

Results from the Telescope Array Experiment

Hiroyuki Sagawa (ICRR, University of Tokyo) for the Telescope Array Collaboration @ AlbaNova University Center on 2011.08.1

H. Sagawa @ 7th TeVPA in Stockholm

Outline

- I. Introduction
- II. TA results (for UHECR above 10¹⁸ eV)
 - Spectrum (FD mono / SD / Hybrid)
 - Composition (FD stereo)
 - Arrival direction (SD)
 - LSS correlations / AGN correlations / auto-correlations
- III. Conclusions

The Telescope Array Collaboration

T. Abu⁻Zayyad¹, R. Aida², M. Allen¹, R. Anderson¹, R. Azuma³, E. Barcikowski¹, J. W. Belz¹, D. R. Bergman¹, S. A. Blake¹, R. Cady¹, B. G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, E. J. Cho⁴, W. R. Cho⁷, H. Fujii⁸, T. Fujii⁹, T. Fukuda³, M. Fukushima^{10,20}, D. Gorbunov¹¹, W. Hanlon¹, K. Hayashi³, Y. Hayashi⁹, N. Hayashida¹², K. Hibino¹², K. Hiyama¹⁰, K. Honda², T. Iguchi³, D. Ikeda¹⁰, K. Ikuta², N. Inoue¹³, T. Ishii², R. Ishimori³, D. Ivanov^{1,14}, S. Iwamoto², C. C. H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹¹, T. Kanbe², K. Kasahara¹⁶, H. Kawai¹⁷, S. Kawakami⁹, S. Kawana¹³, E. Kido¹⁰, H. B. Kim⁴, H. K. Kim⁷, J. H. Kim⁴, J. H. Kim¹⁸, K. Kitamoto⁶, K. Kobayashi⁵, Y. Kobayashi³, Y. Kondo¹⁰, K. Kuramoto⁹, V. Kuzmin¹¹, Y. J. Kwon⁷, S. I. Lim¹⁹, S. Machida³, K. Martens²⁰, J. Martineau¹, T. Matsuda⁸, T. Matsuura³, T. Matsuyama⁹, J. N. Matthews¹, I. Myers¹, M. Minamino⁹, K. Miyata⁵, H. Miyauchi⁹, Y. Murano³, T. Nakamura²¹, S. W. Nam¹⁹, T. Nonaka¹⁰, S. Ogio⁹, M. Ohnishi¹⁰, H. Ohoka¹⁰, K. Oki¹⁰, D. Oku², T. Okuda⁹, A. Oshima⁹, S. Ozawa¹⁶, I. H. Park¹⁹, M. S. Pshirkov²², D. Rodriguez¹, S. Y. Roh¹⁸, G. Rubtsov¹¹, D. Ryu¹⁸, H. Sagawa¹⁰, N. Sakurai⁹, A. L. Sampson¹, L. M. Scott¹⁴, P. D. Shah¹, F. Shibata², T. Shibata¹⁰, H. Shimodaira¹⁰, R. B. Shin⁴, J. I. Shin⁷, T. Shirahama¹³, J. D. Smith¹, P. Sokolsky¹, T. J. Sonley¹, R. W. Springer¹, B. T. Stokes¹, S. R. Stratton^{1,14}, T. A. Stroman¹, S. Suzuki⁸, Y. Takahashi¹⁰, M. Takeda¹⁰, A. Taketa²³, M. Takita¹⁰, Y. Tameda¹⁰, H. Tanaka⁹, K. Tanaka²⁴, M. Tanaka⁸, S. B. Thomas¹, G. B. Thomson¹, P. Tinyakov^{11,22}, I. Tkachev¹¹, H. Tokuno³, T. Tomida², S. Troitsky¹¹, Y. Tsunesada³, K. Tsutsumi³, Y. Tsuyuguchi², Y. Uchihori²⁵, S. Udo¹², H. Ukai², G. Vasiloff¹, Y. Wada¹³, T. Wong¹, M. Wood¹, Y. Yamakawa¹⁰, H. Yamaoka⁸, K. Yamazaki⁹, J. Yang¹⁹, S. Yoshida¹⁷, H. Yoshii²⁶, R. Zollinger¹, Z. Zundel¹

¹University of Utah, ²University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, ³Tokyo Institute of Technology, ⁴Hanyang University, ⁷Yonsei University, ⁸Institute of Particle and Nuclear Studies, KEK, ⁹Osaka City University, ¹⁰Institute for Cosmic Ray Research, University of Tokyo, ¹¹Institute for Nuclear Research of the Russian Academy of Sciences, ¹²Kanagawa University, ¹³Saitama University, ¹⁴Rutgers University, ¹⁶Tokyo City University, ¹⁶Waseda University, Advanced Research Institute for Science and Engineering, ¹⁷Chiba University, ¹⁸Chungnam National University, ¹⁹Ewha Womans University, ²⁰Institute for the Physics and Mathematics of the Universe, University of Tokyo, ²¹Kochi University, ²²University Libre de Bruxelles, ²³Earthquake Research Institute, University of Tokyo, ²⁴Hiroshima City University, ²⁶National Institute of Radiological Science, ²⁶Ehime University

~120 researchers from Japan/US/Korea/Russia

TA detector

Surface detector (SD)

- Plastic scintillator (a la AGASA)
- 507 SDs
- 1.2km spacing, 680km²
- Fluorescence detector (FD)
 - 3 stations (BR, LR, MD)
 - 38 telescopes (12+12+14) (a la HiRes)
- Location
 - Utah, USA
 - ~200km south to Salt Lake City (39.3°N, 112.9°W)
- ~1400m a.s.l.

The largest detector in northern hemisphere

H. Sagawa @ 7th TeVPA in Stockholm

Surface Detector

Radio communication

Powered by solar cells

Plastic scintillator

1.2 km spacing

3m², 1.2cm thickness 2 layers overlaid 50 MHz 12-bit FADC

The SD array is in operation since March 2008.

H. Sagawa @ 7th TeVPA in Stockholm

Fluorescence Detector (FD) BR/LR site : new FDs

FOV: 3-33° in elevation 108° in azimuth

12 cameras/station

FADC readout (40 MHz sampling)

FD station at MD site

Transferred from HiRes

- 14 cameras/station
- 256 PMTs/camera
- 3°-31° elevation with 1° pixel
- 114° in azimuth
- 5.2m² mirror
- S/H electronics

Atmospheric monitor • calibration (for fluorescence detectors)

- Central Laser Facility
 - Observe sidescattering of laser from each FD station as a standard candle

• LIDAR :

- Observe backscattering of laser→measure transparency of atmosphere
- IR camera : cloud monitor
- Electron Light Source (ELS)
 - End-to-end absolute energy calibration of fluorescence detectors

ELS (Electron Light Source) [compact electron linear accelerator]

View from the roof of FD station

Specification

- . electron energy: 40 MeV (max)
- . current: 10⁹ electrons/pulse
- . pulse width: $1 \mu sec$

By an electron beam with known total energy, we will perform end-to-end absolute energy calibration of FD.

First light

Spectrum

- MD FD mono spectrum
 - HiRes refurbished telescope
 - Direct link of energy scales and energy spectra between HiRes and TA
- SD spectrum
 - Plastic scintillator surface detectors (a la AGASA)
- Hybrid spectrum
 - BRM/LR FD (new telescopes) + SD

Middle Drum (MD) FD Analysis

- 14 refurbish HiRes-1 telescopes
- TAMD mono processing is identical to HiRes-1 monocular one.
 - Same program set, event selection, cuts
 - Using the same "average" atmospheric model
- The differences
 - the telescope location and pointing directions
 - Thresholds (~20% lower than HiRes-1)

Impact parameter R_p

Red: MC

H. Sagawa @ 7th TeVPA in Stockholm

MD mono energy spectrum

• Data: 2007/Dec~2010/Dec

SD spectrum

- SD reconstruction
 - LDF, timing fit
- MC
 - First energy estimation
- Data/MC comparisons
 SD energy vs. FD energy
- SD spectrum

SD data set

- May/11/2008 Apr/25/2011 (~3 years)
- Exposure ~2700km² sr yr
- Cuts:
 - LDF χ^2 /ndf < 4.0
 - Border Cut > 1.2km
 - Zenith Angle < 45 degrees
 - Pointing direction uncertainty < 5 degrees
 - Fractional S800 uncertainty < 0.25

SD event reconstruction

SD Monte Carlo

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use <u>Corsika/QGSJet-II</u> air shower events.
 - 10⁻⁶ thinned and de-thinned B.T.Stokes et al., arXiv:1103.4643, arXiv:1104.3182 [astro-ph]
 - Throw with isotropic distribution."
 - Simulate detector response (GEANT4), trigger, front-end electronics, DAQ.
 - Write out the MC events in same format as data.
 - Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.

Fitting results

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

Energy Scale

- Energy scale is determined more accurately by FD than by CORSIKA QGSJET-II
- Set SD energy scale to FD energy scale using wellreconstructed events seen by both detectors.
- 27% renormalization

$$E_{SD} = E'_{SD} / 1.27$$

 Ratio of FD to SD after SD renormalization – FD data from all three stations included.

Data/MC comparison

H. Sagawa @ 7th TeVPA in Stockholm

DATA/MC: S800, Energy

H. Sagawa @ 7th TeVPA in Stockholm

Aperture and Exposure

- $E > 10^{19} eV$
 - Aperture = $900 \text{ km}^2 \text{ sr}$
 - Exposure = $2700 \text{ km}^2 \text{ sr yr}$
- Data set
 - 2008/05/11 2011/04/25
 - 1080 days ~ 3 years
- GZK effect folded into the MC

24

TA SD and HiRes Spectra

in agreement with HiRes spectra

TA SD Spectrum $J(E) imes E^3/10^{24}$ ($m^{-2} imes s^{-1} imes sr^{-1} imes eV^2$) Preliminary $\textbf{19.68} \pm \textbf{0.09}$ -2.68±0.04 -3.33±0.04 *22 1×0,21 $\textbf{18.69} \pm \textbf{0.03}$ 18 18.5 19.5 20 19 log₁₀(E/eV)

TA SD energy is rescaled to FD energy.

H. Sagawa @ 7th TeVPA in Stockholm

Significance of the Suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TA SD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.7}eV bin:

$$- N_{\text{EXPECT}} = 54.9$$

$$- N_{OBSERVE} = 28$$

$$PROB = \sum_{i=0}^{28} Poisson(\mu = 54.9; i) = 4.75 \times 10^{-5}$$

(3.9σ**)**

TASD energy is rescaled to FD energy. 2011/08/1 Provide the Sagawa @ 7th Tev A in Stockholm

Hybrid Spectrum

- Hybrid analysis
 - FD mono analysis + SD information → improve reconstruction
 - Aperture is flat for >10¹⁹eV by SD

Hybrid analysis: Data and MC

Geometry: HybridEnergy: FD

Data:

date: May/27/2008 –
Sep/7/2010 (~2.25years)
BR + LR (new telescopes) with SDs
Cut condition
Xmax has to be observed.

•Zenith angle < 55degrees

MC:

- •Air shower:
 - •CORSIKA, QGSJET-II
 - Isotropic distribution

•Detector :

- •All of calibration constant with time dependence
- •Simulate trigger, front-end electronics, and DAQ
- •Aperture / Exposure

Geometrical reconstruction

Exposure

The aperture is calculated from MC simulation. Exposure: $^{6*10^{15}}$ m² sr s @10¹⁹eV

Data/MC comparison impact parameter R_p

Data/MC comparison zenith angle θ

BR station

LR station

Energy spectrum

 Hybrid events at the BR and LR station for TA 2.25 years Systematic errors in

energy measurement

item	Systematic error
Fluorescence yield	11%
Atmosphere	11%
Calibration	11%
Reconstruction	<12%
Total	23%

TA hybrid spectrum is in agreement with MD mono and SD spectra.

TA, AGASA, Auger, HiRes, AGASA spectra

TA SD energy is scaled to FD energy.

TA SD spectrum is consistent with TA MD mono and hybrid spectra, and consistent with HiRes-I and HiRes-II spectra.

2011/08/1

FD stereo composition

- Measure Xmax for **BR/LR FD stereo events**
- Create simulated event set
 - Apply the procedure exactly same as with the data

Data/MC comparison of Xmax

<Xmax> vs. logE

Arrival direction of UHECRs

- LSS correlation
- AGN correlation
- autocorrelation

Correlations with LSS

LSS model:

- . Galaxies (2MASS XSCz catalog, from 5 Mpc to 250 Mpc)
- . The flux beyond 250 Mpc: uniform
- . Proton primaries assumed
- . All interactions and redshift losses are accounted for
- TA SD data (May 2008 to May 2011): light blue points (zenith angle < 45°)

Darker gray region indicates larger flux .

Each region among five regions contains 1/5 of the total flux.

Correlations with LSS

 Data are compatible with LSS model at E_{CR} > 40 EeV and 57 EeV
 With correction for GMF of strong halo component, data are compatible with LSS model at E_{CR}>10 EeV. the disk component only does not improve.
 Data are compatible with isotropy.

Correlations with LSS Inclusion of Galactic Magnetic Field (GMF)

- Two-component structure:
 - Antisymmetric halo + symmetric disk field
 - Fits NVSS Rotation Measure (RM) data [Pshirkov et al., to appear in ApJ]

Correlations with AGN

TA SD data beyond 57 EeV Correlations of data with AGN within 3.1° Veron catalog 12th edition AGN - z<0.018 Number of TA data correlated 20 with AGN preliminar 15 300 N_{corr} 10 360 0 00 5 background 0 (Galactic coordinate) 5 10 15 20 0 N_{tot}

Number of TA data

Autocorrelation

 <u>Separation angle θ</u> of two UHECRs above 40 EeV

0 pair observed(1.1 expected bkg) for $\theta < 2.5^{\circ}$

The result is consistent with isotropy.

Cumulative autocorrealtion

2011/08/1

H. Sagawa @ 7th TeVPA in Stockholm

Summary

- The Telescope Array (TA) is the largest UHECR detector in the northern hemisphere.
 - Hybrid and stereo observation by SD (a la AGASA: plastic scintillator) and FD (a la HiRes: new FDs and refurbished HiRes-I to TA)
 - The SD array and FDs are operating with excellent reliability.
 - End-to-end absolute energy calibration FD with ELS in the near future.
- The SD, FD mono, stereo, and hybrid analyses are being performed.
- The results of spectrum, composition, and arrival directions from TA are presented.

– More will come at the ICRC in Beijing.