Future plans of the Telescope Array experiment

Shoichi Ogio (Osaka City University)

Future plans of the Telescope Array experiment

H

- Three future plans
- One is ongoing project....
- Personal idea included

..... as a beginning of discussions

Future plans of the Telescope Array experiment

LF.

- Three future plans
- One is ongoing project....
- Personal idea included
- as a beginning of discussions

Two out of thee plans are not fully approved by the TA collaboration

TELESCOPE ARRAY HYBRID DETECTOR

507 scintillator detector covering 680 km²
 3 fluorescence detector stations, 38 telescopes
 Full operation since March 2008
 SD array relative size TA ~ AGASA x 7 ~ Auger / 4

ELS(Electron Light Source)

Shot: Sep. 5, 2010, 4:30UTC Energy: 41.1 MeV

25

2

9

ŝ

0.05 0.045 0.045 0.035 0.035 0.025 0.025 0.015 0.015 0.015

.JinU.d1A

Y-PMTs 15

Black Rock Mesa Pavant Butte S Cleor 5751 Jear ake 112.76667° WGS84 112.45000° W

l Geographic (www.nati geographic.com/topo)

Summary of the results from TA

900

850

800

700

650

Ws.5 19 195 20 20.5 2

^×em 750

(19.5 19.5 19

Ê 18.5

18

Preliminary

18.6

Xmax are consistent

"purely 1ry proton"

18.8

19

log(E/eV)

19.2 19.4

50

40

- P QGSJET-II - P QGSJET-01 - P SIBYLL - Fe QGSJET-II - Fe QGSJET-01

(10¹⁸⁻²⁰eV)

QGSJET-II

Proton Iron

1000 1100

Preliminary

800

Preliminary results are

consistent with GZK feature

Future Plan 1: TA Low Energy Extension

- Galactic-to-Extragalactic transition
- iron knee
- second knee
- ▶ Air shower model@10¹⁷eV (LHC, Hybrid, El liRes 2009

750

700

650

600

550

17

17.5

18

18.5

JET2 Proton

\$ \$ \$

TA Low Energy Extension (TALE)

TA Low Energy Extension (TALE)

Specifications of TALE

To Solve the discrepancy...

18.2 18.4

18.6

18.8

19.4

19.2

log(E/eV)

19.6 19.8

Future Plan 2: Exchange FDs / SDs

What we know about UHECRs ?

Telescope Array's observations suggests that

- ► (Spectrum) Sharp cut off @ the highest energy
- ► (Composition) purely protons @ E >10¹⁸eV

GZK mechanism

Discrepancy must be solved near future, I hope..

What we know about UHECRs ?

Telescope Array's observations suggests that

- ► (Spectrum) Sharp cut off @ the highest energy
- ► (Composition) purely protons @ E >10¹⁸eV

GZK mechanism

Discrepancy must be solved near future, I hope..

What we don't know about UHECRs ?

What we know about UHECRs ?

Telescope Array's observations suggests that

- ► (Spectrum) Sharp cut off @ the highest energy
- ► (Composition) purely protons @ E >10¹⁸eV

GZK mechanism

Discrepancy must be solved near future, I hope..

What we don't know about UHECRs ? Origin of UHECRs

(Sources, Acceleration mechanism, propagation...)

In order to identify point sources...

Observations should be concentrated on

the highest energy = To limit the number of sources

In order to identify point sources... To resolve sources, Ns x Ω (source resolution) < 4π

then, we should set ... $\log_{10}E_{th} = 19.8 - 19.9$

Optimized detector spacing

Future Plan 3: Huge air shower array

Expected results

Source Identification

fraction

Energy-position correlated multiplet will be helpful (Golup for the Auger collaboration, 2011)

Angular and energy resolutions are essentially important for source identifications and EG/GMF studies.

Cost and Schedule

- 10,000 SDs, Spacing = 2.0km
- total coverage 39,200 km²
 (TA x 57.8, Auger x 13.1)
- (\$10,000 per SD) x 10,000 SDs = \$100M

*Including the deployment cost

**Expected 10% cost-down from TA-SD

Summary (1)

- Future Plan 3: Huge air shower array
 - Concentrate on the highest energies
 - Set 95% efficiency @log₁₀E = 19.8 19.9
 - -40,000 km² => 10 sources and 25 events for E > 10²⁰ eV
 - Need good angular and good energy resolution
 - Need study for design optimization
 - Scintillator, water tank or other type ?
 - Size, spacing
 - Sensitivity for neutrinos and for composition?

Summary (2)

- Future Plan 1: TA Low energy Extension (TALE)
 - Ongoing project
 - 14 FDs + 35 SDs systems will start working early 2013

- Future Plan 2: Exchange FDs + SDs
 - Check systematics: real same CR events, same CLF, same ELS beams, event by event bases.
 - Solve discrepancies in energy scale and Xmax
 - Critically important step for further extension of UHECR research