第3回CRCタウンミーティング 超高エネルギー宇宙線観測分野

Telescope Array 2

佐川 宏行(東大宇宙線研)2012年6月30日東工大 大岡山キャンパス

概要

TA実験と最近の結果

低エネルギー拡張

TAとAugerの結果の違い 解決へのアプローチ

Telescope Array 2

Aperture拡張

TA実験の目的

最高エネルギー宇宙線による 宇宙極高現象の解明

特定領域科研費(2003年度~2008年度) 2007年11月からFDフル稼働 2008年 5月からSDとFDのハイブリッド観測 特別推進科研費(2009年度~2013年度) 現在TA運用中

米国ユタ州 **北緯39.3度**, 西経112.9度 標高 約1400 m

<u>地表粒子検出器</u> 507台(1.2 km 間隔) 700 km²

最近のTAの結果

超高エネルギー宇宙線(UHECR)の

- エネルギースペクトル
- 組成
- 到来方向

SDによるUHECRのenergyの測定

SD エネルギースペクトル

N_{EXPECT}: GZK suppressionがないとして breakをこえてbroken power law fit を拡張して TA SDのexposureで期待される log₁₀E=19.7以上の事象数

 $PROB = \sum_{i=0}^{28} Poisson(\mu = 54.9; i) = 4.75 \times 10^{-5}$

(3.9σ

Evolution of <Xmax> w/ Energy

UHECRの到来方向

- 活動銀河核(AGN)との相関
- 大規模構造(LSS)との相関
- 自己相関(autocorrelation)

最高エネルギー宇宙線とAGNの位置 との相関

- AGNの距離が2.4億光年以内(黒点)
- 57 EeV以上の宇宙線: 25事象(赤丸+青丸)
- 3.1度以内の数を求める (赤丸)

 ・ 観測相関数11(一様な到来方向の場合の期待相関数は
 5.9: chance probability 2%)

Regular GMF Disk + halo(*)				
	ICRTH HALO FIELD			
DISK FIELD				
	South HALO FELD			

(*) strong/extended halo MF

横軸: smearing angle Θs (考慮されていない銀河系外 磁場等の効果を角度の歪みとして取り入れる)

モデル	GMF	E > 10 EeV	E > 40 EeV	E > 57 EeV
Isotropy	-	ОК	ОК	ОК
LSS	No	NO	ОК	ОК
LSS	regular	ОК	ОК	ОК

Auto-correlation

宇宙線の到来方向の小角度スケールでのclusteringは見られない

概要

TA実験と最近の結果

TALE計画

TAとAugerの結果の違い →解決へのアプローチ

Telescope Array 2

TALE測定器

TALE測定器

概要

TA実験と最近の結果

TAとAugerの結果の違い 解決へのアプローチ

Telescope Array 2

TA SD(■)とAuger(△)の差はエネルギースケールで 25%程度

<u>Electron Light Source (ELS)</u>

<mark>加速電子ビーム源</mark> = 新しく提案されたTA実験でのエネルギー較正源 →エネルギー測定に必要な較正定数の一括較正

出力電力=40 MeV×10⁹e-/pulse×0.1-0.5 Hz、パルス幅は1 μ sec

組成

TAの結果は陽子モデルと一致

Augerの結果は約3×10¹⁸ eV以上から 重くなっている

TA, Auger spokespersons

TA spokespersons Auger spokespersons Karl-Heinz Kampert Jim Matthews Hiroyuki Sagawa Gordon Thomson TAとAugerの懸案を解決するために spokesperson間で打合せを行っている

これまで挙がっている項目

- TAとAugerのspokesperson間の打合せ
 - 2月のUHECR2012シンポジウムに向けて立ち上げ たWorking Group(*)の継続
 - (*) Spectrum/composition/anisotropy/model/multimessenger

TA – Augerの共同研究に関して 挙がっている案

- Photonic calibrationの交換
- 解析プログラムの公開?

- 一部データ公開?

- 相手側のグループの会議に参加して議論
- 相手側のグループのupgradeに参加
 - R&Dに関しては、TAサイトで、AugerのKIT/Chicago グループとTAで共同でELSからの電波観測試験を 行っている。
- FD&SDの交換

Exchange of photonic calibration

CRAYS@ICRR(TA)
 – AugerのPMTを較正

ユタ大の較正装置(TA)
 – AugerのPMTを較正

- Octocopter (Auger)
 - Photonic calibration
 - Absolutely calibrated light source

TA 🛑

@ UHECR2012

FDとSDの交換

TA 1 FD station + 100 TA SDs Auger TA Auger 1 FD station + 100 Auger SDs

概要

TA実験と最近の結果

TAとAugerの結果の違い 解決へのアプローチ

Telescope Array 2

点源の同定

点源の分離のために ⇒ Ns x Ω < 4π

 $\Rightarrow \log_{10}E_{th} = 19.8 - 19.9$

SD*O* spacing

Huge air shower array

1年に期待される事象数

[events/yr]

log ₁₀ E > 19.8	257.9
log ₁₀ E > 19.9	84.7
log ₁₀ E > 20.0	25.6
(* E > 57 EeV	434.5)

Telescope Array 2の課題

- ソース密度
- LSS proton model
- 加速限界
- 組成の同定
- UHEγ

ソース密度の制限

Table 1

Local number densities of several active objects.

Takami et al. 2007

Object	Density (Mpc ⁻³)	References
Bright galaxy	$1.3 imes 10^{-2}$	[31]
Seyfert galaxy	$1.25 imes 10^{-3}$	[31]
Bright quasar	$1.4 imes10^{-6}$	[32]
Fanaroff–Reily 1	$8 imes 10^{-5}$	[34]
Fanaroff–Reily 2	$3 imes 10^{-8}$	[33]
BL Lac objects	$3 imes 10^{-7}$	[33]

(60倍 TA SD)×5年の場合の100EeV以 上のUHECRのsky mapの例

 2 • 10⁻³ (Mpc⁻³)
 E>100EeV 150 events for TA exposure Smearing angle=3(deg) Same luminosity for each galaxy Zenith angle < 45(deg)

TA2(60倍TA SD)で3度以内の100EeV 以上のUHECRのペア数

	モデル	LSS n	地球への到来方向 が一様分布(Iso)	
ソース密度		2 × 10 ⁻⁴ (Mpc ⁻³)	2 × 10 ⁻³ (Mpc ⁻³)	
		most probableなペア数	most probableなペア数	期待されるペア数
	1年	12	3	0.6 ± 0.8
		Isoからのずれ:>5σ		
		most probableなペア数	Most probableなペア数	期待されるペア数
	3年	122	26	6±2
			Isoからのずれ:>5σ	
縦軸は 立体角で normalize		E > 100 EeV × 10 ⁻⁴ Mpc ⁻³ 2 x 1年の例	$\begin{array}{c} 1 \\ 5000 \\ 4500 \\ 4000 \\ 3500 \\ 3000 \\ 2500 \\ 1500 \\ 1500 \\ 1500 \\ 0 \\ 5 \\ 0 \\ 5 \\ 10 \\ 15 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 10 \\ 15 \\ 20 \\ 25 \\ 10 \\ 15 \\ 20 \\ 25 \\ 10 \\ 15 \\ 20 \\ 25 \\ 10 \\ 15 \\ 20 \\ 25 \\ 10 \\ 15 \\ 20 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 2$	-3 例 ³⁰ 38

LSS proton modelからのずれに関する expectation

前ページ横軸Dの説明

60倍TA SDで期待されるスペクトル

組成の同定 (SD)

Area over peak - new SD observable 220 DATA QGSJET-II p MC Consider a detector waveform (front + back) / 2 160 protons 140 Area = 44.7 MIP. Peak = 3.34 MIP/20 ns. AoP = 267 ns 120 1000 800 = 3.34 MIP/20 ns 3 Peak 60 201 2.5 signal, MIP 2400 2200 Area = 44.7 MIP DATA 200 1.5 180 QGSJET-II Fe MC 160 140 iron 1200 AoP = 44.7 / 3.34 * 20 ns = 267 ns 1000 800 0.5 600 400 500 1000 1500 0 2000 θ [Degree] t, ns TA surface detector First mentioned by Auger in context of neutrino search (very inclined events) Phys.Rev.Lett. 100 (2008) 211101

TA SDの波形の情報、天頂角などの情報を使って、陽子・鉄の識別の試み →将来の地表検出器による粒子識別の展望

Prospect

	現TA			現TA	Telescope Array 2 (60倍 現TA SD)		
	3 yrs	3.3 yrs	3.7 yrs	11 yrs	1 yr	5 yrs	10 yrs
スペクトル							
GZK suppression	3.9 σ			~8σ			
加速限界がない場合							10 ^{20.5} eVの加速 限界を~ <mark>6o</mark> で棄却
組成							
Pure protonの場合に Ironを5oで棄却できる エネルギー(Xmax)			10 ^{19.4} eV	10 ^{19.6} eV	10 ²⁰ eV (break pointの上)		
異方性							
ソース密度: Isoからの ずれ					2x10 ⁻⁴ Mpc ⁻³ >5σ	2x10 ⁻³ Mpc ⁻³ >5σ	
lsotropy modelからの 分離		~1σ			6.5σ		
UHEγ					GZKyに制限		

TA2の費用とスケジュール

- 10,000 SD, spacing = 2.0 km
- 39,200 km² (TA x 57.8, Auger x 13.1)
- 費用:(\$10,000/SD)x10,000 SDs = \$100M

- 輸送·設置込

シンチレータベースのR&Dを日本側で始めている

UHECR2012でのその他の大規模地上検出器の提案

次世代実験に関して

- UHECR2012で話した何人かがやりとりをして グループを立ち上げつつある
- TAとAugerのspokespersonの間の話し合い: 「次世代実験(*)」を新たなWorking Group (**)として強く推したい
 - *: 含JEM-EUSO
 - **: UHECR2012では以下の5 WGがあり
 - Spectrum/composition/anisotropy/model/multimessenger

まとめ

- TA実験が順調に稼働
- TA実験を継続しつつ、TALE実験をスタートさせる
 - 銀河宇宙線と系外宇宙線の遷移を理解
 - 10¹⁷ eV付近のUHECRのデータとLHCfのデータを取り込ん だ空気シャワーシミュレーションを比較
- TAとAugerの結果の違い→共同研究で解決を目指す
 - 既にある較正装置でcross calib.
 - 解析プログラム、一部データの交換?
 - FDとSDの交換→hybrid観測でcross calib.
- 次世代UHECR実験計画を世界的な枠組みで進める