Results from the Telescope Array Experiment

Hiroyuki Sagawa (JCRR, University of Tokyo) for the Telescope Array Collaboration
@ AlbaNova University Center on 2011.08.1

Outline

I. Introduction
II. TA results (for UHECR above $10^{18} \mathrm{eV}$)

- Spectrum (FD mono / SD / Hybrid)
- Composition (FD stereo)
- Arrival direction (SD)
- LSS correlations / AGN correlations / auto-correlations
III. Conclusions

The Telescope Array Collaboration

T. Abu-Zayyad ${ }^{1}$, R. Aida ${ }^{2}$, M. Allen ${ }^{1}$, R. Anderson ${ }^{1}$, R. Azuma ${ }^{3}$, E. Barcikowski ${ }^{1}$, J. W. Belz ${ }^{1}$, D. R. Bergman ${ }^{1}$, S. A. Blake ${ }^{1}$, R. Cady ${ }^{1}$, B. G. Cheonn ${ }^{4}$, J. Chiba ${ }^{5}$, M. Chikawa ${ }^{6}$, E. J. Cho ${ }^{4}$, W. R. Cho ${ }^{7}$, H. Fujii ${ }^{8}$, T. Fujii ${ }^{9}$, T. Fukuda ${ }^{3}$, M. Fukushima ${ }^{10,20}$, D. Gorbunov ${ }^{11}$, W. Hanlon ${ }^{1}$, K. Hayashi ${ }^{3}$, Y. Hayashi ${ }^{9}$, N. Hayashida ${ }^{12}$, K. Hibino ${ }^{12}$, K. Hiyama ${ }^{10}$, K. Honda ${ }^{2}$, T. Iguchi ${ }^{3}$, D. Ikeda ${ }^{10}$, K. Ikuta ${ }^{2}$, N. Inoue ${ }^{13}$, T. Ishii ${ }^{2}$, R. Ishimori ${ }^{3}$, D. Ivanov ${ }^{1,14}$, S. Iwamoto ${ }^{2}$, C. C. H. Jui ${ }^{1}$, K. Kadota ${ }^{15}$, F. Kakimoto ${ }^{3}$, O. Kalashev ${ }^{11}$, T. Kanbe ${ }^{2}$, K. Kasahara ${ }^{16}$, H. Kawai ${ }^{17}$, S. Kawakami ${ }^{9}$, S. Kawana ${ }^{13}$, E. Kido ${ }^{10}$, H. B. Kim ${ }^{4}$, H. K. Kim ${ }^{7}$, J. H. Kim ${ }^{4}$, J. H. Kim ${ }^{18}$, K. Kitamoto ${ }^{6}$, K. Kobayashi ${ }^{5}$, Y. Kobayashi ${ }^{3}$, Y. Kondo ${ }^{10}$, K. Kuramoto ${ }^{9}$, V. Kuzmin ${ }^{11}$, Y. J. Kwon ${ }^{7}$, S. I. Lim ${ }^{19}$, S. Machida ${ }^{3}$, K. Martens ${ }^{20}$, J. Martineau ${ }^{1}$, T. Matsuda ${ }^{8}$, T. Matsuura ${ }^{3}$, T. Matsuyama ${ }^{9}$, J. N. Matthews ${ }^{1}$, I. Myers ${ }^{1}$, M. Minamino ${ }^{9}$, K. Miyata ${ }^{5}$, H. Miyauchi ${ }^{9}$, Y. Murano ${ }^{3}$, T. Nakamura ${ }^{21}$, S. W. Nam ${ }^{19}$, T. Nonaka ${ }^{10}$, S. Ogio ${ }^{9}$, M. Ohnishi ${ }^{10}$, H. Ohoka ${ }^{10}$, K. Oki ${ }^{10}$, D. Oku ${ }^{2}$, T. Okuda ${ }^{9}$, A. Oshima ${ }^{9}$, S. Ozawa ${ }^{16}$, I. H. Park ${ }^{19}$, M. S. Pshirkov ${ }^{22}$, D. Rodriguez ${ }^{1}$, S. Y. Roh ${ }^{18}$, G. Rubtsov ${ }^{11}$, D. Ryu ${ }^{18}$, H. Sagawa ${ }^{10}$, N. Sakurai ${ }^{9}$, A. L. Sampson ${ }^{1}$, L. M. Scott ${ }^{14}$, P. D. Shah ${ }^{1}$, F. Shibata ${ }^{2}$, T. Shibata ${ }^{10}$, H. Shimodaira ${ }^{10}$, R. B. Shin ${ }^{4}$, J. I. Shin ${ }^{7}$, T. Shirahama ${ }^{13}$, J. D. Smith ${ }^{1}$, P. Sokolsky ${ }^{1}$, T. J. Sonley ${ }^{1}$, R. W. Springer ${ }^{1}$, B. T. Stokes ${ }^{1}$, S. R. Stratton ${ }^{1,14}$, T. A. Stroman ${ }^{1}$, S. Suzuki ${ }^{8}$, Y. Takahashi ${ }^{10}$, M. Takeda ${ }^{10}$, A. Taketa ${ }^{23}$, M. Takita ${ }^{10}$, Y. Tameda ${ }^{10}$, H. Tanaka ${ }^{9}$, K. Tanaka ${ }^{24}$, M. Tanaka ${ }^{8}$, S. B. Thomas ${ }^{1}$, G. B. Thomson ${ }^{1}$, P. Tinyakov ${ }^{11,22}$, I. Tkachev ${ }^{11}$, H. Tokuno ${ }^{3}$, T. Tomida ${ }^{2}$, S. Troitsky ${ }^{11}$, Y. Tsunesada ${ }^{3}$, K. Tsutsumi ${ }^{3}$, Y. Tsuyuguchi ${ }^{2}$, Y. Uchihori ${ }^{25}$, S. Udo ${ }^{12}$, H. Ukai ${ }^{2}$, G. Vasiloff ${ }^{1}$, Y. Wada ${ }^{13}$, T. Wong ${ }^{1}$, M. Wood ${ }^{1}$, Y. Yamakawa ${ }^{10}$, H. Yamaoka ${ }^{8}$, K. Yamazaki ${ }^{9}$, J. Yang ${ }^{19}$, S. Yoshida ${ }^{17}$, H. Yoshii ${ }^{26}$, R. Zollinger ${ }^{1}$, Z. Zundel ${ }^{1}$
${ }^{1}$ University of Utah, ${ }^{2}$ University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, ${ }^{3}$ Tokyo Institute of Technology, ${ }^{4}$ Hanyang University, ${ }^{7}$ Yonsei University, ${ }^{8}$ Institute of Particle and Nuclear Studies, KEK, ${ }^{9}$ Osaka City University, ${ }^{10}$ Institute for Cosmic Ray Research, University of Tokyo, ${ }^{11}$ Institute for Nuclear Research of the Russian Academy of Sciences, ${ }^{12}$ Kanagawa University, ${ }^{13}$ Saitama University, ${ }^{14}$ Rutgers University, ${ }^{15}$ Tokyo City University, ${ }^{16}$ Waseda University, Advanced Research Institute for Science and Engineering, ${ }^{17}$ Chiba University, ${ }^{18}$ Chungnam National University, ${ }^{19}$ Ewha Womans University, ${ }^{20}$ Institute for the Physics and Mathematics of the Universe, University of Tokyo, ${ }^{21}$ Kochi University, ${ }^{22}$ University Libre de Bruxelles, ${ }^{23}$ Earthquake Research Institute, University of Tokyo, ${ }^{24}$ Hiroshima City University, ${ }^{25}$ National Institute of Radiological Science, ${ }^{26}$ Ehime University
~120 researchers from Japan/US/Korea/Russia

TA detector

- Location
- Utah, USA
- ~200km south to Salt Lake City (39.3${ }^{\circ} \mathrm{N}, 112.9^{\circ} \mathrm{W}$)
- ~1400m a.s.l.

The largest detector in northern hemisphere

Surface Detector

Plastic scintillator

$3 \mathrm{~m}^{2}, 1.2 \mathrm{~cm}$ thickness
2 layers overlaid
50 MHz 12-bit FADC

The SD array is in operation since March 2008.

Fluorescence Detector (FD)

- BR/LR site: new FDs

FOV: 3-33 ${ }^{\circ}$ in elevation 108° in azimuth

12 cameras/station

~1m
$\left(3^{\circ}-18^{\circ}\right) \times 18^{\circ}$

Camera
16x16=256 PMTs
Hamamatsu R9508

FD station at MD site

Transferred from HiRes

- 14 cameras/station
- 256 PMTs/camera
- $3^{\circ}-31^{\circ}$ elevation with 1° pixel
- 114° in azimuth
- $5.2 \mathrm{~m}^{2}$ mirror
- S/H electronics

Atmospheric monitor • calibration (for fluorescence detectors)

Central Laser Facility

- Observe sidescattering of laser from each FD station as a standard candle
- LIDAR:
- Observe backscattering of laser \rightarrow measure transparency of atmosphere
- IR camera: cloud monitor Electron Light Source (ELS)
- End-to-end absolute energy calibration of fluorescence detectors

ELS (Electron Light Source) [compact electron linear accelerator]

View from the roof of FD station

Specification

. electron energy: 40 MeV (max)
. current: 10^{9} electrons/pulse
. pulse width: $1 \mu \mathrm{sec}$
By an electron beam with known total energy, we will perform end-to-end absolute energy calibration of FD.

First light

Sep. $3^{\text {rd }} 2010$ 22:00
Observed !!

Image of pseudo shower by FD

DATA

Spectrum

- MD FD mono spectrum
- HiRes refurbished telescope
- Direct link of energy scales and energy spectra between HiRes and TA
- SD spectrum
- Plastic scintillator surface detectors (a la AGASA)
- Hybrid spectrum
- BRM/LR FD (new telescopes) + SD

Middle Drum (MD) FD Analysis

- 14 refurbish HiRes-1 telescopes
- TAMD mono processing is identical to HiRes-1 monocular one.
- Same program set, event selection, cuts
- Using the same "average" atmospheric model
- The differences
- the telescope location and pointing directions
- Thresholds ($\sim 20 \%$ lower than HiRes-1)

Impact parameter R_{p}

Black: TA MD data Red: MC

Zenith angle θ

Black: TA MD data Red: MC

MD mono energy spectrum

- Data: 2007/Dec~2010/Dec

SD spectrum

- SD reconstruction
- LDF, timing fit
- MC
- First energy estimation
- Data/MC comparisons
- SD energy vs. FD energy
- SD spectrum

SD data set

- May/11/2008 - Apr/25/2011 (~3 years)
- Exposure ~2700km² sr yr
- Cuts:
- LDF $\chi^{2} / n d f<4.0$
- Border Cut > 1.2 km
- Zenith Angle < 45 degrees
- Pointing direction uncertainty < 5 degrees
- Fractional S800 uncertainty < 0.25

SD event reconstruction

2008/Jun/25-19:45:52.588670 UTC

Time fit to determine geometry (modified Linsley)

SD Monte Carlo

- Simulate the data exactly as it exists.
- Start with previously measured spectrum and composition.
- Use Corsika/QGSJet-II air shower events.
- 10^{-6} thinned and de-thinned B.T.Stokes et al. , arXiv:1103.4643, arXiv:1104.3182 [astro-ph]
- Throw with isotropic distribution.
- Simulate detector response (GEANT4), trigger, front-end electronics, DAQ.
- Write out the MC events in same format as data.
- Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.

Fitting results

DATA

Counter signal, [VEM/m²]

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S 800 vs $\sec (\theta)$ lines

Energy Scale

- Energy scale is determined more accurately by FD than by CORSIKA QGSJET-II
- Set SD energy scale to FD energy scale using wellreconstructed events seen by both detectors.
- 27% renormalization

$$
\mathrm{E}_{\mathrm{SD}}=\mathrm{E}_{\mathrm{SD}}^{\prime} / 1.27
$$

- Ratio of FD to SD after SD renormalization - FD data from all three stations included.

Data/MC comparison

Black: TA SD data YCORE (m)
XCORE (m) Red: MC

DATA/MC: S800, Energy

S800

Black: TA SD data
Energy

Aperture and Exposure

- $\mathrm{E}>10^{19} \mathrm{eV}$
- Aperture $=900 \mathrm{~km}^{2} \mathrm{sr}$
- Exposure $=2700 \mathrm{~km}^{2}$ sr yr
- Data set
- 2008/05/11-2011/04/25
- 1080 days ~ 3 years
- GZK effect folded into the MC

TA SD and HiRes Spectra

in agreement with HiRes spectra

TA SD Spectrum

TA SD energy is rescaled to FD energy.

Significance of the Suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TA SD exposure, find the number of expected events and compare it to the number of events observed in $\log _{10} \mathrm{E}$ bins after $10^{19.7} \mathrm{eV}$ bin:
- $\mathrm{N}_{\text {EXPECT }}=54.9$
- $\mathrm{N}_{\text {OBSERVE }}=28$
$\mathrm{PROB}=\sum_{i=0}^{28} \operatorname{Poisson}(\mu=54.9 ; i)=4.75 \times 10^{-5}$
(3.9б)

TA AND. energy is rescaled to FD energy ${ }_{\text {in stocholm }}$

Hybrid Spectrum

- Hybrid analysis
- FD mono analysis + SD information \rightarrow improve reconstruction
- Aperture is flat for $>10^{19} \mathrm{eV}$ by SD

Hybrid analysis: Data and MC

-Geometry: Hybrid -Energy: FD

Data:

-date: May/27/2008 -
Sep/7/2010 (~2.25years)
-BR + LR (new telescopes) with
SDs
-Cut condition

- Xmax has to be observed.
-Zenith angle < 55degrees

MC:
 -Air shower:
 -CORSIKA, QGSJET-II
 -Isotropic distribution
 -Detector :
 -All of calibration constant with
 time dependence
 - Simulate trigger, front-end electronics, and DAQ
 - Aperture / Exposure

Geometrical reconstruction

FD mono analysis + timing of one SD

α angle (deg)

Fitting Results
psi $=1.513 \pm 0.001$ [rad]
rCore $=17.763 \pm 0.004[\mathrm{~km}]$
tCore $=-16115.817 \pm 0.000[\mathrm{~ns}]$
$\chi^{2} / \mathrm{ndf}=\mathbf{1 4 . 1 9 3}$

Geometry Results
zen $=3.909$ [deg]
uzi $=313.053$ [deg]
core $=(0.253,-6.162,0.000)[k m]$
$\mathrm{rp}=17.732[\mathrm{~km}]$

Mono reconstruction

$$
t_{i}=t_{\text {core }}+\frac{1}{c} \frac{\sin \psi-\sin \alpha_{i}}{\sin \left(\psi+\alpha_{i}\right)} r_{\text {core }}
$$

Hybrid reconstruction

$$
t_{i}=t_{\text {core }}+\frac{1}{c} \frac{\sin \psi-\sin \alpha_{i}}{\sin \left(\psi+\alpha_{i}\right)} r_{c o r e}
$$

$$
t_{\text {core }}=t_{S D}+\frac{1}{c}\left(r_{\text {core }}-r_{S D}\right) \cos \psi
$$

Shower axis
${ }^{r}$ SD

Exposure

The aperture is calculated from MC simulation. Exposure: ~6* $10^{15} \mathrm{~m}^{2} \mathrm{sr} \mathrm{s}$ @ $10^{19} \mathrm{eV}$

Data/MC comparison impact parameter R_{p}

LR station

Red: TA data
Blue: MC

Data/MC comparison zenith angle θ

Energy spectrum

- Hybrid events at the BR and LR station for TA

Systematic errors in energy measurement

item	Systematic error
Fluorescence yield	11%
Atmosphere	11%
Calibration	11%
Reconstruction	$<12 \%$
Total	23%

TA hybrid spectrum is in agreement with MD mono and SD spectra.

TA, AGASA, Auger, HiRes, AGASA spectra

TA SD energy is scaled to FD energy.

TA SD spectrum is consistent with TA MD mono and hybrid spectra, and consistent with HiRes-I and HiRes-II spectra.

FD stereo composition

- Measure Xmax for BR/LR FD stereo events
- Create simulated event set
- Apply the procedure exactly same as with the data

Example of stereo event 2008/09/04 10:51:16

BR FD station

Data/MC comparison of Xmax

<Xmax> vs. logE

Arrival direction of UHECRs

- LSS correlation
- AGN correlation
- autocorrelation

Correlations with LSS

LSS model:

. Galaxies (2MASS XSCz catalog, from 5 Mpc to 250 Mpc)
. The flux beyond 250 Mpc : uniform
. Proton primaries assumed
. All interactions and redshift losses are accounted for
TA SD data (May 2008 to May 2011): light blue points (zenith angle < 45)
$E_{C R}>10 \mathrm{EeV}, \mathrm{N}_{\mathrm{CR}}=854$
$\mathrm{E}_{\mathrm{CR}}>40 \mathrm{EeV}, \mathrm{N}_{\mathrm{CR}}=49$
$\mathrm{E}_{\mathrm{CR}}>57 \mathrm{EeV}, \mathrm{N}_{\mathrm{CR}}=20$

Darker gray region indicates larger flux .
Each region among five regions contains $1 / 5$ of the total flux.

Correlations with LSS

$>$ Data are compatible with LSS model at $\mathrm{E}_{\mathrm{CR}}>40 \mathrm{EeV}$ and 57 EeV
$>$ With correction for GMF of strong halo component, data are compatible with LSS model at $\mathrm{E}_{\mathrm{CR}}>10 \mathrm{EeV}$. the disk component only does not improve.
$>$ Data are compatible with isotropy.

Correlations with LSS Inclusion of Galactic Magnetic Field (GMF)

- Two-component structure:
- Antisymmetric halo + symmetric disk field
- Fits NVSS Rotation Measure (RM) data [Pshirkov et al., to appear in ApJ]

Correlations with AGN

- TA SD data beyond 57 EeV
- Veron catalog $12^{\text {th }}$ edition AGN
- Correlations of data with AGN within 3.1°

Number of TA data

Number of TA data

Autocorrelation

- Separation angle θ of two UHECRs above 40 EeV

0 pair observed(1.1 expected bkg) for $\theta<2.5^{\circ}$

Summary

- The Telescope Array (TA) is the largest UHECR detector in the northern hemisphere.
- Hybrid and stereo observation by SD (a la AGASA: plastic scintillator) and FD (a la HiRes: new FDs and refurbished HiRes-I to TA)
- The SD array and FDs are operating with excellent reliability.
- End-to-end absolute energy calibration FD with ELS in the near future.
- The SD, FD mono, stereo, and hybrid analyses are being performed.
- The results of spectrum, composition, and arrival directions from TA are presented.
- More will come at the ICRC in Beijing.

