

G.T. Zatsepin memorial readings, Moscow, June 10, 2011

Status and results of the Telescope Array experiment

Sergey Troitsky

INR, Moscow the Telescope Array collaboration

Plan

- 1. The Telescope Array detection methods
- 2. Primary energy estimation and cosmic-ray spectrum
- 3. Primary composition: protons or heavy nuclei?
- 4. Arrival directions: search for anisotropies
- 5. Search for primary photons

Ultra-high-energy cosmic rays: experiments

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹². YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹ JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes¹, TA Stroman¹, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

111

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University,
 ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University.

the Telescope Array

is not an array of telescopes...

- Surface detector (SD)
 - Plastic scintillator (a la AGASA)
 - 507 SDs S=3 m2
 - 1.2km spacing, 680km²
- Fluorescence detector (FD)
 - 3 stations (BR, LR, MD)
 - 38 telescopes (12+12+14) (a la HiRes)
- Location
 - Utah, USA
 - About 200km south to Salt Lake City
 - 39.3°N, 112.9°W
 - Altitude ~1400m

transfer HiRes telescopes

The largest detector in northern hemisphere

Surface detector

Scintillator Detectors on a 1.2 km square grid

- Power: Solar/Battery
- Readout: Radio
- Self-calibrated: muon background
- Operational: 3/2008

A typical Surface-Detector event

A typical Surface-Detector event

timing recorded at each station

TA fluorescent detector 1:

Middle Drum (refurbished HiRes I)

TA fluorescent detectors 2 and 3:

Long Ridge and Black Rock Mesa (brand new)

TA fluorescence detectors working together

Example of a TRIPLE STEREO HYBRID event

energy estimation

ENH

distance between stations ~(1000–1500) m

SD: periphery of the shower, sums up all particles

FD energy estimation

SD energy estimation: traditional ("the CIC method")

SD energy estimation: TA

SD energy estimation: TA

FULL MONTE-CARLO! QGSJET II PROTONS

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

SD energy estimation: why not CIC?

because of excellent data/MC agreement!

Haverah Park, AGASA, Yakutsk, Pierre Auger: CIC method Their motivation: MC does not describe well the shower development

WHY WORKS in TA [at least for (0-45) degree zenith angles]?

yet to be understood...

- a bit of luck (relatively high altitude + plastic scintillators)?? Haverah Park: water tanks low altitude Yakutsk, AGASA: plastic scintillators low altitude Pierre Auger: water tanks high altitude
- sophisticated MC (shower+detector, dethinning etc.)?

SD simulations: summary

- CORSIKA 6.960
 QGSJET-II/FLUKA
 - Parallelization
 - Dethinning
- GEANT4
- Superb detail
- Very computationally intensive

SD simulations: dethinning

• Dethinning

- Change each CORSIKA output particle of weight w to w particles with similar characteristics to the original particle
- Adjust dethinning parameters to agree with full CORSIKA generated via parallelization

SD simulations: no-thinning

- Parallelization
 - Wrapper scripts and binaries
 - CORSIKA itself left untouched
 - 100+ showers
 - 10^{18.5} to 10^{19.5} eV
 - 0° to 60° zenith
 - *p*, Fe

SD simulations: no-thinning

Livni - the public database of artificial extensive air showers generated without thinning

- The library currently contains 90 showers, with primary energies 10¹⁷—10¹⁸ eV, different zenith angles and interaction models.
- QGSJET, QGSJET II, EPOS, GHEISHA and EGS4 models are used for simulation of library showers
- Shower library is available at http://livni.inr.ac.ru/ you may register to use

SD simulations: dethinning

8

SD simulations summary

- CORSIKA shower library:
 - 33,000 dethinned showers
 - 10^{17.1} to 10^{20.5} eV
 - Isotropic distribution
- Calculate energy deposition for entire shower
 - GEANT4
- Simulate SD electronics repeatedly for each library element
- Select events for data set with respect to previously measured energy spectrum

SD energy estimation: TA

SD energy estimation

$$\rho(r) \propto \left(\frac{r}{R_M}\right)^{-1.2} \left(1 + \frac{r}{R_M}\right)^{-(\eta - 1.2)} \left\{1 + \left(\frac{r}{1000}\right)^2\right\}^{-0.6}$$

 $\eta = (3.97 \pm 0.13) - (1.79 \pm 0.62) (\sec \theta - 1)$

Counter signal, [VEM/m²]

- Identical analysis routines are applied to data and Monte Carlo
- Fit results are compared between real and simulated events
- Monte Carlo fits the exact same way as the real data.
- Consistent for both geometric and lateral density fits.

Time fit residual over sigma

SD quality cuts

Good data fits:
 χ²/d.o.f. > 4.0
 Pointing direction resolution <5°
 Fractional S(800) uncertainty <25%
Good shower geometry:
 Border cut >1200 m
 Zenith angle cut <45°

• 1.75 years, 6264 events

LDF fit χ^2/dof

VEM / counter

Entries 6264 <4, bdist>1200m, ngsd>=5, θ<45°, pderr<5°, $\frac{\sigma_{5800}}{8800}$ <0.25, log, (E)>18.0 dof 182.7 Mean RMS 104 400 Underflow 0 Overflow 350 1 300 250 200 150 100 50 0,0 50 100 150 200 250 300 350 Azimuth Angle, [Degree] DATA/MC Ratio χ^2 / ndf 19.24 / 16 DATAMC const 0.9594 ± 0.0297 slope 0.000193 ± 0.000144 1.6 Ratio. 1.2 + 0.8 0.6 0.4 0.2 00 50 100 150 200 250 300 350 Azimuth Angle, [Degree]

Azimuthal angle

I

Energy

SD energy resolution

Note: 19% systematic uncertainty

SD vs. FD

SD vs. FD energies:

approaches to the contradiction

Auger:

correct method=FD use FD normalization for SD events

Telescope Array:

study hybrids (work in progress) calibrate FD to electron beam from an accelerator (work in progress) currently use FD normalization for SD events...

theory:

new models of hadronic interactions? new models of electromagnetic cascades??? details of systematics of the FD method

Telescope Array: FD calibration

< Atmospheric Monitor (LIDAR, CLF) & LINAC >

Telescope Array: FD calibration ELS (electron light source = LINAC)

Telescope Array: FD calibration **ELS works!**

RESULTS: COSMIC-RAY ENERGY SPECTRUM

TA SD spectrum

<u>عم</u>

SD energy recaled to FD energy

TA sees the GZK-like suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:
 N_{EXPECT} = 18.4

$$PROB = \sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$
(3.50)

TA sees the GZK-like suppression

a cutoff or a step? not enough statistics

Other experiments see the GZK-like suppression

spectrum continuation excluded at 6σ (HiRes), 10σ (Pierre Auger), 3.5σ (TA)

Spectra measured in various experiments

TA spectra (different techniques)

<u>عم</u>

TA spectrum agrees with HiRes

4N

RESULTS: PRIMARY COMPOSITION

Primary composition: protons or heavy nuclei?

Auger

Phys.Rev.Lett.104.091101

HiRES

Phys.Rev.Lett.104.161101

Yakutsk (muons): $0.29 \le \epsilon_{\rm Fe} \le 0.68$ (95%CL), $E > 10^{19}$ eV

Primary composition: protons or heavy nuclei?

HiRes: Northern hemisphere, protons

Auger: Southern hemisphere, mix

Yakutsk: Northern hemisphere, mix

TA composition results:

Primary composition: protons or heavy nuclei?

HiRes: Northern hemisphere, protons

Auger: Southern hemisphere, mix

Yakutsk: Northern hemisphere, mix

TA: Northern hemisphere, protons

RESULTS: ARRIVAL DIRECTIONS

Anisotropy: data

- ▶ 28 months (May 2008 \rightarrow September 2010) of surface detector data
- 655 events above 10 EeV
 35 events above 40 EeV
 15 events above 57 EeV
- angular resolution 1.5°
- geometrical acceptance

Auger: AGN correlations

Auger: AGN correlations weakened

Pierre Auger collaboration, Astropart. Phys. 34 (2010)

Before publication date: 9/13 correlate. Background: 2.7 ± 1.6 After publication date: 12/42 correlate. Background: 8.9 ± 3.0

TA AGN correlations

correlate: 6 of 15, bg: 3.6

TA autocorrelation

TA correlations with the large-scale structure

matter in the Universe distributed anisotropically at the scales of UHECR propagation

astrophysical sources should follow the matter distribution

arrival directions follow the matter distribution?

- trace the distribution of galaxies (2MASS XSCz)
- assume injection spectrum
- account for propagation
- get expected skymap
- compare with data
- first observed in 1990s in Yakutsk data
- may explain Auger AGN correlations without AGNs

TA correlations with the large-scale structure

Data set: SD events from 2008/May to 2010/Sep

 $b = -90^{\circ}$

the galactic coordinates

TA correlations with the large-scale structure

RESULTS: SEARCH for PHOTONS

TA photon search

Photon-sensitive parameter:

AGASA, Yakutsk	muon density (strongest discrimination)
Pierre Auger SD	shower front curvature and thinkness
Pierre Auger hybrid	XMAX
Telescope Array SD	shower front curvature

TA photon search

deep shower maximum = curved front

TA photon search

TA future plans...

- 1. Low Energy Extension = "TALE"
 - Large elevation angle FD + SD array = Hybrid
 - Energy range extend down to 10¹⁷ eV
- 2. Extension of area = "Next TA" (tentative name)
 - (Phase 1 TA) X 5 SD array = 3,400 km²
 - Concentrate to anisotropy/point source study
- 3. Further extension
- Hybrid or Stereo FD array

And new detection methods (Bistatic Radar,)

CONCLUSIONS

CONCLUSIONS

- PRIMARY ENERGIES:
 - > FD/SD disagreement (TA: 27%), origin to be studied
 - TA uses a new SD energy method (MC, not CIC)
- SPECTRUM:
 - ➤ TA=HiRes
 - Auger vs. TA vs. Yakutsk disagree in normalization
 - HiRes, Auger, TA agree on the GZK-like suppression
 - > insufficient statistics to study the shape at $E>10^{20}$ eV
- COMPOSITION: contradictory results
 - ➤ TA, HiRes : protons
 - Auger, Yakutsk : mix
- ANISOTROPY:
 - Auger AGN correlations weak, TA AGN: consistent with isotropy
 - Autocorrelations: consistent with isotropy
 - Large-scale structure: weak evidence at E>57 EeV
- NO PHOTONS FOUND

stereo: protons or nuclei? Xmax Distribution (QGSJET01)

Å.

stereo: protons or nuclei?

Photons?

$$E_{\gamma} > 10^{19} \text{ eV}$$

data photon MC, E^{-2} spectrum

