe gravitinos are in thermal equilibrium at the Planck
time and their number density n2/3 is given by

n2/3 ∼ nγ . (2.31)

The gravitino mass m3/2 is expected to be O(1) TeV in some class of models and the
lifetime of the gravitino is very long because the gravitino interacts with other particles
olny through gravity. The lifetime for ψµ → γ + γ̃ is

τ3/2 ' 4× 105 sec
(m3/2

1TeV

)−3

, (2.32)

Thus when the gravitino decays the ratio of the gravitino density to that of the back-
ground photons is estimated as

ρ3/2
ργ

∣∣∣∣
decay

∼
m3/2n3/2

Tnγ

∣∣∣∣
decay

∼
m3/2

Tdecay
∼ 1TeV

keV
� 1 . (2.33)

This means that huge entropy is produced by the gravitino decay, which dilutes the
baryon density. Since the baryon density should be nB/nγ ∼ 10−10 at the BBN epoch,
the present baryon density becomes much smaller than the observed value. This is the
gravitino problem which was first pointed out by Steven Weinberg.

2.1.6. Origin of the density fluctuations

The large scale structures such as glaxies and clusters obserbed at present are thought
to be formed from initial small density fluctuations which grows through gravitational
instabilities. How are those density fluctuations created in the eraly universe? In oreder
to get feeling about the epoch when the density fluctuations are produced let us consider
the fluctuations with galaxy scale. The typical mass of a galaxy Mgal is about 1013M�,

Mgal ∼ 1013M� . (2.34)

On the other hand, the matter mass inside the horizon MH is given by

MH = ρM
4π

3
(2t)3 = ρc,0ΩM,0

(
T

T0

)3
32π

3
t3 . (2.35)

Here we assume that the universe is radiation-dominated. Using Eq. (1.111) we ontain

MH =
32π

3

(
45

2π2g∗

)3/4
M

3/2
G ρc,0
T 3
0

ΩM,0 t
3/2 (2.36)

' 0.2M�ΩM,0

(
t

sec

)3/2

, (2.37)
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where g∗ = 2.34. The galaxy scale becomes equal to the horizon scale when Mgal ∼MH,
which happens at tgal ∼ 4 × 109 sec. Since we do not know any mechanism to produce
density fluctuations at t & tgal, we should suppose that the density fluctuations are
produced at t � tgal. This means that the size (or wavelength) of initial fluctuations
responsible for galaxies is much larger than the horizon. However, it is impossible
for some physical process to produce density fluctuations whose size is over-horizon.
Therefore, it is difficult to explain the origin of the density fluctuations in the standard
big bang model.

2.2. Success of inflationary universe

The most of the problems discussed are solved if there exist a period of accelerated
expansion (= inflation) in the very early universe. The universe that experiences the
period of accelerated expansion at its early stage is called inflationary universe.

Suppose that the universe is dominated by the vacuum energy ρv. Here the vacuum
energy is a term in quantum field theory which is the same as the dark energy with
w = −1. In this case, taking into account that ρv is constant, the Friedmann equation(

ȧ

a

)2

=
8π

3
Gρv (2.38)

has a simple solution

a(t) ∝ exp(Hinft), Hinf =

[
8π

3
Gρv

]1/2
=

ρ
1/2
v√
3MG

. (2.39)

Thus, the universe expands exponentially. There are the following two points in the
inflationary universe:

• Existence of the quasi-exponential expansion (= inflation).

• Reheating of the universe after inflation.

Here reheating is the process where the vacuum energy converts to the hot radiation
after inflation.

2.2.1. Flatness problem

Let us see how the inflationary universe solves the flatness problem. We suppose that
the universe exponentially expands from ti to tf and it is radiation dominated after
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Figure 2.4.: Timeline of inflationary universe.

inflation until the equal-time teq after which the matter dominated universe follows (see
Fig. 2.4). During inflation the scale factor expands as

a(t) = ai exp[Hinf(t− ti)] , (2.40)

where ai = a(ti). At the end of inflation the scale factor increases by

Z ≡ af
ai

= exp[Hinf(tf − ti)] = exp[(Hinf∆t)] . (2.41)

Now let us calculate the flatness parameter |Ω− 1|. If the flatness at ti is |Ω− 1|i the
flatness at the end of inflation is given by

|Ω− 1|f =
(
aiHi

afHf

)2

|Ω− 1|i , (2.42)

where Hi = H(ti) and Hf = H(tf ). Since the Hubble parameter H is constant during
inflation, Hi = Hf = Hinf, and we obtain

|Ω− 1| =
(
ai
af

)2

|Ω− 1|i =
1

Z2
|Ω− 1|i . (2.43)

After inflation the evolution of the flatness is the same as the standard universe, so the
present flatness is estimated as

|Ω− 1|0 '
(
Tf
Teq

)2(
Teq

T0

)
|Ω− 1|f (2.44)

=

(
1016GeV
10−9GeV

)2(
10−9GeV
10−13GeV

)
|Ω− 1|f =

1054

Z2
|Ω− 1|i , (2.45)

where we tale Tf = 1016 GeV. We obtain the present flatness |Ω − 1|0 ∼ O(0.01) for
Hinf∆t & 65 even if |Ω − 1|i ∼ O(1). Hereafter, we call Hinf∆t the total e-folds of
inflation denoted as Ntot. More precisely, the total e-folds is given by

Ntot =

∫ tf

ti

H dt =

∫ tf

ti

ȧ

a
dt =

∫ tf

ti

d ln a

dt
dt = ln

af
ai

. (2.46)
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Thus, the flatness problem is solved in the inflationary universe. The point is that
H ≡ H(t)a(t) is a increasing function during inflation.

2.2.2. Horizon problem

Next let us consider the horizon problem. For this end we consider the evolution of the
region whose size LH(t) is equal to the particle horizon at the beginning of the inflation
ti as

LH(ti) ∼ ti . (2.47)

This region is enlarged during inflation and its size at the end of inflation is given by

LH(tf ) ∼ Zti . (2.48)

After inflation the region is further enlarged by the cosmic expansion and at present

LH(t0) ∼ Zti

(
a(t0)

a(tf )

)
. (2.49)

If reheating occurs soon after inflation, the reheating temperature TR is given by

ρv =
π2g∗(tR)T

4
R

30
, (2.50)

where tR the reheating time. After reheating entropy is conserved, so we have

2π2gS∗(tR)T
3
Ra(tR)

3

45
=

2π2gS∗(t0)T
3
0 a(t0)

3

45
, (2.51)

which leads to(
a(t0)

a(tf )

)
=
gS∗(tR)

1/3TR
gS∗(t0)1/3T0

' (100)1/31016GeV
(43/11)1/3 3× 10−4eV

' 1029 , (2.52)

where we have used TR = 1016 GeV and gS∗(tR) ' 100. As for ti we make a rough
estimation as

ti ∼ H(ti)
−1 =

√
3MG

ρ
1/2
v

(2.53)

∼
√
3× 2.4× 1018GeV

(π2g∗(tR)/30)1/2(1016GeV)2
∼ 10−14GeV−1 ∼ 10−28cm . (2.54)

Here we have used Eq. (2.50). Thus, we obtain

LH(t0) ∼ 10Z cm . (2.55)
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Figure 2.5.: Gravitino production.

On the other hand, taking into account that photons from the most distant universe we
can see were emitted at the recombination epoch, the size of the observable universe is
given by

Lobs = a(t0)

∫ t0

trec

dt

a(t)
∼ t0 ∼ H−1

0 ∼ 1028 cm . (2.56)

If Lobs < LH the observable universe was once inside the horizon. This happens if
sufficient duration of inflation, i.e. Ntot = Hinf∆t > 62 is realized. Thus, the horizon
problem is solved by inflation.

2.2.3. Monopole and gravitino problems

The monopole problem is solved because monopoles existing before inflation are diluted
by a factor exp(−3N) . 10−85. Therefore there are no monopoles in the present universe.

In the same way gravitinos existing before inflation are diluted away. However, the
situation is a little complicated. Gravitinos are also produced thermally during reheating
after inflation by, e.g. scattering of quarks (q+q̄ → g̃+ψµ)(Fig. 2.5). The number density
of the secondarily produced gravitinos at reheating is estimated as

n3/2 ∼ n2
qσH

−1 ∼ 10−2T 6
R

1

M2
G

MG

T 2
R

∼ 10−2 T
4
R

MG

, (2.57)

where nq(∼ T 3
R) is the quark number density, σ(∼ 10−2/M2

G) is the cross section, and
TR is the reheating temperature. So the gravitino-to-entropy ratio n3/2/s is given by

n3/2

s
∼

n3/2

102 T 3
R

∼ 10−4 TR
MG

∼ 10−12

(
TR

1010GeV

)
. (2.58)

For gravitinos with mass about 1 TeV, this leads to entropy production when they decay.
At the decay time

ρ3/2
ργ

∣∣∣∣
decay

∼
m3/2n3/2

Tdecaynγ
∼ 10−111 TeV

1 keV

(
TR

1010GeV

)
, (2.59)
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Figure 2.6.: Constraint on the reheating temperature from BBN.

where we have used nγ ' s/7 at T < me. In order for gravtinos not to produce
large entropy the reheating temperature TR should be smaller than about 1012 GeV.
Furthermore, energetic particles such as photon and gluons produced in the gravitino
decay can destroy the light elements (4He, 3He and D) synthesized in BBN, from which
we obtain the more stringent constraint on the reheating temperature,

TR . 106 GeV for m3/2 ' 0.1− 40 TeV , (2.60)

as seen in Fig. 2.6.

2.3. Chaotic Inflation

In this section, we consider a chaotic inflation model as a concrete model of inflation.
The chaotic inflation model is the simplest among many inflation models proposed so
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Figure 2.7.: Potential of chaotic inflation.

far and inflation takes place by one real scalar field with Lagrangian

L =
1

2
∂µφ∂

µφ− V (φ) (2.61)

V (φ) =
1

2
m2φ2 , (2.62)

where m is the mass of the scalar field. The potetila V (φ) is shown in Fig. 2.7. In
general, the potential V for chaotic inflation can be

V (φ) =
λ

n

φn

Mn−4
G

, (2.63)

where λ is the coupling constant. Hereafter, we call a scalar field which causes inflation
inflaton.

2.3.1. Chaotic condition in the early universe

First, let us consider the initial condition at the Planck time. The Heisenberg uncertainty
between energy and time implies

∆E ∆t & 1 . (2.64)

Let us apply this relation to the inflaton field. The uncertainty of the energy density of
the inflaton is estimated as

∆ρ ' ∆E

L3
&

1

∆tL3
, (2.65)
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where L is the size of the region we consider, but it must be smaller than the horizon,
so L . `pl = M−1

G (`pl: Planck length). In addition, ∆t should be less than tpl = M−1
G .

Thus, we obtain
∆ρ ∼M4

G . (2.66)

This is called the chaotic condition in the early universe and means that the inflaton
field at the Planck time has energy density of M4

G.
From the Lagrangian (2.61) the energy momentum tensor is written as

Tµν =
∂L

∂(∂µφ)
∂νφ− gµνL = ∂µφ∂νφ− gµνL , (2.67)

where the metric is gµν = diag(1,−a2,−a2,−a2). The energy density of the inflaton is
then given by

ρφ = T00 =
1

2
(∂0φ)

2 +
1

2a2
(∂iφ)

2 + V (φ) , (2.68)

where the first, second and third terms are called kinetic, gradient and potential energies,
respectively. (Notice that ∂iφ∂iφ = −(1/a2)∂iφ∂iφ ….) From Eq. (2.66) we expect

(∂0φ)
2 ∼M4

G (2.69)
1

a2
(∂iφ)

2 ∼M4
G (2.70)

V (φ) ∼M4
G . (2.71)

In particular, for V = m2φ2/2 the initial value of the inflaton, φi satisfies m2φ2
i ∼ M4

G

which leads to
φi ∼

M2
G

m
�MG for m�MG . (2.72)

Thus, the initial value of the inflaton is much larger than the Planck scale at the Planck
time.

2.3.2. Cosmological evolution of the inflaton

If the inflaton field φ dominates the energy density of the universe, from Eq.(2.68) the
Friedman equation is written as(

ȧ

a

)2

=
1

3M2
G

(
1

2
φ̇2 +

1

2a2
(∂iφ)

2 + V (φ)

)
. (2.73)

On the other hand the equation of motion for φ is derived from the action

S =

∫
d4x
√
−gL =

∫
d4x a3L (2.74)

=

∫
d4x a3

(
1

2
gµν∂µφ∂νφ− V (φ)

)
, (2.75)
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from which we obtain

δS

δφ
= ∂µ

(
∂(a3L)
∂(∂µφ)

)
− ∂(a3L)

∂φ

= ∂µ(a
3gµν∂νφ) + a3

dV

dφ

= ∂0(a
3∂0φ)− ∂i(a3a−2∂iφ) + a3

dV

dφ
= 0 . (2.76)

Thus, the equation of motion is given by

φ̈+ 3
ȧ

a
φ̇− 1

a2
4 φ = −dV

dφ
. (2.77)

Let us suppose that there is a region with size O(M−1
G ) where (∂µφ)2 < V (φ) and assume

that φ̇2 � V and φ̈� dV/dφ. Then, Eqs.(2.73) and (2.77) are(
ȧ

a

)2

=
1

3M2
G

V (φ) (2.78)

3
ȧ

a
φ̇ = −dV

dφ
. (2.79)

Here we neglect terms with spatial derivatives because they decay as 1/a2. From
Eq. (2.78) (

ȧ

a

)
=

(V (φ))1/2√
3MG

, (2.80)

which is substituted into Eq. (2.79),

3φ̇
V 1/2

√
3MG

= −dV
dφ

. (2.81)

For the inflaton with potential V (φ) = 1
2
m2φ2, we obtain

φ̇ = −
√
2√
3
mMG , (2.82)

from which the solution is given by

φ = φi −
√
2√
3
mMG(t− ti) , (2.83)

with initial condition φ(ti) = φi. Using this solution in Eq. (2.78), we obtain

ȧ

a
=

m√
6MG

φ =
m√
6MG

[
φi −

√
2√
3
mMG(t− ti)

]
. (2.84)
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This can be easily integrated as

ln
a

ai
=

m√
6MG

[
φi(t− ti)−

1√
6
mMG(t− ti)2

]
(2.85)

=
1

4M2
G

(
φ2
i − φ2

)
. (2.86)

Finally we obtain

a = ai exp

[
1

4M2
G

(
φ2
i − φ2

)]
. (2.87)

2.3.3. Slow roll condition

In solving dynamics of the inflaton we have assumed that φ̇2/2� V and |φ̈| � |dV/dφ|.
We now derive the condition for which these inequalities are satisfied. This condition
is called slow roll condition. First let us consider the condition for φ̇2 � V . From
Eq. (2.79)

φ̇ ' − V ′

3H
(V ′ ≡ dV/dφ) , (2.88)

which leads to
1

2
φ̇2 ' (V ′)2

18H2
=

(V ′)2

6V
M2

G � V . (2.89)

Introducing the slow-roll parameter ε defined as

ε ≡ 1

2

(
V ′

V

)2

M2
G , (2.90)

φ̇2/2� V is satisfied if
ε� 1 . (2.91)

Nest let us consider |φ̈| � |dV/dφ|. Differentiating Eq. (2.88) with respect to t,

φ̈ ' − V
′′

3H
φ̇+

V ′Ḣ

3H2
' V ′′V ′

9H2
+
V ′Ḣ

3H2
. (2.92)

From Eq. (2.78),

2HḢ ' V ′

3M2
G

φ̇ ' (V ′)2

9M2
GH

, (2.93)

which leads to
Ḣ

H2
' (V ′)2

18M2
GH

4
=

(V ′)2

2V 2
M2

G = ε . (2.94)

Using this relation, φ̈ is written as

φ̈ ' V ′
(
V ′′

3V
M2

G + ε

)
. (2.95)
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Therefore, |φ̈| � |dV/dφ| is satisfied if

|η| � 1 , (2.96)

where η is another slow-roll parameter defined as

η ≡ V ′′

V
M2

G . (2.97)

When the slow-roll parameters ε and |η| are much smaller than 1, the inflaton so slowly
rolls down the potential that the potential energy is almost constant, which drives in-
flation. Conversely, inflation ends when ε ' 1 or |η| ' 1.

So far we have derived the slow-roll condition for a generic inflaton potential. Let us
calculate the slow-roll parameters for chaotic inflation with potential V = m2φ2/2. ε

and η are given by

ε =
1

2

(
m2φ2

m2φ2/2

)2

M2
G =

2M2
G

φ2
(2.98)

η =
m2

m2φ2/2
M2

G =
2M2

G

φ2
. (2.99)

Both slow-roll parameters are much smaller than 1 when φ�
√
2MG. This is perfectly

consistent with the initial chaotic condition which predicts the initial value of the inflaton
φi as

V =
1

2
m2φ2

i ∼M4
G ⇒ φi ∼

(
MG

m

)
MG �MG for m�MG . (2.100)

Thus, chaotic inflation naturally occurs.
As mentioned above, inflation end when ε ' 1 or |η| ' 1. In the case of chaotic infla-

tion with potential V = m2φ2/2, inflation ends for φ = φf '
√
2MG. From Eq. (2.87),

during inflation the scale factor increases by

af
ai

= exp

[
1

4M2
G

(φ2
i − 2M2

G)

]
∼ exp

[(
MG

m

)2
]
. (2.101)

Later we will see that m ' 1013 GeV which leads to af/ai ∼ exp(1010). This is enough
to solve flatness and horizon problems.2

2Actually, Eq. (2.87) cannot be used for φ & (MG/m)1/2MG because fluctuations of the inflaton field
produced by inflation cannot be neglected in the inflaton dynamics. Even taking this into account,
we have sufficient inflation with af/ai ∼ exp(MG/m) ∼ exp(105).
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2.4. Slow-roll inflation

In the previous section we have seen that chaotic inflation naturally takes place and
provide sufficient quasi-exponential expansion of the universe which solves the problems
of the standard cosmology. The dynamics of the inflaton field is solved by using the
slow-roll approximation which is valid if slow-roll parameters ε and η are much smaller
than unity (slow-roll condition). When the slow-roll condition is satisfied, the inflaton
field slowly rolls down the potential and hence the potential energy effectively behaves
as cosmological constant by which inflation takes place. In fact, in almost all inflation
models proposed so far inflation occurs when the slow-roll condition is satisfied. There-
fore this type of inflation is called slow-roll inflation. In this section we consider the
slow-roll inflation without specifying concrete form of the inflaton potential.

2.4.1. Accelerated expansion

In this subsection we derive the condition for accelerated expansion of the universe. The
acceleration of the universe is given by [Eq. (1.49)]

ä = − 1

6M2
G

(ρ+ 3P )a . (2.102)

From the energy-momentum tensor for the homogeneous inflaton field [see, Eq. (2.67)],
the energy density ρ and pressure P are given by

ρ =
1

2
φ̇2 + V , (2.103)

P =
1

2
φ̇2 − V , (2.104)

where we have used T00 = ρ and Tij = −Pgij. Using Eqs. (2.103) and (2.104) we obtain

ä =
1

3M2
G

(V − φ̇2)a . (2.105)

Thus, the accelerated expansion (ä > 0) is realized if V > φ̇2. Using the slow-roll
approximation φ̇ ' −V ′/(3H), this condition is written as

1 >
φ̇2

V
=

(V ′)2

9H2V
=

1

3

(
V ′

V

)2

M2
G ' ε . (2.106)

Therefore, the accelerated expansion takes place when the slow-roll parameter ε satisfies
ε & 1. For ε� 1 the kinetic energy is negligible (φ̇2 � V ), which leads to P = V = −ρ,
so the inflaton potential behaves as cosmological constant.
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2.4.2. e-fold N

The e-fold N is defined by

N = ln
a(tf )

a(tN)
. (2.107)

So eN represents how the scale factor increases from t = tN to the end of inflation
(t = tf ). From Eq. (2.107)

N =

∫ a(tf )

a(tN )

da
1

a
= −

∫ tN

tf

dt
da

dt

1

a
= −

∫ tN

tf

dtH = −
∫ φN

φf

dφ
dt

dφ
H , (2.108)

where φN = φ(tN). Using Eq. (2.88),

N =

∫ φN

φf

dφ
3H2

V ′ =

∫ φN

φf

dφ
V

V ′M2
G

, (2.109)

where we have used H2 = V/(3M2
G) during inflation. Finally, using the slow-roll param-

eter e-fold N is given by

N =

∫ φN

φf

dφ
V

V ′M2
G

=

∫ φN

φf

dφ
1√

2εMG

(2.110)

If we take the initial value of the inflaton in place of φN we obtain the total e-fold Ntot

as
Ntot =

∫ φi

φf

dφ
V

V ′M2
G

(2.111)

For example, for chaotic inflation with V = m2φ2/2, Eq. (2.110) gives

N =

∫ φN

φf

dφ
m2φ2

m2φM2
G

=
1

4M2
G

(φ2
N − φ2

f ) , (2.112)

which is the same result directly calculated using Eqs. (2.107) and (2.87).

2.4.3. After inflation

Here let us see what happens after inflation. The equation of motion for the inflaton
field is given by

φ̈+ 3
ȧ

a
φ̇+ V ′ = 0 . (2.113)

We assume that after inflation the potential is dominated by the quadratic term, i.e.
V ' m2φ2/2. Then the equation of motion is written as

φ̈+ 2
ȧ

a
φ̇+m2φ = 0 . (2.114)
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Soon after inflation ȧ/a = H becomes much smaller than m (H � m), so as zero-th
approximation we can neglect the second term and obtain the equation for a simple
oscillator as

φ̈ ' −m2φ , (2.115)

which has a solution
φ = Φcos(mt+B) , (2.116)

where Φ is the amplitude of the oscillation (∼ φf ) and B is a constant determined by
φ(tf ) = φf .

Next, let us take into account the cosmic expansion. Multiplying Eq. (2.113) by φ̇,

φ̈φ̇+ V ′φ̇ = −3 ȧ
a
φ̇2 ⇒

(
1

2
φ̇2 + V

)˙

= −3 ȧ
a
φ̇2 , (2.117)

where φ̇2/2+ V is the energy density of the inflaton field ρφ. Since the time scale of the
inflaton oscillation (∼ m−1) is much shorter than the expansion time scale (∼ H−1), we
can replace fast oscillating terms by their average over an oscillation period, which leads
to

ρ̇φ = −3
ȧ

a
〈φ̇2〉 , (2.118)

Using Eq. (2.116) ρφ and 〈φ̇2〉 are

ρφ =
1

2
m2Φ2 cos2(mt+B) +

1

2
m2Φ2 sin2(mt+B) =

1

2
Φ2m2 (2.119)

〈φ̇2〉 = 〈m2Φ2 sin2(mt+B)〉 = 1

2
Φ2m2 = ρφ . (2.120)

Thus, with effect of the cosmic expansion, the energy density of the inflaton oscillation
is given by

ρ̇φ = −3
ȧ

a
ρφ , (2.121)

which leads to
ρφ ∝ a−3 . (2.122)

So the inflaton oscillation behaves like matter. From Eq. (2.122) the oscillation ampli-
tude of the inflaton decreases as Φ ∝ a−3/2.

2.4.4. Reheating

The inflaton oscillation lasts until it decays through couplings with other particles. Thus,
inflaton decays into other particles whose successive scatterings and decays form thermal
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Figure 2.8.: Timeline of inflationary universe.

plasma with temperature TR. TR is called reheating temperature. If we assume that
thermalization takes place immediately when the inflaton decays, the reheating temper-
ature is estimated from H(TR) = Γφ where Γφ is the decay rate. This just means that
the decay occurs when the cosmic time (∼ H−1) equals lifetime of the inflaton (= Γ−1).
The Hubble parameter H when the universe is dominated by the thermal radiation with
TR is given by

H(TR) =
1

MG

(
g∗π

2T 4
R

90

)1/2

, (2.123)

which is equal to Γφ. So the reheating temperature is estimated as

TR =

(
90

g∗π2

)1/4√
ΓφMG . (2.124)

2.4.5. Cosmological scale and e-fold

Let us derive the relation between the present cosmological scale L and the Hubble radius
H(tN)

−1 at t = tN . The Hubble radius during inflation is often called “horizon” beacuse
the exponentially expanding universe has the event horizon equal to H−1. (Strictly
speaking, however, there is no event horizon because inflation ends in a finite time.)
The scale H(tN)

−1 is stretched by the cosmic expansion to the present scale given by
[a(t0)/a(tN)]H(tN)

−1. From tN to t0 the universe experiences several stages of the cosmic
expansion as shown in Fig. 2.8. Correspondingly L is written as

L =
a(t0)

a(tN)
H(tN)

−1 =
a(tf )

a(tN)

a(tR)

a(tf )

a(t0)

a(tR)
H(tN)

−1 , (2.125)

where tf is the end of inflation and tR is the time of reheating. First, we assume
that the Hubble parameter is almost constant during inflation and is given by HI , so
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H(tN)
−1 = H−1

I . From the definition of the e-fold,

a(tf )

a(tN)
= eN . (2.126)

From tf to tR, the universe is dominated by the oscillation energy of the inflaton which
decreases as a−3. Thus, just before reheating the energy density ρφ is given by

ρφ(tR) =

(
a(tf )

a(tR)

)3

ρφ(tf ) '
(
a(tf )

a(tR)

)3

3H2
IM

2
G , (2.127)

where we have used H(tf )
2 = ρφ(tf )/(3M

2
G) ' H2

I . If reheating is instantaneous,

ρφ(tR) '
π2

30
g∗T

4
R . (2.128)

Thus, we obtain
a(tR)

a(tf )
'
(
90M2

GH
2
I

π2g∗T 4
R

)1/3

. (2.129)

After reheating, the universe expands adiabatically and the entropy is conserved. This
leads to

s(TR)a(tR)
3 = s0a(t0)

3 , (2.130)

from which we obtain

a(t0)

a(tR)
=

(
s(TR)

s0

)1/3

=

(
2π2g∗T

3
R

45s0

)1/3

. (2.131)

Therefore, the relation between L and N is written as

L = eN
(
90M2

GH
2
I

π2g∗T 4
R

)1/3(
2π2g∗T

3
R

45s0

)1/3

H−1
I . (2.132)

Using s0 ' 2.8× 103 cm−3, finally we obtain

N = 52.6 + ln

(
L

1000Mpc

)
+

1

3
ln

(
TR

1010GeV

)
+

1

3
ln

(
HI

1010GeV

)
. (2.133)

If H(tN) 6= H(tf ) the above relation is changed to

N =52.6 + ln

(
L

1000Mpc

)
+

1

3
ln

(
TR

1010GeV

)
(2.134)

+ ln

(
H(tN)

1010GeV

)
− 2

3
ln

(
H(tf )

1010GeV

)
. (2.135)
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3. Generation and Evolution of Density
Fluctuations

3.1. Generation of density fluctuations
3.1.1. Fluctuations of an inflaton field during inflation

Let us consider quantum fluctuations of an inflaton field. In slow-roll inflation the
effective mass during inflation, which is given by m2

eff = V ′′ = 3ηH2
inf, is much small

than the Hubble parameter, so for the moment we assume that an inflaton is mass less.
Furthermore, for simplicity, we assume that the Hubble parameter during inflation is
constant. The equation of motion for the inflaton is written as

φ̈+ 3
ȧ

a
φ̇− 1

a2
∆φ = 0 , (3.1)

where a = exp(Ht). The quantum scalar field φ is written as

φ(t, ~x) =
1

(2π)3/2

∫
d3k

[
akψk(t)e

i~k·~x + a†kψ
∗
k(t)e

−i~k·~x
]
, (3.2)

where ak and a†k are annihilation and creation operators satisfying

[ak, a
†
k] = δ(3)(~k − ~q) , (3.3)

and ψk(t) is the mode function. In Minkowski space we have

φ(t, ~x) =
1

(2π)3/2

∫
d3k√
2k0

[
ake

−ik0t+i~k·~x + a†ke
ik0t−i~k·~x

]
. (3.4)

So the mode function is given by ψk(t) = 1/
√
2k0e

−ik0t in Minkowski space. The La-
grangian for the inflaton is given by

L = a3(∂µφ ∂
µφ− V (φ)) , (3.5)

from which the canonical momentum is derived as

π =
δL
δφ̇

= a3φ̇ . (3.6)
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The canonical quantization requires

[φ(t, ~x), π(t, ~y)] = iδ(3)(~x− ~y) . (3.7)

The above commutation is calculated using Eq. (3.2) as

[φ(t, ~x), π(t, ~y)] =
a3

(2π)3

∫
d3kd3q

[
a†kψ

∗
ke

−i~k·~x + akψke
i~k·~x, a†qψ̇

∗
qe

−i~q·~y + aqψ̇qe
i~q·~y
]

=
a3

(2π)3

∫
d3kd3q

{
[a†k, aq]ψ

∗
kψ̇qe

−i(~k·~x−~q·~y) + [ak, a
†
q]ψkψ̇

∗
qe
i(~k·~x−~q·~y)

+[a†k, a
†
q]ψ

∗
kψ̇

∗
qe

−i(~k·~x+~q·~y) + [ak, aq]ψkψ̇qe
i(~k·~x+~q·~y)

}
=

a3

(2π)3

∫
d3k(ψkψ̇

∗
k − ψ̇kψ∗

k)e
i~k·(~x−~y) , (3.8)

which should satisfy Eq. (3.7) and hence we obtain the normalization of the mode func-
tion,

ψkψ̇
∗
k − ψ̇kψ∗

k =
i

a3
. (3.9)

From equation of motion (3.1) the mode function ψk satisfies

ψ̈k + 3Hψ̇k + k2e−2Htψk = 0 . (3.10)

Here let us use the conformal time τ instead of the usual time t. The conformal time is
defined by dτ = dt/a(t) = e−Htdt, so

τ = −H−1e−Ht = − 1

aH
. (3.11)

The conformal time τ changes from −1/H to 0 as t changes from 0 to ∞. Using τ and
redefining ψ as τ 3/2u, Eq. (3.10) is rewritten as

u′′ +
1

τ
u′ +

(
k2 − 9

4τ 2

)
u = 0 , (3.12)

where ′ ≡ d/dτ . This is the Bessel differential equation and its solution is given by

ψk(t) =

√
π

2
Hτ 3/2

[
C1(k)H

(1)
3/2(kτ) + C2(k)H

(2)
3/2(kτ)

]
, (3.13)

where H(1)
3/2 and H

(2)
3/2 are the Hankel functions,

H
(2)
3/2(x) = (H

(1)
3/2(x))

∗ = −
√

2

πx
e−ix

(
1 +

1

ix

)
. (3.14)
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Now we have to determine the integration constants C1 and C2. Here we adopt the follow-
ing principle: quantization in de-Sitter space (=exponentially expanding space) should
be the same as that in Minkowski space in the limit of k →∞. That means that at small
scales (k →∞) the quantum field is not affected by the cosmic expansion. In Minkowski
space, the mode function is given by 1/

√
2k exp(−ikt) = 1/

√
2k exp(−i

∫
kdt), so the

mode function ψ should be

ψk =
1

a
√
2k
e−i

∫
k
a
dt =

1

a
√
2k
e−ikτ (k →∞) . (3.15)

Here we have taken the normalization (3.9) into account. On the other hand the solution
of the mode function Eq. (3.13) is written in the k →∞ limit as

ψk −→
√
π

2
Hτ 3/2

(
−
√

2

πkτ

)[
C1(k)e

ikτ + C2(k)e
−ikτ]

=
−Hτ√

2k

[
C1(k)e

ikτ + C2(k)e
−ikτ]

=
1

a
√
2k

[
C1(k)e

ikτ + C2(k)e
−ikτ] . (3.16)

Comparing with Eq.(3.15) we obtain

C1(k) → 0 C2(k) → 1 . (3.17)

This only applies to any mode functions whose wavenumber k is much larger than the
Hubble parameter at the beginning of the universe. As seen later relevant fluctuations
which are responsible for the structure of the universe have such large wavenumber.
Thus, for the mode functions with k we are interested in, we can set C2 = 1 and C1 = 0

and we obtain

ψk(t) =
iH

k
√
2k

(
−ike

−Ht

H
+ 1

)
exp

(
ik

H
e−Ht

)
=

iH

k
√
2k

(
− ik

aH
+ 1

)
exp

(
ik

aH

)
.

(3.18)
As the physical wavelength a/k becomes larger than the Hubble radius H−1, the mode
function Eq. (3.18) is given by

ψk(t) →
iH

k
√
2k

, (3.19)

which no longer oscillates and hence the scalar field behaves as classical one.
Hereafter we explicitly decomposes the scalar field φ into a homegeneous part and its

fluctuation as
φ(t, ~x) = φ̄(t) + δφ(t, ~x) . (3.20)
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Then 〈δφ2〉 is calculated as

〈δφ2〉 =
∫
|ψk|2d3k =

1

(2π)3

∫
d ln k

(
1

2ka2
+
H2

2k3

)
=

1

2π2

∫
d3k

(
k2

2a2
+
H2

2

)
' H2

(2π)2

∫
d ln k , (3.21)

where we have used k/a� H in the last line. Therefore, the fluctuation of the inflaton
is given by

δφ ' H

2π
. (3.22)

Now we can regard the inflaton fluctuation as classical and express it as Fourier integral,

δφ(~x) =
1

(2π)3

∫
d3kδφ~k e

i~k·~x . (3.23)

〈(δφ(~x))2〉 is calculated as

〈(δφ(~x))2〉 = 1

(2π)6

∫
d3kd3k′〈δφ~kδφ~k′〉e

i~x·(~k+~k′)

=
1

(2π)3

∫
d3k

H2

2k3
. (3.24)

So we obtain

〈δφ~kδφ~k′〉 = (2π)3δ(~k + ~k′)
H2

2k3
. (3.25)

We introduce the power spectrum of scalar fluctuations Pδφ which is defined by

4πk3

(2π)6
〈δφ~kδφ~k′〉 = δ(~k + ~k′)Pδφ(k) , (3.26)

so Pδφ is given by

Pδφ(k) =
H2

4π2
. (3.27)

3.1.2. Effect of inflaton mass

Let us consider the effect of the mass term on the fluctuations of the inflaton fields. The
equation of motion for the fluctuation of the inflaton field is written as

δφ̈+ 3
ȧ

a
δφ̇− 1

a2
∆δφ+m2δφ = 0 . (3.28)
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So the mode function ψk satisfies

ψ̈k + 3Hψ̇k +
(
k2e−2Ht +m2

)
ψk = 0 , (3.29)

which is written using τ = −1/(aH) and ψ = τ 3/2u as

u′′ +
1

τ
u′ +

(
k2 −

9
4
− m2

H2

τ 2

)
u = 0 . (3.30)

The generic solution for ψk is given by

ψk(t) = ei(ν−3/2)π
2

√
π

2
Hτ 3/2

[
C1(k)H

(1)
ν (kτ) + C2(k)H

(2)
ν (kτ)

]
, (3.31)

where ν is given by

ν =

√
9

4
− m2

H2
. (3.32)

Since m� H during inflation ν is approximately written as

ν ' 3

2
− m2

3H2
. (3.33)

In the same way as the massless case ψk = 1
a
√
2k
e−ikτ for large k. The Hankel function

Hν(z) has the following form at large z:

H(2)
ν (z) = (H(1)

ν (z))∗ ∼ −
√

2

πz
e−iz , (3.34)

which leads to C2 = 1 and C1 = 0. Thus, we obtain

ψk(t) = ei(ν−3/2)π
2

√
π

2
Hτ 3/2H(2)

ν (kτ) . (3.35)

At the long wavelength limit (k/a)−1 � H−1 ( small kτ limit ), the Hankel function is
written as

H(2)
ν (kτ) ' i

2νΓ(ν)

π
(kτ)−ν

' i

√
2√
π
(kτ)−3/2+ m2

3H2 = i

√
2√
π
(kτ)−3/2

(
− k

aH

) m2

3H2

, (3.36)

where Γ(ν) is the gamma function and Γ(3/2) =
√
π/2. Then, after the wavelength

exceeds the Hubble radius the mode function ψk is given by

ψk '
iH

k
√
2k

(
k

aH

) m2

3H2

. (3.37)

Therefore, for the case of an inflaton with mass m, the power spectrum of the inflaton
fluctuations is given by

Pδφ(k) =
H2

4π2

(
k

aH

) 2m2

3H2

. (3.38)
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3.2. Evolution of density fluctuations

So far, we have studied the fluctuations of the inflaton field without taking metric per-
turbations into account. Since fluctuations of the inflaton field affect metrics through
Einstein equations and induce the metric perturbations. Moreover the metric perturba-
tions are closely related to the density perturbations, from which the large scale structure
of the universe is formed. Therefore, it is crucial to understand the evolution of the met-
ric perturbations. Here is a remark. The evolution of the inflaton fluctuations are also
affected by metric perturbations. However, it is found that the back-reaction on the
inflaton fluctuations from metric perturbations is negligible for some time after wave-
lengths of the scalar fluctuations exceed the Hubble radius. Thus, the calculation in the
previous section is justified.

3.2.1. Metric perturbations (scalar)

Let us introduce the metric perturbations,

ds2 = a2(1 + φ)dτ 2 − 2a2ω, jdτdx
j − a2[δij(1 + 2ψ) + 2χ, ij]dx

idxj , (3.39)

where χij = (∂i∂j − δij∆/3)χ. Here we have used the conformal time τ instead of the
usual cosmic time t. Since we only consider linear perturbations, it is convenient to
study Fourier modes of perturbation quantities. So φ is written as

φ(~x) =
∑
~k

φ(~k)ei
~k·~x =

∑
~k

φ(~k)Q(~k, ~x) ≡ φQ , (3.40)

where Q(~k, ~x) = ei
~k·~x. We also introduce Qi and Qij defined as

Qi ≡ −
1

k
Q, i = −

iki
k
Q (3.41)

Qij ≡
1

k2
Q,ij +

1

3
δijQ . (3.42)

If we define the Fourier mode of ω and χ as

ω(~x) =
∑
~k

k−1ω(~k)ei
~k·~x , (3.43)

χ(~x) =
∑
~k

k−2χ(~k)ei
~k·~x , (3.44)

then
ω, j(~x) = ∂j

∑
~k

k−1ω(~k)Q(~k, ~x) = −
∑
~k

ω(~k)Qj(~k, ~x) ≡ −ωQj . (3.45)
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and
χij =

∑
~k

k−2χ(~k)

(
Q,ij +

k2

3
δijQ

)
=
∑
~k

χ(~k)Qij(~k, ~x) ≡ χQij . (3.46)

Therefore, the metrics are rewritten as

g00 = a2[1 + 2φQ] (3.47)

g0j = a2ωQj (3.48)

gij = −a2[δij(1 + 2ψQ) + 2χQij] . (3.49)

The definition of metric perturbations is not unique since we are allowed to make coor-
dinate transformations in general relativity. The ambiguity in the metric perturbations
is called gauge freedom. Let us consider the following (scalar) coordinate transformation:

τ̃ = τ + TQ (3.50)

x̃j = xj + LQj . (3.51)

The above transformation changes the metric gµν as

g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) , (3.52)

which leads to

g̃µν(τ, x
i) =

∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(τ − TQ, xi − LQi)

' gµν(τ, x
i)− gαν(τ, xi)δxα,µ − gαµ(τ, xi)δxα,ν − gµν,α(τ, xi)δxα . (3.53)

Thus, g00 changes as

g̃00 − g00 = −2gα0δxα, 0 − g00,αδxα

= −2g00δx0, 0 − g00,0δx0

= −2a2T ′Q− 2aa′TQ

= a2[−2T ′Q− 2HTQ] , (3.54)

where H = a′/a. g0j is transformed as

g̃0j − g0j − gαjδxα, 0 − gα0δxα, j − g0j,αδxα

= −gijδxi, 0 − g00δx0, j
= a2δijL

′Qi + a2TkQj

= a2[L′ + kT ]Qj . (3.55)
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Therefore, the metric perturbations are transformed as

φ̃ = φ− T ′ −HT (3.56)

ω̃ = ω + L′ + kT (3.57)

ψ̃ = ψ − kL

3
−HT (3.58)

χ̃ = χ+ kL . (3.59)

From Eqs. (3.56)-(3.59), it is found that the following variables are gauge invariant:

Φ = φ+
1

a

d

dτ

[
ak−1ω − ak−2χ′] (3.60)

Ψ = ψ +
1

3
χ+H

[
k−1ω − k−2χ′] . (3.61)

It is easy to see Eqs. (3.60) and (3.61) are gauge invariant. Φ and Ψ transform as

Φ̃ = (φ− T ′ −HT ) +
[
ak−1(ω + L′ + kT )− ak−2(χ′ + kL′)

]
= φ− T ′ −HT +

[
ak−1ω + ak−1L′ + aT − ak−2χ′ − ak−1L′)

]
= φ+

1

a

d

dτ

[
ak−1ω − ak−2χ′] = Φ , (3.62)

and

Ψ̃ = (ψ − kL

3
−HT ) + 1

3
(χ+ kL) +H

[
k−1(ω + L′ + kT )− k−2(χ′ + kL′)

]
= ψ − kL

3
−HT +

1

3
χ+

1

3
kL+H

[
k−1ω + k−1L′ + T − k−2χ′ − k−1L′]

= ψ +
1

3
χ+H

[
k−1ω − k−2χ′] = Ψ . (3.63)

3.2.2. Energy-momentum tensor

The energy-momentum tensor including perturbations is written as

T µν = (ρ+ P )uµuν − Pδµν +Πµ
ν , (3.64)

where Πµ
ν is the anisotropic stress tensor and four velocity uµ is given by

uµ = a−1(1− φQ, vQi) . (3.65)

As for uµ we obtain
uµ = gµνu

ν = a(1 + φQ, (ω − v)Qj) . (3.66)
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Notice that uµuµ = 1 in the first order. So, the energy-momentum tensor is rewritten as

T 0
0 = ρ (1 + δQ) (3.67)

T 0
j = −(ρ+ P )(v − ω)Qj (3.68)

T i0 = (ρ+ P )vQi (3.69)

T ij = −P
(
δij + πLQδ

i
j +ΠQi

j

)
, (3.70)

where δ = δρ/ρ and πL = δP/P . Here notice that ρ and P are homogeneous energy
density and pressure. (Contrarily ρ and P in Eq. (3.64) include inhomogeneous parts
δρ and δP .)

Gauge transformation of the energy-momentum tensor is given by

T̃ µν (τ, x
i) =

∂x̃µ

∂xα
∂xβ

∂x̃ν
Tαβ (τ − TQ, xi − LQi)

' T µν (τ, x
i) + Tαν (τ, x

i)δxµ, α − T µα (τ, xi)δxα, ν − T µν,αδxα . (3.71)

Using this transformation law, we obtain

T̃ 0
0 − T 0

0 = Tα0 δx
0
, α − T 0

αδx
α
, 0 − T 0

0,αδx
α

= T 0
0 δx

0
, 0 − T 0

0 δx
0
, 0 − T 0

0,0δx
0

= −ρ′TQ

= 3H(ρ+ P )TQ , (3.72)

and

T̃ 0
j − T 0

j = Tαj δx
0
, α − T 0

αδx
α
, j − T 0

j,αδ
α

= T ij δx
0
, i − T 0

0 δx
0
, j

= −P (−kTQj)− ρ(−kTQj)

= k(ρ+ P )TQj . (3.73)

Here we have used the following equation for ρ′(ρ̇):

ρ′ = −3H(ρ+ P ) , (3.74)

ρ̇ = −3H(ρ+ P ) , (3.75)
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which are derived from Eq. (1.51). Therefore, δρ, v, δP and Π are transformed as

δ̃ = δ + 3(1 + w)HT , (3.76)

ṽ = v + L′ , (3.77)

π̃L = πL + 3
c2s
w

(1 + w)HT , (3.78)

Π̃ = Π , (3.79)

where we have used the equation of state w = P/ρ and the sound velocity c2s = δP/δρ.
Obviously Π is gauge invariant. The other gauge invariant variables are given by

V = v − k−1χ′ , (3.80)

∆ = δ + 3H(1 + w)k−1(v − ω) . (3.81)

V in Eq. (3.80) is invariant because

Ṽ = (v + L′)− k−1(χ′ + kL′)

= v − k−1χ′ = V . (3.82)

V is called gauge-invariant velocity pertubation. Similarly, invariance of ∆ in Eq. (3.81)
is shown as

∆̃ = (δ + 3(1 + w)HT ) + 3H(1 + w)k−1[(v + L′)− (ω + L′ + kT )]

= δ + 3H(1 + w)k−1(v − ω) = ∆ . (3.83)

∆ is called gauge-invariant density perturbation.

3.2.3. Newtonian gauge

Since metric perturbations have gauge ambiguities, we need gauge fixing to calculate
perturbative quantities. Most convenient choice of gauge is to set ω = χ = 0. This is
called Newtonian gauge. In Newtonian gauge, other metric perturbations are related to
gauge-invariant variables as

φ = Φ , (3.84)

ψ = Ψ , (3.85)

which leads to
ds2 = a2[1 + 2ΦQ]dτ 2 − a2[1 + 2ΨQ](d~x)2 . (3.86)
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Notice that we only consider a flat universe (K = 0). The formula for K 6= 0 are found
in Appendix A.2. Thus, the metric perturbations in the Newtonian gauge is given by

g00 = a2(1 + 2ΦQ) , (3.87)

g0i = 0 , (3.88)

gij = −a2(1 + 2ΨQ)δij . (3.89)

The Einstein tensor Gµν is calculated as

G0
0 =

3

a2

(
a′

a

)2

− 2

a2

[
3

(
a′

a

)2

Φ− 3
a′

a
Ψ′ − k2Ψ

]
Q, (3.90)

G0
i = −

2

a2

[
a′

a
kΦ− kΨ′

]
Qi, (3.91)

Gi
0 =

2

a2

[
a′

a
kΦ− kΨ′

]
Qi . (3.92)

Gi
j =

1

a2

[
2
a′′

a
−
(
a′

a

)2
]
δij

− 2

a2

{[
2
a′′

a
−
(
a′

a

)2
]
Φ +

a′

a
[Φ′ −Ψ′]− k2

3
Φ−Ψ′′ − a′

a
Ψ′ − 1

3
k2Ψ

}
δijQ

+
1

a2
k2(Φ + Ψ)Qi

j . (3.93)

On the other hand the energy-momentum tensor is written as

T 0
0 = (1 + δQ) ρ, (3.94)

T 0
i = −(ρ+ p)V Qi, (3.95)

T j0 = (ρ+ p)V Qi, (3.96)

T ij = −p
(
δij + πLQδ

i
j +ΠQi

j

)
(3.97)

Einstein equation

The homogeneous part of the Einstein equation Gµν = 8πGTµν leads to

H2 =
8πG

3
a2ρ , (3.98)

H′ = −4πG

3
a2(ρ+ 3P ) , (3.99)
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where we have used H = a′/a and H′ +H2 = a′′/a. The above equations correspond to
Eqs. (1.47) and (1.49), respectively.

The 1st order contribution from (0, 0)-component of the Einstein equation is

3H2Φ− 3HΨ′ − k2Ψ = −4πGa2ρ δ . (3.100)

(0, i)-component reads

HΦ− Φ′ = 4πGa2(1 + w)k−1ρV . (3.101)

The traceless part of (i, j)-component reads

k2(Φ + Ψ) = −8πGa2PΠ . (3.102)

Thus, for a vanishing anisotropic tensor we have

Ψ = −Φ . (3.103)

From Eqs. (3.100) and (3.101) the following Poisson equation is derived:

k2Ψ = 4πGa2ρ[δ + 3H(1 + w)k−1V ] = 4πGa2ρ∆ . (3.104)

Scalar field

For a scalar field φ (do not confuse with the metric perturbation φ), the energy-momentum
tensor is written as

T µν = gµλφ,λφ,ν − δµν
(
1

2
gαβφ,αφ,β − V (φ)

)
. (3.105)

Let us divide the scalar field into homegeneous and fluctuation parts as φ(τ, ~x) = φ̄(τ)+

δφ(τ,~k)Q(~k, ~x). The (0, 0)-component of the energy-momentum tensor is then written
as

T 0
0 =

1

2
g0αφ,αφ,0 +

1

2
gijφ,iφ,j + V

' 1

2
g00φ,0φ,0 + V

=
1

2
a−2(1− 2ΦQ)(φ̄′ + δφ′Q)2 + V̄ + VφδφQ , (3.106)

where Vφ = dV/dφ. Thus, the 1st order contribution of T 0
0 is

δT 0
0 = a−2[−Φ(φ̄′)2 + φ̄′δφ′ + a2Vφδφ]Q . (3.107)
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The (0, i)-component reads

T 0
i = g0αφ,αφ,i = a−2(1− 2ΦQ)φ̄′(−kδφQi) , (3.108)

which leads to
δT 0

i = −ka−2φ̄′δφQi . (3.109)

The (i, j)-component redas

T ij = giαφ,αφ, j − δij
[
1

2
g00(φ,0)

2 − V
]

= −δij
[
1

2
a−2(1− 2ΦQ)(φ̄′ + δφ′Q)2 − V̄ − VφδφQ

]
. (3.110)

Thus, δT ij is given by

δT ij = δij a
−2[Φ(φ̄′)2 − φ̄′δφ′ + a2Vφδφ]Q . (3.111)

From Eq. (3.111), for a scalar field anisotropic stress Π vanishes, i.e.,

Π = 0 . (3.112)

From Eqs.(3.107), (3.109) and (3.111) ρ, V and πL are related to δφ and Φ as

ρ δ = a−2[−Φ(φ′)2 + φ′δφ′ + a2Vφδφ] , (3.113)

(1 + w)ρV = ka−2φ′δφ , (3.114)

πLP = a−2[−Φ(φ′)2 + φ′δφ′ − a2Vφδφ] , (3.115)

Here and hereafter we rewrite φ̄ as φ.
Before considering the 1st order Einstein equation, let us write the zero-th order

(homogeneous) Einstein equations. Using the conformal time ρ and P are given by

ρ =
1

2a2
(φ′)2 + V , (3.116)

P =
1

2a2
(φ′)2 − V . (3.117)

From Eqs. (3.98) and (3.99) the homogeneous Einstein equations are written as

H2 =
8πG

3

(
1

2
(φ′)2 + a2V

)
, (3.118)

H′ =
8πG

3

(
−(φ′)2 + a2V

)
, (3.119)

69



from which we obtain
H2 −H′ = 4πG(φ′)2 . (3.120)

As for the 1st order Einstein equation, from (0, 0)-component we obtain

3H2Φ− 3HΨ′ − k2Ψ = −4πG[−Φ(φ′)2 + φ′δφ′ + a2Vφδφ] . (3.121)

From (0, i)-component,
HΦ−Ψ′ = 4πGφ′δφ . (3.122)

From the traceless part of (i, j) component

Ψ+ Φ = 0 , (3.123)

which leads to
Φ = −Ψ . (3.124)

Using Eqs. (3.120) and (3.124), Eq. (3.121) is rewritten as

(H′ + 2H2)Ψ + 3HΨ′ + k2Ψ = 4πG(φ′δφ′ + a2Vφδφ) . (3.125)

Eq. (3.122) is written as
Ψ′ +HΨ = −4πGφ′δφ . (3.126)

By differentiating this equation with respect to τ we obtain

Ψ′′ +HΨ′ +H′Ψ = −4πGφ′′δφ− 4πGφ′δφ′

= 4πG(2Hφ′ + a2Vφ)δφ− 4πGφ′δφ′ , (3.127)

where in the last line we have used the equation of motion for φ,

φ′′ + 2Hφ′ + a2Vφ = 0 . (3.128)

Using Eqs. (3.125) and (3.126), Eq. (3.127) is written as

Ψ′′ +HΨ′ +H′Ψ =− 2H(Ψ′ +HΨ)

− [(H′ + 2H2)Ψ + 3HΨ′ + k2Ψ]

+ 8πGa2Vφδφ . (3.129)

Moreover using

8πGa2Vφδφ =
2(Ψ′ +HΨ)

φ′ (φ′′ + 2Hφ′)

= 4HΨ′ + 4H2Ψ+ (2Ψ′ + 2HΨ)
φ′′

φ′ , (3.130)
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we obtain

Ψ′′ +

(
2H− 2

φ′′

φ′

)
Ψ′ +

(
2H′ − 2Hφ

′′

φ′

)
Ψ+ k2Ψ = 0 . (3.131)

In the long wavelength limit k → 0(k � H) Eq (3.131) has the following solution:

Ψ = A

(
1− H

a2

∫
a2dτ

)
= A

(
1− ȧ

a2

∫
adt

)
, (3.132)

where ˙= d/dt. The integration constant A is determined using Eq. (3.126), whihc leads
to

A =
1

a−2
∫
a2dτ

δφ

φ′ =
1

a−1
∫
adt

δφ

φ̇
' H

δφ

φ̇
, (3.133)

where we have used a−1
∫
adt = a−1

∫
a(dt/da)da = a−1

∫
H−1da ' H−1. Usually A is

estimated when the physical wavelength becomes equal to the Hubble radius (k/a = H)

during inflation,

A ' H
δφ

φ̇

∣∣∣∣
k/a=H

. (3.134)

Moreover, Eq. (3.132) does not depend on φ, so it applies to epochs after inflation. In
particular, after reheating the scale factor evolves as am(m = 1/2(RD) or m = 2/3(MD)
and hence

Ψ = A

(
1− mtm−1

t2m

∫
tmdt

)
=

A

m+ 1
. (3.135)

Therefore, we obtain

Ψ = −Φ =


2
3
H δφ

φ̇

∣∣∣
k/a=H

(RD)

3
5
H δφ

φ̇

∣∣∣
k/a=H

(MD)
. (3.136)

3.3. ∆N Formula
3.3.1. Basic formulation

Wavelengths of the metric perturbations we are interested in become much longer than
the horizon (= Hubble radius) during inflation. The ∆N formula provides a very simple
method to calculate such long-wave modes of the fluctuations.

Let us consider the following (3 + 1)-decomposition of the metric:

ds2 = N 2dt2 − γij (dxi + βidt)(dxj + βjdt)

= (N 2 − βkβk)dt2 − 2βjdtdx
j − γijdxidxj , (3.137)
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Figure 3.1.: geometrical meaning of the metric (3.137).

where N is the lapse function, βi is the shift vector, γij is the spatial three metric and
βi = γijβ

j. Their geometrical meaning is shown in Fig. 3.1. Moreover, γij is written as

γij = ã(t, xj)γ̃ij(t, x
j) , (3.138)

where detγ̃ij = 1 and ã is the local scale factor which is further written as

ã(t, xj) = a(t) exp[ψ(t, xj)] . (3.139)

Here a(t) is the usual scale factor (global scale factor) and ψ is the curvature perturba-
tion. As for γ̃ij it is written as

γ̃ = Ieχ (I : unit matrix, tr(χ) = 0) , (3.140)

where tr(χ) = 0 comes from det[eχ] = etr(χ) = 1. Notice that for small ψ and χ, γij is
given by

γij = a2(t)[(1 + 2ψ)δij + χij] . (3.141)
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When one considers the metric perturbations with super-horizon scales (k/a � H),
local homogeneity and isotropy are a good approximation. Thus locally measurable
parts of the universe is described by the Robertson-Walker metric

ds2 = dt2 − a2(t)δijdxidxj . (3.142)

This implies that βi in Eq. (3.137) vanishes in the limit of k/(aH)→ 0, which leads to

βi = O(ε) where ε ≡ k

aH
. (3.143)

Furthermore, we can take the spatial coordinates that comove with the cosmic fluid,
which means that the velocity vi satisfies

vi =
dxi

dt
= 0 . (3.144)

So the spatial components of the four-velocity uµ = dxµ/dτp (τp: proper time=
∫ √
N 2 − βkβkdt)

vanish and using gµνuµuν = 1 we obtain

uµ =

[
1√

N 2 − βkβk
, 0

]
=

[
1

N
, 0

]
+O(ε2) . (3.145)

The expansion θ is defined as

θ ≡ ∇µu
µ =

1√
−g

∂µ(
√
−guµ)

=
1

N e2ψa3
∂0

(
N e3ψa3√
N 2 − βkβk

)
. (3.146)

Therefore, the expansion is given by

θ =
1

N

(
3
ȧ

a
+ 3ψ̇

)
+O(ε2) . (3.147)

From this equation we can call H̃ = θ/3 as local Hubble parameter.
The energy-momentum tensor is given by

Tµν = (ρ+ P )uµuν − gµνP , (3.148)

where we neglect the anisotropic stress tensor. The energy conservation is given by
∇νT

µν = 0 which leads to

uµ∇νT
µν =0

=uµ∇ν [(ρ+ P )uµuν − Pgµν ]

=uνuµu
µ∇ν(ρ+ P ) + uµ(ρ+ P )uµ∇νu

ν

+ (uµ∇νu
µ)uν(ρ+ P )− uµgµν∇νP . (3.149)
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Using uν∇ν = (dxν/dτp)∂/∂x
ν = d/dτp and uµ∇νu

µ = ∇ν(uµu
µ/2) = 0, the above

equation is written as

d

dτp
(ρ+ P ) + (ρ+ P )θ − dP

dτp
= 0 . (3.150)

Using Eqs. (3.147) and (3.150) and taking into account dτp =
√
N 2 − βkβkdt ' Ndt,

we obtaion
ȧ

a
+ ψ̇ = −1

3

ρ̇

ρ+ P
+O(ε2) =

N θ
3

+O(ε2) . (3.151)

Let us calculate the local e-folding number defined as

N(tf , ti, ~x) =
1

3

∫ tf

ti

θNdt . (3.152)

Using Eq. (3.151) N(tf , ti, ~x) is calculated as

N(tf , ti, ~x) = −
1

3

∫ tf

ti

ρ̇

ρ+ P
dt

=

∫ tf

ti

(
ȧ

a
+ ψ̇

)
dt

= ln

[
a(tf )

a(ti)

]
+ ψ(tf , ~x)− ψ(ti, ~x) . (3.153)

Defining N0 and ∆N as N0(tf , ti) = ln[a(tf )/a(ti)] and ∆N(tf , ti, ~x) = N(tf , ti, ~x) −
N0(tf , ti),

ψ(tf , ~x)− ψ(ti, ~x) = ∆N(tf , ti, ~x) . (3.154)

Now we introduce ζ which is the curvature perturbation on the uniform density slice as

ζ ≡ ψ|δρ=0 . (3.155)

If we take the flat slice (ψ = 0) at t = ti and the uniform density slice (δρ = 0) at t = tf ,
we have

ζ = ∆N(tf , ti, ~x) . (3.156)

Let us consider the case where the pressure is a function of the energy density, i.e.
P = P (ρ). This is satisfied when the perturbations are adiabatic. For generic slicing,
Eq. (3.153) is rewritten as

ψ(tf , ~x)− ψ(ti, ~x) = −
1

3

∫ ρ(tf ,~x)

ρ(ti,~x)

dρ

ρ+ P
+

1

3

∫ ρ(tf )

ρ(ti)

dρ

ρ+ P
, (3.157)
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where we have used ρ̇ = −3(ȧ/a)(ρ+ P ). This implies that ζ(~x) given by

ζ(~x) = ψ(t, ~x) +
δρ

3(ρ+ P )
(3.158)

is conserved independently of choice of time slicing. ζ in Eq. (3.155) is consistent with
that in Eq. (3.158). Notice that we have only used the energy conservation and long
wave limit. Therefor the result applies to generic gravitation theories including Einstein
gravity.

3.3.2. Relation to the Newtonian gauge

In the Newtonian gauge the metric is give by

ds2 = a2[1 + 2Φ]dτ 2 − a2δij[1 + 2Ψ]dxidxj . (3.159)

On the other hand the ∆N formula the metric is

ds2 = · · · − a2e2ψγijdxidxj = · · · − a2[(1 + 2ψ)δij + χij] . (3.160)

Thus, ζ in Newtonian gauge is given by

ζ = Ψ+
δρ

3(ρ+ P )
. (3.161)

From the Einstein equation in the Newtonian gauge [Eq. (3.100)]

3HΦ− 3HΨ′ − k2Ψ = −4πGa2δρ . (3.162)

For a vanishing anisotropic stress tensor, we get

Ψ = −Φ . (3.163)

On super-horizon scale (k � H/a), assuming Ψ′ = 0, we obtain

Φ = −4πGa2

3H2
δρ . (3.164)

Using the Friedmann equation (3.98), Φ is written as

Φ = −1

2

δρ

ρ
= −Ψ . (3.165)

From Eq. (3.161)
ζ = Ψ+

δρ

3(ρ+ P )
= −Φ− 2Φ

3(1 + w)
. (3.166)

So ζ and Φ are related by

ζ = − 5 + 3w

3(1 + w)
Φ =

5 + 3w

3(1 + w)
Ψ . (3.167)

Since ζ is conserved, the assumption Ψ′ = 0 is justified for a constant w.
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3.3.3. Curvature perturbations produced by inflation

Let us estimate the curvature perturbations produced by the inflaton fluctuations. We
take the flat slice at ti when the relevant scale becomes super-horizon (k/a ' H) and the
uniform density slice at tf after reheating. From Eqs. (3.156) and (2.110) the curvature
perturbation at tf is given by

ζ = ∆N =
V

V ′MG

δφ = −Hinf

φ̇
δφ . (3.168)

Using Eq. (3.167) we obtain

Φ =


2
3
Hinf

δφ

φ̇

∣∣∣
k=aH

(RD)

3
5
Hinf

δφ

φ̇

∣∣∣
k=aH

(MD)
. (3.169)

Once Φ is obtained, the density perturbation is calculated using the Poisson equa-
tion (3.104),

k2Φ = −4πGa2ρ
[
δ + 3H(1 + w)

V

k

]
= −4πGa2ρ∆ , (3.170)

where ∆ is the gauge invariant density perturbation. Using the Friedmann equation the
density perturbation ∆ in the matter dominated era is written as

∆ = −2

3

k2

a2H2
Φ = −2

5

k2

a2H2
Hinf

δφ

φ̇
(MD) . (3.171)

The power spectrum of the density perturbations P(k) is then given by

〈∆(~k)∆(~k′)〉 = (2π)3δ(~k + ~k′)
2π2

k3
P(k) . (3.172)

Using Eqs(3.25), (3.27) and (3.171) the power spectrum is written as

P(k) = 4

25

(
k2

a2H2

)2
H2

inf

(φ̇)2
Pδφ(k) . (3.173)

Thus, we obtain

P(k) = 1

25π2

(
k2

a2H2

)2
H4

inf

(φ̇)2
=

1

25π2

(
k2

a2H2

)2
V 3

3(V ′)2M6
G

. (3.174)
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Similarly the power spectrum of the curvature perturbations Pζ is defined as

〈ζ(~k) ζ(~k′)〉 = (2π)3δ(~k + ~k′)
2π2

k3
Pζ(k) . (3.175)

From Eqs(3.25), (3.27) and (3.168) we obtain

Pζ(k) =
H4

inf

4π2(φ̇)2
=

V 3

12π2(V ′)2M6
G

. (3.176)

In Eqs. (3.174) and (3.176) the values of the inflaton potential V and its derivative V ′ are
evaluated at k = aH. The curvature and density perturbations produce anisotropies of
the cosmic microwave background (CMB). The observation of CMB by the recent Plank
satellite provide us the precise value of the amplitude of the curvature perturbations,

[Pζ ]1/2 = 4.93× 10−5 , (3.177)

at k∗ = 0.002 Mpc−1.
The spectrum index ns of the curvature perturbations is defined as

ns − 1 =
d lnPζ(k)
d ln k

, (3.178)

which means Pζ ∝ kns−1. Using Eq. (3.176) the spectral index is written as

ns − 1 = 2
d ln(V 3/2/V ′)

d ln k
. (3.179)

The relation between the cosmological scale L = k−1 and the efold N is given by

N ∼ 50 + ln

(
k−1

1000Mpc

)
, (3.180)

which leads to
d ln k = −dN = − V

V ′M2
G

dφ . (3.181)

Thus,

ns − 1 = −2M2
G

d ln(V 3/2/V ′)

(V/V ′)dφ

= −2M2
G

V ′

V

(
3

2

V ′

V
− V ′′

V ′

)

= −3M2
G

(
V ′

V

)2

+ 2M2
G

V ′′

V
. (3.182)

With use of the slow-roll parameters ε and η [(2.90 and (2.97)] the spectral index ns can
be expressed as

ns = 1− 6ε+ 2η . (3.183)
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3.3.4. Curvature perturbations produced by chaotic inflation

Now let us apply the result in the previous section to chaotic inflation. For a simple
chaotic inflation model with potential V = 1

2
m2φ2, using Eq. (3.176) the power spectrum

of the curvature perturbations at k = k∗ is given by

[Pζ ]1/2 =
(
1
2
m2φ2

∗
)3/2

2
√
3πm2φ∗M3

G

=
mφ2

∗

4
√
6M3

G

, (3.184)

where φ∗ is the inflaton field value when the mode with k∗ crosses the horizon during
inflation (k∗ = aHinf). The corresponding e-fold N∗ is estimated from Eq. (2.133) with
L∗ = k−1

∗ = 500Mpc as
N∗ ' 50 . (3.185)

Since N∗ is given by
N∗ '

1

4M2
G

φ2
∗ , (3.186)

from which we get φ∗ ' 2MG

√
N∗ ' 14MG. Therefore, we estimate the amplitude of

the curvature perturbations as

[Pζ(k∗)]1/2 '
m(14MG)

2

4
√
6πM3

G

. (3.187)

Requiring that it agrees with the observed value Eq.(3.177) we can determine the inflaton
mass as

m ' 1.9× 1013 GeV . (3.188)

The slow-roll parameters are given by η = ε = 2MG/φ
2, so using Eq. (3.183) the spectral

index is
ns(k∗) = 1− 8M2

G

φ2
∗
' 0.96 . (3.189)

3.4. Tensor perturbations

In this section we consider tensor perturbations (gravitational waves) produced during
inflation. The amplitude of the tensor perturbations is directly related to the inflation
energy scale as we will see later. Therefor, the detection of the tensor mode is crucial to
prove inflation.
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3.4.1. Generation of tensor perturbations

Let us consider the Einstein-Hilbert action,

SE =
MG

2

∫
dx4
√
−gR . (3.190)

Introducing tensor metric perturbations hij, the line element is given by

ds2 = a(τ)2[dτ 2 − (δij + hij)dx
idxj] . (3.191)

hij satisfies the following traceless and transverse conditions:

hii = 0 ∂ihij = 0 . (3.192)

Using the above metric the second order action for hij is given by

S2 = −
M2

G

8

∫
d4xa2[∂µhij∂

µhij] . (3.193)

Here the indices of hij are raised or lowered with flat metric δij. From the action (3.193)
the equation of motion for hij is written as

h′′ij + 2Hh′′ij −∇2hij = 0 . (3.194)

Let us expand hij into Fourier modes as

hij(τ, ~x) =

∫
d3k

(2π)3/2

[
e
(+)
ij h

(+)(τ) + e
(×)
ij h

(×)(τ)
]
e−i

~k·~x , (3.195)

where e(+)
ij and e(×)

ij are polarization tensors corresponding two polarization mode +(plus
mode) and ×(cross mode). Using two orthogonal unit vectors ~e (1) and ~e (2) that are
ortghogonal to ~k (i.e., ~e (1)⊥~e (2), ~e (1,2)⊥~k), e(+)

ij and e
(×)
ij e are written as

e
(+)
ij =

1√
2

[
e
(1)
i (~k)e

(1)
j (~k)− e (2)i (~k)e

(2)
j (~k)

]
(3.196)

e
(×)
ij =

1√
2

[
e
(1)
i (~k)e

(2)
j (~k)− e (2)i (~k)e

(1)
j (~k)

]
, (3.197)

which satisfy
e
(+)
ij e

(+)
ij = e

(×)
ij e

(×)
ij = 1, e

(+)
ij e

(×)
ij = 0 . (3.198)

If we take ~k = (0, 0, k), e(+)
ij and e

(×)
ij e are given by

e
(+)
ij =

1√
2

 1 0 0
0 −1 0
0 0 0

 e
(×)
ij =

1√
2

 0 1 0
1 0 0
0 0 0

 . (3.199)
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The mode functions h(+) and h(×) satisfy

h(+,×)′′ + 2Hh(+,×)′ + k2h(+,×) = 0 , (3.200)

which is the same equation as that for a massless scalar field, so it has a solution like
h ∼ Hinf at long wave limit. In order to get the correct normalization we have to write
the action in the form as

S2 = −
∫
dx4a2

(
1

2
∂µh̃ij∂

µh̃ij
)
, (3.201)

where h̃ij is the canonical field. Comparing with Eq. (3.193)

h̃ij =
MG

2
hij ⇒ h̃(+,×) =

MG

2
h(+,×) . (3.202)

Since for the canonical field we get the power spectrum Ph̃(k) = H2
inf/(4π

2), we obtain
the power spectra for h(+,×) as

Ph(+)(k) = Ph(×)(k) =

(
2

MG

)2
H2

inf
4π2

=
H2

inf
π2M2

G

=
V

3π2M4
G

. (3.203)

The total power spectrum of the tensor mode is given by

Ph(k) = Ph(+)(k) + Ph(×)(k) =
2H2

inf
π2M2

G

=
2V

3π2M4
G

. (3.204)

Notice that the tensor mode only depends on the Hubble parameter during inflation
(Hinf =

√
V/3/MG). Therefore, if the tensor mode is observed we can determine the

energy scale of inflation. On the other hand the power spectrum of the curvature pertur-
bations is given by Eq.(3.176) and it depends on V ′ as well as V . The tensor-to-scalar
ration r is

r ≡ Ph
Pζ

= 8

(
V ′

V

)2

M2
G = 16ε . (3.205)

The tensor spectral index nT is given by

nT =
d lnPh
d ln k

= −M2
G

V ′

V

d lnV

dφ
= −

(
V ′

V

)2

M2
G . (3.206)

With use of r, nT is written as
nT = −r

8
. (3.207)
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A. Appendix

A.1. Monopole in SO(3) gauge theory

In this appendix we show the monopole solution in a SO(3) gauge theory.

A.1.1. SO(3) gauge theory

Under SO(3) gauge symmetry, a real scalar field Φ is transffered as

Φ(x) → U(x)Φ(x) [Φa → UabΦ
b] (A.1)

U(x) = exp[−iθa(x)T a] , (A.2)

where g is the gauge coupling constant, θa’s are the transformation parameters and T a’s
are the generators which satisfy

[T a, T b] = ifabcT c , (A.3)

where fabcs are the structure constants. In the case of SO(3), we have

(T a)bc = iεabc (A.4)

fabc = −εabc (A.5)

Tr[T aT b] = 2δab . (A.6)

The gauge field Aaµ(x) is transffred as

Aµ(x) → U(x)Aµ(x)U
†(x) +

i

g
U(x)∂µU

†(x) , (A.7)

where Aµ ≡ AaµT
a. We introduce the covariant derivative defined as

Dµ = ∂µ − igAµ , (A.8)

which leads to

(DµΦ)
a = ∂µΦ

a − igAbµ(T b)acΦc = ∂µΦ
a − gεabcAbµΦc . (A.9)
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Under SO(3), the covariant derivative is transformed as

Dµ → UDµU
−1 . (A.10)

The field strength of the gauge field and its transformation are given by

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (A.11)

F a
µν = ∂µA

a
ν − ∂νAaµ − gεabcAbµAcν (A.12)

Fµν → UFµνU
−1 . (A.13)

Let us consider the following SO(3) invariant lagrangian:

L =
1

2
(DµΦ)a(DµΦ)

a − 1

4
F a
µνF

a µν − V (Φ) (A.14)

V (Φ) =
λ

8
(ΦaΦa − σ2)2 , (A.15)

where λ is a constant. The potential V has the minimum for

|Φ| = (ΦaΦa)1/2 = σ . (A.16)

When Φ takes the vacuum expectation value, SO(3) symmetry is spontaneously broken
to SO(2) = U(1). This is seen by a concrete example. Suppose Φ takes (0, 0, σ), then
we still have the following transformation which does not change the vacuum:

Φ′
1 = cos β Φ1 − sin β Φ2 (A.17)

Φ′
2 = sin β Φ1 + cos β Φ2 . (A.18)

This is the SO(2) transformation. If we define a complex scalar field ϕ as ϕ = Φ1+ iΦ2,
the above transformation is written as

ϕ′ = eiβϕ . (A.19)

This is U(1) transformation and shows that SO(2) = U(1).
Here let us see that the gauge bosons get mass after spontaneous symmetry breaking.

The kinetic term of the scalar field contains A2 term as

1

2
(DµΦ)

a(DµΦ)a 3 1

2
g2εabcεafgA

b
µA

f µΦcΦg . (A.20)
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When the scalar field takes Φ = (0, 0, σ),
1

2
(DµΦ)

a(DµΦ)a 3 1

2
g2σ2εab3εaf3A

b
µA

f µ

=
1

2
g2σ2(δbf − δb3δf3)AbµAf µ

=
1

2
g2σ2(A1

µA
1µ + A2

µA
2µ) . (A.21)

Thus, A1 and A2 obtain a mass gσ while A3 remains massless, which implies that A3 is
the gauge field for remaining U(1) symmetry.

A.1.2. Gauge invariant electromagnetic field

Gauge invariant electromagnetic field is written as [3]

Fµν =
1

σ
ΦaF

a
µν +

1

σ2
εabcΦa(DµΦ)b(DνΦ)c . (A.22)

The gauge invariance of Fµν is is seen as follow. The 2nd term in LHS of Eq. (A.22)) is
transformed as

εabcΦa(DµΦ)b(DνΦ)c → εabcUaiUbjUckΦi(DµΦ)j(DνΦ)k

= εijkΦi(DµΦ)j(DνΦ)k , (A.23)

where we have used εabcCaiCbjCck = (detC)εijk for a arbitrary matrix C. As for the 1st
term,

ΦaF a
µν =

1

2
Φa tr[FµνT a]→

1

2
UaiΦ

i tr[UFµνU †T a]

=
1

2
UaiΦ

iUbjF
d
µνT

d
jkUckT

a
cb

= −1

2
ΦiF d

µνUaiUbjUckεdjkεacb

=
1

2
ΦiF d

µνεdjkεijk = ΦiF i
µν . (A.24)

Thus, the both terms are gauge invariant and hence Fµν .
If the scalar field Φ takes vacuum expectation value Φ = (0, 0, σ), Fµν is calculated as

Fµν = F 3
µν +

1

gσ
ε3bc(∂µΦ

b − gεb`mA`µΦm)(∂νΦ
c − gεcpqApνΦq)

= ∂µA
3
ν − ∂νA3

µ − gε3bcAbµAScν + gε3bcεb`3εcp3A
`
µA

p
ν

= ∂µA
3
ν − ∂νA3

µ − gε3bcAbµAScν + gεcp3A
c
µA

p
ν

= ∂µA
3
ν − ∂νA3

µ . (A.25)

This is the field strength of electromagnetic field. Notice that with Φ = (0, 0, σ) only A3

is massless coresponding to U(1) symmetry into which SO(3) is broken.
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A.1.3. Monopole solution

In order find a monopole solution let us take the static “Hedgehog” configuration (A0 =

0),

Φa(r) ∼ σr̂a = σ
xa
r

(A.26)

Aai (r) ∼ εiab
r̂b
gr

= εiab
xb
gr2

, (A.27)

at r � σ−1. With the Hedgehog configuration,

∂iΦ
a(r) ∼ ∂i

(σxa
r

)
∼ σ

r
(δia − r̂ar̂i) . (A.28)

and

gεabcA
b
iΦ

c ∼ gεabc
εibdr̂d
gr

σr̂c =
σ

r
(δaiδcd − δadδic)r̂dr̂c =

σ

r
(δai − r̂ar̂i) . (A.29)

Thus, at r � σ−1 we obtain

(DiΦ)
a ∼ 0, V (Φ) ∼ 0 , (A.30)

which shows that the energy of the scalar field is localized around the center (r ∼ 0).
As for the gauge field, we obtain

∂iA
a
j ∼ ∂i

(
εjab

xb
gr2

)
=

1

gr2
(εija − 2εjabr̂ir̂b) , (A.31)

and

gεabcA
b
iA

c
j ∼ gεabc

εibdr̂d
gr

εjcf r̂f
gr

=
1

gr2
(δaiδcd − δadδci)r̂dr̂fεjcf

=
1

gr2
(δair̂cr̂fεjcf − r̂aεjif r̂f )

=
1

gr2
εijbr̂ar̂b . (A.32)

From Eqs. (A.31) and (A.32)

F a
ij ∼

1

gr2
(2εija − 2εjabr̂ir̂b2εiabr̂j r̂b − εijbr̂ar̂b) , (A.33)
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from which we obtain the “magnetic” field,

Ba
k =

1

2
εkijF

a
ij (A.34)

∼ 1

gr2
(2δka − 2(δkaδib − δkbδia)r̂ir̂b − δkbr̂ar̂b) (A.35)

=
1

gr2
r̂ar̂k . (A.36)

From Eq. (A.22) the gauge invariant magnetic field is obtained as

Bk =
1

σ
ΦaBa

k ∼
1

gr2
r̂k . (A.37)

This shows that the configuration Eqs. (A.26) and (A.27) has a magnetic charge QM

given by

QM =

∫
d2Sr̂iBi =

4π

g
. (A.38)

Therefore this is the configuration which represents a magnetic monopole The energy of
the monopole is written as

EM =

∫
Hd3x = −

∫
Ld3x , (A.39)

where H is the Hamiltonian density. Taking

ξ = gσr (A.40)

Φa = σH(ξ)r̂a (A.41)

Aai =
1

gr
εaij r̂j(1−K(ξ)) , (A.42)

whereH(ξ) andK(ξ) are functions of ξ (H → 1, K → 0 as r →∞) which are determined
by minimizing the energy,

E =
4πσ

g

∫ ∞

0

dξ

[
(K ′)2 +

(K2 − 1)2

2ξ2
+H2K2 + (ξH ′)2 +

λ

8g2
ξ2(H2 − 1)2

]
. (A.43)

From the above equation the mass of the monopole is estimated as

MM '
4πσ

g
. (A.44)
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A.2. Newtonian Gauge
A.2.1. Metric perturbations

Metrics in the Newtonian gauge are given by1

g00 = a2(1 + 2ΦQ), (A.45)

g0i = 0, (A.46)

gij = −a2(1 + 2ΨQ)γij (A.47)

Correspondingly, gµν are

g00 = a−2(1− 2ΦQ), (A.48)

g0i = 0, (A.49)

gij = −a−2(1− 2ΨQ)γij (A.50)

From them the Christoffel symbols are written as

Γ0
00 =

a′

a
+ Φ′Q, (A.51)

Γ0
0i = −kΦQi, (A.52)

Γi00 = −kΦQi, (A.53)

Γi0j =

(
a′

a
+Ψ′Q

)
δij, (A.54)

Γ0
ij =

[
a′

a
+

(
−2a

′

a
Φ + 2

a′

a
Ψ+Ψ′

)
Q

]
γij, (A.55)

Γijk =
(s) Γijk − kΨ(δijQk + δikQj − γjkQi) (A.56)

Here (s)Γijk is the Christoffel symbol on the time slice with metric γij.
Einstein tensor is written as Gµν = Ḡµν+ δGµν where Ḡµν and δGµν are homogeneous

and 1st order fluctuation parts, respectively. The homogeneous part is written as

Ḡ0
0 =

3

a2

[(
a′

a

)2

+K

]
, (A.57)

Ḡi
j =

1

a2

[
2
a′′

a
−
(
a′

a

)2

+K

]
δij, (A.58)

Ḡ0
i = Ḡi

0 = 0 . (A.59)

1Fomula in this appendix are taken from [4] with some modifications of notation.
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The 1st order fluctuations are written as

δG0
0 = −

2

a2

[
3

(
a′

a

)2

Φ− 3
a′

a
Ψ′ − (k2 − 3K)Ψ

]
Q, (A.60)

δG0
i = −

2

a2

[
a′

a
kΦ− kΨ′

]
Qi, (A.61)

δGi
0 =

2

a2

[
a′

a
kΦ− kΨ′

]
Qi, (A.62)

δGi
j = −

2

a2

{[
2
a′′

a
−
(
a′

a

)2
]
Φ +

a′

a
[Φ′ −Ψ′]− k2

3
Φ−Ψ′′ − a′

a
Ψ′

−1

3
(k2 − 3K)Ψ

}
δijQ+

1

a2
k2(Φ + Ψ)Qi

j, (A.63)

A.2.2. Energy-momentum tensor

The first order perturbations of the energy momentum tensor are given by

T 0
0 = (1 + δQ) ρ, (A.64)

T 0
i = −(ρ+ p)V Qi, (A.65)

T j0 = (ρ+ p)V Qi, (A.66)

T ij = −p
(
δij + πLQδ

i
j +ΠQi

j

)
(A.67)

From the energy conservation T µ0;µ = 0, we obtain

0 = T µ0;µ = ∂µT
µ0 + Γ0

αβT
αβ + ΓααβT

0β

= (∂0T
00 + ∂iT

i0) + (Γ0
00T

00 + 2Γ0
0iT

0i + Γ0
ijT

ij)

+ (Γ0
00T

00 + Γ0
0iT

0i + Γi i0T
00 + Γi ijT

0j)

= ∂0T
00 + ∂iT

i0 +(s) Γi ijT
0j + 2Γ0

00T
00 + Γ0

ijT
ij + Γi i0T

00

= ∂0T
00 + T i0|i + 2Γ0

00T
00 + Γ0

ijT
ij + Γi i0T

00 (A.68)
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where

T 00 = a−2(1 + δQ− 2ΦQ)ρ, (A.69)

∂0T
00 = a−2

[
(1 + δQ− 2ΦQ)

(
ρ′

ρ
− 2

a′

a

)
+ (δ′ − 2Φ′Q)

]
ρ, (A.70)

T 00
|i = a−2(1 + w)kV Qρ, (A.71)

Γ0
00T

00 = a−2

[
a′

a
(1 + δQ− 2ΦQ) + Φ′Q

]
ρ, (A.72)

Γ0
ijT

ij = 3a−2w

[
a′

a
(1 + πLQ− 2ΦQ) + Ψ′Q

]
ρ, (A.73)

Γi i0T
00 = 3a−2

[
a′

a
(1 + δQ− 2ΦQ) + Ψ′Q

]
ρ , (A.74)

from which 0-th and 1st order equations are onbtained as

ρ′ = −3(1 + w)
a′

a
ρ (A.75)

δ′ = −(1 + w)(kV + 3Ψ′)− 3
a′

a
δw . (A.76)

Here δw is the fluctuation in the equation of state.
The momentum conservation T µi;µ = 0 is written as

0 = T µi;µ = ∂µT
µi + ΓiαβT

αβ + ΓααβT
iβ

= (∂0T
0i + ∂jT

ji) + (Γi00T
00 + 2Γi0jT

0j + Γi jkT
jk)

+ (Γ0
00T

0i + Γ0
0jT

ji + Γjj0T
0i + ΓkkjT

ij)

= ∂0T
0i + T ji|j + Γi00T

00 + 2Γi0jT
0j + Γ0

00T
0i + Γ0

0jT
ji + Γjj0T

0i , (A.77)

where

∂0T
0i = a−2

{[
(1 + w)

(
ρ′

ρ
− 2

a′

a

)
+ w′

]
V Qi + (1 + w)V ′Qi

}
ρ (A.78)

T ji|j = a−2

[
−πL +

2

3
(1− 3K/k2)Π + 2Ψ

]
wkQiρ (A.79)

Γi00T
00 = −a−2kΦQiρ (A.80)

Γi0jT
0j = Γ0

00T
0i =

1

3
Γjj0T

0i = a−2

(
a′

a

)
(1 + w)V Qiρ . (A.81)

This leads to

V ′ = −a
′

a
(1− 3w)V − w′

1 + w
V +

δp/δρ

1 + w
kδ − 2

3

w

1 + w
(1− 3K/k2)kΠ+ kΦ (A.82)
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A.2.3. Einstein equation

Let us write the 1st order Einstein equation. From (0, 0) component,

3

(
a′

a

)2

Φ− 3
a′

a
Ψ′ − (k2 − 3K)Ψ = −4πGa2ρδ (A.83)

From (0, i) component,
a′

a
Φ−Ψ′ = 4πGa2(1 + w)ρV/k (A.84)

From traceless (i, j) component,

k2(Φ + Ψ) = −8πGa2pΠ (A.85)

From Eqs (A.83) and (A.84) we obtain Poisson equation,

(k2 − 3K)Ψ = 4πGa2ρ

[
δ + 3

a′

a
(1 + w)V/k

]
(A.86)
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