

平成25年度共同利用研究成果発表会

宇宙線望遠鏡による 極高エネルギー宇宙線の研究

佐川 宏行 (東京大学宇宙線研究所) Telescope Array Collaboration

2013/12/21

Outline

- Telescope Array (TA)
 - TA detector/papers
- Recent preliminary TA results
 - Energy spectrum
 - Composition
 - Anisotropy
 - Hot spot?
- TA Extensions, on-going R&Ds, proposals
 - TAx4, TALE
 - Associate experiments: radio (TARA, GHz), TA/LMA
- Summary

related to TA burst events

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^l, R. Ishimori^b, H. It<mark>en, D. Ivanov^{a,Q}, C. C. H. Ivia, K. Kadota^p, E. Kakimoto^b, O. Kalachov^Q, K. Kasahara^r, H. Kawai^s,</mark> ~120 collaborators in 5 countries S. Kawakami^j, S. ra^b, Y. Kitamura^b, V. Kuzmin^q, Y. J. K tsuyama^j, Japan, USA, Korea, Russia, Belgium J. N. Matthews^a, lura^u, H. Nanpei^j, T. Nonaka^h, A. No [•], A. Oshima^j, S. Ozawa^r, I. H. Pa . Sakurai^j,

A. L. Sampson^a, L J. D. Smith^a, P. So

T. Shirahama^m, Takamura^e,

A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ^IUniv. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, "Kochi University, "Ritsumeikan University, "Sungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University . 3

平成25年度共同利用研究採択課題

整理 番号	課題名	研究代表者	合計額 (千円)
F14	宇宙線望遠鏡による極高エネルギー宇宙線の研究	佐川 宏行	900
F15	TA実験サイトでの超高エネルギー宇宙線観測のための新型検 出器の開発	野中 敏幸	500
F16	最高エネルギー宇宙線の電波的観測の研究	池田 大輔	800
F17	TA実験における中央レーザー装置ステアリングシステムの開発	有働 慈治	250
F18	ラジコンヘリコプターによるTA大気蛍光望遠鏡キャリブレーション	多米田 裕 一郎	350
F19	小型電子加速器による空気シャワーエネルギーの絶対較正の 研究	芝田 達伸	600
F20	TA地表検出器の低エネルギー側高感度化(TALE計画)と宇宙線 異方性の研究	川田 和正	300
F21	TA-EUSO64chマルチアノードPMTの較正とCRAYSとの比較	竹田 成宏	450
F23	大気分子制動放射マイクロ波の検出と検出器開発	荻尾 彰一	400
合計	9課題		4,550

どうもありがとうございます

Refereed papers in 2013

- The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment
 - T. Abu-Zayyad et al., Astrophysical Journal Letters, 768 (2013) L1 SD spectrum
- The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode
 - T. Abu-Zayyad et al, Astropart. Phys., 48 (2013) 16

FD mono spectrum

- Search for correlations of the arrival directions of ultra-high energy cosmic rays with extragalactic objects as observed by the Telescope Array Experiment
 - T. Abu-Zayyad et al., Astropart. Phys., 777 (2013) 88
- Upper limit on the flux of photons with energies above 10¹⁹ eV using the Telescope Array surface detector
 - T. Abu-Zayyad et al., Phys. Rev. D 88 (2013) 112005

Photon flux limit

Anisotropy

ICRC2013 presentations

Subject	ID	0	Р	Subject	ID	0	Р	Subject	ID	0	Р		
Highlight talk	128	0		TA SD simu. and analysis	395		Ρ	Hybrid trigger	134		Ρ		
TA general	118		Ρ	TALE hybrid simu. and analysis	389		Ρ	Radio echo detection with ELS	360		Ρ	TA/Auger joint papers	
TA next 5 years	121		Ρ	LSS@HE	935		Ρ	TARA	1192	0			
Point-like sources@10 ¹⁸	310		Ρ	SD composition	536		Ρ	CR radar echoes in TARA data	639		Ρ	TA extensions R&D	
LSS aniso@10 ¹⁸	311		Ρ	BR/LR hybrid composition	965		Ρ	TALE	717	0			
UHE photon and nu with FD	524		Ρ	TA spectrum summary	221	0		Surface muon detector	298		Ρ		
Spectrum fit	136	0		TA composition summary	132	0		FD PMT monitoring	952		Ρ		
Shower front structure	130		Ρ	TA anisotropy summary	1033	0		Octocopter light source test	1218	0			
UHE photon and nu with SD	149	0		Composition: TA analysis for PAO model	964	0		GHz radio detection with ELS			Ρ		
MD hybrid spectrum and composition	794		Ρ	TA/Auger Large-scale joint anisotropy study	679	0		Shower universality for NICHE	983		Ρ		
Correlations of arrival directions	133		Ρ	FD calib. with ELS	507	0							
Stereo mass composition	512		Ρ	CLF	142		Ρ	including					
BR/LR hybrid spectrum	358		Ρ	Portable laser	526		Ρ	4 TA/Auger joint papers (3 oral)					
BR/LR mono spectrum	476		Ρ	Octocopter light source test	504		Ρ	. Auger light source with TA FD			e with TA FD		
Data and Corsika simulation	353	0		NICHE	365	0		. TA Amax recon. for Auger ad hoc model . TA/Auger joint anisotropy study					

Energy spectrum

TA spectrum vs Auger spectrum

10

Electron Light Source (ELS)

T.Shibata ICRC2013 preliminary

11

- 40-MeV, 10⁹ electrons (typical)
- End-to-end FD energy calibration

An image of data Measured with FD

- ELS
 - Energy/beam current from monitor
 - FADC counts from FD

- MC dataShower generation
 - Geant4.9.5 or 4.9.6 ($\Delta E \rightarrow AFY$)
 - FD simulation
 - TA official software

Air Fluorescence Yield (AFY) by using Reference Model proposed by B. Keilhauer et al. (UHECR2012, arXiv:1210.1319)

 $Y_{\lambda}^{NEW2012}(T, P, RH)(\text{ph/MeV}) = Y_{337nm}(T_r, P_r) \cdot I_{\lambda}(T_r, P_r) \cdot \frac{1}{1 + \frac{1}{P}}$ T and humidity dep.

2013/12/21

Air Fluorescence Yield at 337 nm by ELS

- AirFLY = 5.61 ± 0.06 (stat) ± 0.22 (sys) at 1013 hPa and 293 K
- Measurement in situ at TA
 - $\frac{\text{ELS(data)}}{\text{AirFLY(MC)}} = 0.96 \pm 0.01(stat) \pm 0.15(syst)$
 - at ~860 hPa and -17 ~ 17°C

Mass Composition

FD stereo Xmax

Y.Tameda ICRC2013, 512 preliminary

Both Data & MC

. Reconstruction

with bias of

. Cut

- FD stereo 5-year data (Nov., 2007 Nov. 2011)
 - Data: TA
 - Red histogram: QGSJET-II-03 proton model
 - Blue histogram: QGSJET-II-03 iron model

ICRC2013 preliminary

FD stereo Xmax

TA data: consistent with QGSJET-II-03 proton prediction ($E > 10^{18.2} eV$) Need more data for $E > 10^{19.4} eV$

Similar result is obtained for MD hybrid (FD+SD) Xmax

Anisotropy

TA 5-year SD data

P.Tinyakov ICRC2013 preliminary

Autocorrelations

Oral, 1033 Correlations with AGN

- 472 AGN from 2006 Veron catalog with z < 0.018
- E > 57 EeV, zenith angle < 45°, N = 42 (5 yr)

- Probability to hit AGN with a single event $p_0 = 0.24$
- 17 events correlate out of 42 (0.40) $\implies p = 1.4\%$

ICRC2013 preliminary

ICRC2013 preliminary

Correlations with LSS (Large-Scale Structure)

Hot spot

- Loose cut: 52 events -- > 72 events (E > 57 EeV)
 - No 1.2-km border cut, ...
 - Angular resolution does not change very much
- Oversampling with circles of 20-degree radius

- Significance 5.1 (before correction)
- Chance probability: being estimated (~ 3.6σ)

Energy spectrum by TA SD with fit

Propagation: CRPropa v2.0, SOPHIA: pion prod.

2013/12/21

21

m = 4.8 (GRB)

m = 3 (QSO)

E.Kido

Preliminary

TA extension plans and on-going R&D

- TAx4: quadruple aperture extension for highest energy cosmic rays
- TALE: TA low energy extension down to 10^{16.5}eV
- Associate experiments

TA×4 proposal

 If the suppression is proton GZK cutoff, we would observe anisotropy. Now there are hints at 3σ level for TA TALE FD TAx4 SD Plan to expand TA by 4 times (\sim 3000 km² TA MD FD 500 scintillator counters with 2.1 km spacing (Japanese side) • Proposal submitted for a grant this Oct. 10 refurbished HiRes telescopes 🛨 (US side) TALE SD JFY2014 – 2015: 2-year construction JFY2016 – 2018: 3-year observation By Mar, 2019 TA LR FD 20 years of TA SD data 14 years of TA hybrid data (Escale, Xmax) Study of anisotropy Anistoropy at 3σ level (5-year TA SD data) TA SD Expect 5σ level anisotropy (20-year TA SD data) TA BR FD More statistics for the spectrum above suppression TAx4 FD Xmax around suppression UH® gamma and neutrino search 23

TALE (TA Low-energy Extension) Oral, 717 down to 10^{16.5} eV

- $E = 10^{16.5} 10^{19} eV$
 - Second knee at ~10^{17.5} eV?
 - Drastic change of composition at 10¹⁷~10¹⁸ eV?
- ~10¹⁷ eV cosmic ray shower: compatible with LHC center-ofmass energy

TALE layout

TALE (TA Low-energy Extension)

- 10 TALE FDs:
 - refurbished HiRes-II telescopes
 - installed and running.

- TALE SDs
 - 35 TALE SDs were deployed among 101 SDs.
 - 16 SDs in operation

2013/12/21

with between <u>TA and TAx4</u>, and <u>TA and TALE</u>, and <u>TALE and NICHE*</u>, over <u>5-decade</u> energy region ($10^{15.8} \sim >10^{20.8}$ eV), with <u>absolute end-to-end energy calibration</u> of FD with <u>ELS</u> at TA

NICHE: Non-Imaging CHErenkov detector

TA muon detector project

- One set of 24-m² scintillator detector with concrete absorber on the top
 - 8x(3-m² scintillator detectors)
- Lead layer sandwiched between two scintillators
 - First 9 m²: 12x(0.75 m²)
 - 1 segment was deployed inside CLF

will be installed outside CLF early next year

• Auger water \rightarrow TA site

ICRC2013 Oral, 1192

TARA (TA Radar)

 An R&D project to observe radar reflections form cosmic ray air showers

- TARA1.5
 - April 2011 to July 2012
 - 54.1 MHz @ 1.5 kW
- TARA40
 - Summer 2013~
 - 54.1 MHz @ 40 kW

Test of detection of Molecular Bremsstrahlung Radiation from cosmic-ray air shower

- The system of the detection of 12-GHz radio wave to observe cosmic-ray air-showers was developed
- Test: none of the below observed signal
 - 12-antenna array @ Konan Univ. (T.Yamamoto)
 - Coincidence with air-shower array @ Osaka City Univ. (S.Ogio)
 - Pseudo shower using electrons from ELS @ TA (T.Yamamoto et. al.)

Test at TA site

TA burst events

T.Okuda TA burst events (in 5-year SD data) COSPA2013 preliminary

 10 bursts of shower triggers 		Date	time	Core position	
 Burst: N(shower trigger) ≥ 3 in 1 ms Some events in 5 bursts are 		AS yymmdd	hhmmss usec	; X[m] Y[m] H	
 Event: an SD data set recorded by a shower trigger Trigger information 	TA burst	AS 101004 AS 101004 AS 101004	165842 930565 165842 930612 165842 930835	11356 -7425 3 10478 -7368 4 11142 -8159 3	
 Wave forms from SDs Burst > events > SDs > waveforms 		AS 110727 AS 110727	080615 124319 080615 124543	3447 1952 4 2897 2232 3	
(shower trigger) (FADC values)		AS 110916 AS 110916	194056 567481 194056 567566	-3210 -9285 3 -3524 -9413 3	
	-{	AS 120706 AS 120706	014911 184219 014911 184307	9847 -10702 3 7635 -9674 3	
		AS 120907 AS 120907 AS 12 09 07	015545 380684 015545 380755 015545 380881	-8636 1254 4 -9857 -337 4 -9450 -961 3	

H[m]

3963

4400

3270

4070

3070

3253

3134

3770

3361

4446 4805

3361

event

T.Okuda Examples of timing and waveforms ^{COSPA2013} preliminary COSPA2013

Distance from the axis (m)

Slower rising edge for burst events

TA burst events associated with lightning

T.Okuda

An example of TA reconstructed COSPA2013 events with lightning

Associate experiment: TA/LMA

- LMA: Lightning Mapping Array
 - Array of VHF receiver stations developed by New Mexico Institute of Mining and Technology (NMT)
 - 3-D reconstruction, better resolution

LMA detector unit at Long Ridge (with R. Thomas, NMT)

- TA/LMA: Test LMA in the TA site (Sep~)
 - 10 receiver stations
 - (blue points in the figure)

Summary

- Recent results for 5-year data
 - Energy spectrum
 - Significance of the suppression consistent with GZK cutoff
 - 5.7*σ* above 10^{19.8}eV
 - Composition
 - Consistent with proton
 - Anisotropy
 - Hints of anisotropy: significance of $\sim 3\sigma$
 - Hot spot (20°) ~3.6σ
- TA extension plans
 - TAx4: proposal to quadruple TA aperture
 - Towards $\sim 5\sigma$ anisotropy in 5 years
 - TALE: low energy extension down to 10^{16.5} eV
 - Currently operating 10 full FDs and a part of SD array
- TA SD burst events associated with lightning were observed
- Associated experiments: performed, ongoing, will come