

The Telescope Array and its prospects

Hiroyuki Sagawa (ICRR) for the Telescope Array Collaboration @ KIAA on 2011.04.11

2011/04/11

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Outline

- TA experiment (detector and operation)
- TA results
 - <u>Spectrum</u> (Hybrid / FD mono / SD)
 - <u>Composition</u> (p/Fe [FD stereo])
 - <u>Anisotropy</u> (SD)
 - LSS correlations / AGN correlations / auto-correlations
- Prospects (TALE / R&D@TA)
- Summary

The Telescope Array Collaboration

~120 researchers from Japan/US/Korea/Russia

T. Abu-Zayyad¹, R. Aida², M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, T. Benno⁴, D.R. Bergman⁵, S.A. Blake¹, O. Brusova¹, R. Cady¹, B.G. Cheon⁶, J. Chiba⁷, M. Chikawa⁴, E.J. Cho⁶, L.S. Cho⁸, W.R. Cho⁸, F. Cohen⁹, K. Doura⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima⁹ ²², D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Hibino¹³, K. Hiyama⁹, K. Honda², G. Hughes⁵, T. Iguchi³, D. Ikeda⁹, K. Ikuta², S.J.J. Innemee⁵, N. Inoue¹⁴, T. Ishii², R. Ishimori³, D. Ivanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹², T. Kanbe², H. Kang¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana¹⁴, E. Kido⁹, B.G. Kim¹⁹, H.B. Kim⁶, J.H. Kim⁶, J.H. Kim²⁰, A. Kitsugi⁹, K. Kobayashi⁷, H. Koers²¹, Y. Kondo⁹, V. Kuzmin¹², Y.J. Kwon⁸, J.H. Lim¹⁶, S.I. Lim¹⁹, S. Machida³, K. Martens²², J. Martineau¹, T. Matsuda¹⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹, K. Miyata⁷, H. Miyauchi¹¹, Y. Murano³, T. Nakamura²³, S.W. Nam¹⁹, T. Nonaka⁹, S. Ogio¹¹, M. Ohnishi⁹, H. Ohoka⁹, T. Okuda¹¹, A. Oshima¹¹, S. Ozawa¹⁷, I.H. Park¹⁹, D. Rodriguez¹, S.Y. Roh²⁰, G. Rubtsov¹², D. Ryu²⁰, H. Sagawa⁹, N. Sakurai⁹, L.M. Scott⁵, P.D. Shah¹, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁶, J.D. Smith¹, P. Sokolsky¹, T.J. Sonley¹, R.W. Springer¹, B.T. Stokes⁵, S.R. Stratton⁵, S. Suzuki¹⁰, Y. Takahashi⁹, M. Takeda⁹, A. Taketa⁹, M. Takita⁹, Y. Tameda³, H. Tanaka¹¹, K. Tanaka²⁴, M. Tanaka¹⁰, J.R. Thomas¹, S.B. Thomas¹, T.A.Stroman¹, G.B. Thomson⁵, P. Tinyakov¹² ²¹, I. Tkachev¹², H. Tokuno⁹, T. Tomida², R. Torii⁹, S. Troitsky¹², Y. Tsunesada³, Y. Tsuyuguchi², Y. Uchihori²⁵, S. Udo¹³, H. Ukai², B. Van Klaveren¹, Y. Wada¹⁴, M. Wood¹, T. Yamakawa⁹, Y. Yamakawa⁹, H. Yamaoka¹⁰, J. Yang¹⁹, S. Yoshida¹⁸, H. Yoshii²⁶, Z. Zundel¹

1University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA	14Saitama University, Saitama, Saitama, Japan
2University of Yamanashi, Interdisciplinary Graduate School of Medicine and	15Tokyo City University, Setagaya-ku, Tokyo, Japan
Engineering, Kofu, Yamanashi,	16Pusan National University, GeumJeong-gu, Busan, Korea
Japan	17Waseda University, Advanced Research Institute for Science and Engineering,
3Tokyo Institute of Technology, Meguro, Tokyo, Japan	Shinjuku-ku, Tokyo, Japan
4Kinki Unversity, Higashi Osaka, Osaka, Japan	18Chiba University, Chiba, Chiba, Japan
sRutgers University, Piscataway, USA	19Ewha Womans University, Seodaaemun-gu, Seoul, Korea
6Hanyang University, Seongdong-gu, Seoul, Korea	20Chungnam National University, Yuseong-gu, Daejeon, Korea
7Tokyo University of Science, Noda, Chiba, Japan	21University Libre de Bruxelles, Brussels, Belgium
8Yonsei University, Seodaemun-gu, Seoul, Korea	22University of Tokyo, Institute for the Physics and Mathematics of the Universe,
9Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan	Kashiwa, Chiba, Japan
10Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan	23Kochi University, Kochi, Kochi, Japan
11Osaka City University, Osaka, Osaka, Japan	24Hiroshima City University, Hiroshima, Hiroshima, Japan
12Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia	25National Institute of Radiological Science, Chiba, Chiba, Japan
13Kanagawa University, Yokohama, Kanagawa, Japan	26Ehime University, Matsuyama, Ehime, Japan

TA detector

Surface detector (SD)

- Plastic scintillator (a la AGASA)
- 507 SDs
 - 1.2km spacing, 680km²
- Fluorescence detector (FD)
 - 3 stations (BR, LR, MD)
 - 38 telescopes (12+12+14) (a la HiRes)
- Location
 - Utah, USA
 - About 200km south to Salt Lake City
 - 39.3°N, 112.9°W
 - Altitude ~1400m

The largest detector in northern hemisphere

transfer HiRes telescopes

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Surface Detector

Radio communication

Powered by solar cells

Rate of operation 100 100 90 90 80 80 70 70 60 60 50 50 Number of accumulated 40 40 events 30 30 20 20 10 10

Plastic scintillator

1.2 km spacing

3m², 1.2cm thickness 2 layers overlaid WLSF readout 50 MHz 12-bit FADC

Operating as an SD array since March 2008

8

2011/04/11

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

riggel

Ø

Fluorescence detector

BR/LR site : **new** telescopes •

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

FD station at MD site

One FD station in the north 3°-34° evelvation with 1° pixel <u>Transferred from HiRes</u> 5.2m² mirror S/H electronics

Atmospheric monitor • calibration (for fluorescence detectors)

Central Laser Facility

 Observe sidescattering of laser from each FD station as a standard candle

LIDAR :

- Observe backscattering of laser→measure transparency of atmosphere
- IR camera : cloud monitor
- Electron Light Source (ELS)
 - Absolute energy calibration of fluorescence detectors

ELS (Electron Light Source) [compact electron linear accelerator]

First light from ELS

FD Observation

Sep.3rd.2010 Beam Shot into the Sky, and Observed by FD

Spectrum

- Hybrid spectrum
 - BRM/LR FD (new telescopes) + SD
- MD FD mono spectrum
 - HiRes refurbished telescope
 - Direct comparison of energy scales and energy spectra between HiRes and TA
- SD spectrum

- Plastic scintillator surface detectors (a la AGASA)

Hybrid Spectrum

- Hybrid analysis
 - FD mono analysis + SD information → improve reconstruction
 - Aperture is flat for >10¹⁹eV by SD

Hybrid analysis: Data and MC

Geometry: HybridEnergy: FD

Data:

•date: May/27/2008 – Sep/28/2009 (~1.5years)

•BR + LR (new telescopes) with SDs

•1978 events (FD-SD timing coincidence <200us)

Cut condition

Xmax has to be observed.Zenith angle < 45degrees

MC:

•Air shower:

- •COSMOS, proton, QGSJET-II
- •Slope: -3.1
- Isotropic distribution
- •Detector :
 - •All of calibration constant with time dependence
 - •Simulate trigger, front-end electronics, and DAQ
- •Aperture / Exposure

Geometrical reconstruction

Shower profile reconstruction

Xmax has to be observed
Energy > 10^{18.65}eV
Zenith angle < 45 degree

Exposure

Exposure: $^{3*10^{15}}$ m² sr s (> $^{10^{19}}$ eV)

(MC: Cosmos QGSJET II)

Data/MC comparison

•BR station •Filled circles : data •Histograms : MC

Energy spectrum

Hybrid events at the BR and LR station for TA
 1.5 years

Middle Drum (MD) FD Analysis

- 14 refurbish HiRes-1 telescopes
- TAMD mono processing is identical to HiRes-1 monocular one.
 - Same program set, event selection, cuts
 - Using the same "average" atmospheric model
- The differences
 - the telescope location and pointing directions
 - Thresholds (~20% lower than HiRes-1)

MD mono energy spectrum

Spectra

Data: 2007/Dec~2010/Sep

Aperture

• MC: CORSIKA/QGSJET events

SD spectrum

- SD reconstruction
 - LDF, timing fit
- MC
 - First energy estimation
- Data/MC comparisons
 SD energy vs. FD energy
- SD spectrum

Data set

- May/2008 Feb/2010 (1.75 years)
- Exposure ~1500km² sr yr (~AGASA 13 years)
- Cuts:
 - LDF χ^2 /ndf < 4.0
 - Border Cut > 1.2km
 - Zenith Angle < 45 degrees
 - Pointing direction uncertainty < 5 degrees
 - Fractional S800 uncertainty < 0.25
- \rightarrow 6264 events

SD event reconstruction

SD Monte Carlo

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use <u>Corsika/QGSJet-II</u> air shower events.
 - Throw with isotropic distribution.
 - Simulate detector response (GEANT4), trigger, front-end electronics, DAQ.
 - Write out the MC events in same format as data.
 - Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.

Fitting results

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

DATA/MC: S800, Energy

S800

Energy

Comparison of E_{SD} and E_{FD}

- Energy scale is determined
 experimentally by FD
 without referring to MC.
- Set SD energy scale to FD energy scale using wellreconstructed events detected by both detectors.
- 27% renormalization.
 - Systematic error 19%

(from systematic error of energy by hybrid analysis)

TA SD Spectrum

TA SD energy is rescaled to FD energy.

Significance of the Suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:

$$-$$
 N_{EXPECT} $= 18.4$

$$-N_{OBSERVE} = 5$$

 $PROB = \sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$ (3.50)

TA SD energy is rescaled to FD energy. 2011/04/11 H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

TA SD, Middle Drum FD Monocular, and TA Hybrid Spectra

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

TA SD and HiRes Spectra

TA, AGASA, Auger, HiRes, AGASA spectra

TA SD energy is scaled to FD energy.

2011/04/11

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Mass composition (Xmax technique)

- Shower longitudinal development strongly depends on their primary particle type.
- FD observes shower development directly.
- Xmas is one of the efficient parameter for determining primary particle type.

FD stereo analysis

Shower axis is determined better by FD stereo reconstruction than by FD mono reconstruction.

FD Stereo Event

Date	log(E/eV)	Xmax	zenith	azimuth	Xcore	Ycore
2008/09/04	19.71	890 g/cm ²	44.3°	-3.0°	-3.1	14.2

X_{max} Data/MC comparison X_{max} = reconstructed X_{max} Dataset: 2007/Nov ~ 2010/Sep (~3yrs) MC = QGSJET01 25 40 P QGSJET Fe QGSJET P QGSJET 10^{18.2-18.4}eV Data -10^{18.4-18.6}eV 35 20 Preliminary ← Fe 30 Preliminary 25 Entry Entry Data 20 10 15 proton 10 5 0 ^w[g/c^w²] 0 $X_{max}^{800}[g/cm^{2}]$ 500 600 1000 1100 1200 500 600 700 1000 1100 1200 700 30 30 P QGSJET Fe QGSJET P QGSJET Fe QGSJET 10^{18.6-18.8}eV 10^{18.8-19.0}eV 25 25 **Preliminary** Preliminary 20 20 Entry Entry 10 10 5 $\sqrt[70]{X_{max}} \left[\frac{0}{g} / c_{H. Sagawa}^{m^2} \right]^{100}$ 1100 1200 500 500 500 Kmax [g/cm²] 600 1100 500 1000 1200 2011/04/11

Mass composition of TA data is consistent with proton prediction.

Anisotropy

- LSS correlation
- AGN correlation
- autocorrelation

LSS correlation

- 2Mass Extended Source (XSCz)
 - m<12.5
 - 5Mpc<D<250Mpc</p>
- Injection spectrum index = -2.4, proton
- Propagation (int. with CMB photon & D⁻² loss)
- Smearing angle (free parameter)
 - Galactic Magnetic Field (GMF) + extragalactic magnetic field

Flux maps overlaid with data

the galactic coordinates

Result

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Correlation with AGN

Autocorrelation

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Prospects

- TALE (TA Low-energy Extension)
- R&D @ TA site by ELS / UHE cosmic rays
 - Radio detection towards larger ground array
 - Detection by bistatic radar
 - Other possible ideas
 - Detection of microwave bremsstrahlung from UHECRs
 - Test for JEM-EUSO prototype

TALE (TA Low-energy Extension)

H. Sagawa @ Multi-Messenger Astronomy of Cosmic Rays

Aim of TALE

- TA+TALE covers $\sim 10^{17}$ to $\sim 10^{20}$ eV.
 - ~10¹⁷eV: 2nd knee
 - Transition of Galactic CRs to extragalactic CRs?
 - ~10^{18.5} eV: ankle
 - Transition of Galactic CRs to extragalactic CRs?
 - e⁺e⁻ pair creation?
 - ~10^{19.8} eV
 - Cutoff or heavy primary CRs?
- Cross-calibration by different types of detector
 - SD vs. FD
 - Stereo FD, hybrid
 - Energy calibration with ELS (Electron Light Source)

Layout of TALE

Detection of UHECRs by bistatic radar

bistatic radar

(commercial TV)

Other possible ideas

Detection of microwave bremsstrahlung from UHECRs

Surface detector array

Test of <u>JEM-EUSO</u> prototype

Summary

- Spectrum (hybrid, SD, MD FD mono):
 - Consistent with each other and HiRes-1,2
 - Evidence for suppression (from SD) [3.5σ]
- Mass composition by Xmax analysis: FD stereo – consistent with proton prediction
- Anisotropy:
 - LSS: consistent with both LSS and isotropy (E>40EeV) consistent with LSS and incompatible with isotropy at 95% CL (E>57 EeV)
 - AGN: consistent to isotropy for E>57 EeV
 - Small scale cluster: consistent with isotropy both for E>10 EeV and E>40 EeV
- Prospect
 - TALE, and R&D or tests for future large-scale UHECR detection is being prepared.