

Highlights from

Telescope Array

Yoshiki TSUNESADA TOKYO TECH Tokyo Institute of Technology

on behalf of the Telescope Array Collaboration

第32回宇宙線国際会議、北京、中国 32nd International Cosmic Ray Conference, Aug 13 2011, Beijing, China

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

Outline

- **TA Detectors & Commissioning**
- TA results updated
 - Energy Spectrum
 - <*X*_{max}> : UHECR Mass Composition
 - Anisotropy
- Stepping further
 - ELS: Electron Lights Source
 - Bistatic Radar at TA
 - TA: TA Low Energy Extension

Telescope Array

- A follow-up to HiRes and AGASA
- Millard county, Utah, US
- 507 scintillation counters in ~700km²
- \circ 12 + 12 + 14 fluorescence detectors
- Full operation since May 2008

Y. Tsunesada @ 7AFWS, Coimbra, Portugal 2010/Sep/22

TA Surface Detectors (SD)

All the stand for any the second of the seco

T.Nonaka et al., Poster 0984

TA Fluorescence Detectors (FDs)

S.Ogio et al., Poster 1308

TA Commissioning

SD&FD Full operation since May 2008

TA Shower Analyses

The later was to man we competed the in an ender the to and

D.Ikeda: Oral 1264 (Aug12)
D.Rodriguez: Poster 1303
D.Bergman: Poster 1300
S.Stratton: Poster 1299
T.Abu-Zayyad: Poster 1312
M.Allen: Poster 0699
D.Ivanov/B.Stokes: Oral 1297 (Aug12)
B.Stokes: Poster 1288

Star and the start of the start of the

FD: Longitudinal shower profile -> Calorimetric measurement

THE ALLAND

TA Shower Analyses

D.Ikeda: Oral 1264 (Aug12)
D.Rodriguez: Poster 1303
D.Bergman: Poster 1300
S.Stratton: Poster 1299
T.Abu-Zayyad: Poster 1312
M.Allen: Poster 0699
D.Ivanov/B.Stokes: Oral 1297 (Aug12)
B.Stokes: Poster 1288

FD: Longitudinal shower profile -> Calorimetric measurement

OMPARIS

tely representing r anges from high-le timing and backgro -Monte Carlo comp arisons correspond onding histograms, e simulated data h d into three catego isons test the elec distributions of cos ons test the accura comparisons for re the spectrum mea cts real data.

TA Shower Analyses

D.Ikeda: Oral 1264 (Aug12)
D.Rodriguez: Poster 1303
D.Bergman: Poster 1300
S.Stratton: Poster 1299
T.Abu-Zayyad: Poster 1312
M.Allen: Poster 0699
D.Ivanov/B.Stokes: Oral 1297 (Aug12)
B.Stokes: Poster 1288

FD: Longitudinal shower profile -> Calorimetric measurement

SD: Lateral distribution of particles at the ground

TA Energy Scale

D.Ivanov/B.Stokes: Oral 1297
B.Stokes: Poster 1288
Y.Tsunesada: Poster 1270

 \Rightarrow Use E_{FD} as reference: calorimetrically determined energy

y:

 $\cong E_{\rm FD}$ - E'_{SD} plot for hybrid events

$$\left\langle \frac{E'_{\rm SD}}{E_{\rm FD}} \right\rangle_{\rm hyb} = 1.27$$

Rescale the SD energy

$$E_{\rm SD} = \frac{1}{\left\langle \frac{E_{\rm SD}'}{E_{\rm FD}} \right\rangle_{\rm hyb}} E_{\rm SD}'$$

FD energy uncertainty	
Source	ΔΕ/Ε
Fluorescence yield	11%
Detector	10%
Atmosphere	11%
Reconstruction	10%
Total	21%

Energy Spectrum

TA Spectra: MD, BR/LR Hybrid, SD

"MD": FD mono
"Hybrid": BR/LR mono
+ 1-SD timing
"SD": SD self-trigger
events

All are consistent within a few % level.
Consistent with HiRes.

D.Rodriguez, Poster1303
D.Ikeda, Oral 1264
B.Stokes/D. Ivanov, Oral 1297

TA-SD Spectrum

B.Stokes/D. Ivanov, Oral 1297

TA-SD Spectrum

B.Stokes/D. Ivanov, Oral 1297

•Broken power-law fit $E_{ank} = 10^{18.69} \text{ eV}$ $E_{cut} = 10^{19.68} \text{ eV}$ $(E_{1/2} = 10^{19.69} \text{ eV})$

TA-SD Spectrum

B.Stokes/D. Ivanov, Oral 1297

E³ J(E) [eV²/m²/s/str] 10²⁵ $N_{\rm exp} = 54.9$ 1024 $N_{\rm obs} = 28$ 10¹⁸ 10¹⁹ 10²⁰ Energy [eV]

•Broken power-law fit $E_{ank} = 10^{18.69} \,\mathrm{eV}$ $E_{cut} = 10^{19.68} \,\mathrm{eV}$ $(E_{1/2} = 10^{19.69} \,\mathrm{eV})$

• Significance of the event deficit

 $\sum_{i=0}^{28} \text{Poisson}(i; \mu = 54.9)$ $= 4.75 \times 10^{-5}$ 3.9σ

AGASA, HiRes, Auger, TA

•TA spectra are consistent with HiRes.
•-20% AGASA
•+20% Auger

 9% difference from the FLY model
 (Kakimoto et al. in TA/ Nagano et al./AirFly : Tsunesada Poster 1279)
 ~22% total
 systematic uncertainty
 in both TA & Auger

Towards UHECR Mass Composition

<*X*max> Analysis

Y.Tameda, Oral 1268

William and the second of the

•Compare model prediction and data : should be bias-free

<*X*max> Analysis

Y.Tameda, Oral 1268

When a fait is tory which man we carpertant that a survey by the second of the second

<X_{max}> Analysis

Y.Tameda, Oral 1268

and the second to a second the second the second to the second the second to the second the second the second to the second the second to the

•Compare model prediction and data : should be bias-free

•Compare "biased" model prediction and "biased" data

BR/LR stereo events
Consistent with protondominated composition

X_{max} Distribution: log $E=18.2 \sim 19.0$

X_{max} [g/cm²]

A TON DON'T MAN DE CARDENTA 14-4

*X*_{max} **Distribution:** log*E*=19.0 ~ 19.8

Anisotropy Analyses

- Use SD events (1.27 scaled)
- 2008/05/11 2011/05/01: 1086 days
- Zenith angle < 45deg
- Array boundary cut
- Angular resolution: 1.5° ($E > 10^{19} \,\mathrm{eV}$)
- Number of events:
 - E > 10 EeV: 854
 - E > 40 EeV: 49
 - E > 57 EeV: 20

TA Event Map

Okuda/Tkachev Oral 1311

Correlation with the VCV Catalog Objects ?

Okuda/Tkachev Oral 1311

Binominal Correlation of event energy > 57EeV, with Veron AGN 12th. Zmax=0.018 (472AGN), Within 3.1deg.

8 of 20 correlated
4.8 for isotropic

 (Auger result has been updated: 68% ---> 38%)

• Compatible with both isotropy and AGN correlation hypothesis.

Search for Large-Scale Anisotropy Tinyakov/Kido Oral 1317

- MASS galaxy redshift catalog (XSCz), 5Mpc ~ 250Mpc
 - Uniform intensity beyond 250Mpc
- $\stackrel{\scriptstyle \sim}{\scriptstyle \sim}$ Proton primary, injection spectrum $E^{-2.2}$
- Interactions/redshift TA exposure taken into account
- Smearing angle parameter: ~20° (Magnetic deflection, angular resolution etc.)
- $\stackrel{\scriptstyle \sim}{\scriptstyle =}$ GC region excluded ($|b| < 10^{\circ}, |l| < 90^{\circ}$)
- Sompare TA data and the expected CR density map

Smearing

Search for Large-Scale Anisotropy Tinyakov/Kido Oral 1317

MALLA . ANYAR

TA Events & LSS: KS Test

•Compatible with isotropy for all energy regions

•Also compatible with the structure hypothesis at 40/57 EeV w/ or w/o GMF •Not compatible with LSS for E > 10EeV, without strong/extended halo field

We also presented...

- UHE Photon limit: G. Rubtsov, Oral Talk 1266
- Anisotropy: autocorrelation: T. Okuda, Oral Talk 1311
- MD hybrid analysis: M.Allen, Poster 0699
- Shower MC with GPU: T.AbuZayyad, Poster 1329
- Detailed Shower MC: CORSIKA & COSMOS: J.Kim, Poster 0812
- Hybrid triggering system: H.Tokuno, Poster 1275
- FD cross-calibration: T.Stroman, Poster 1301
- Atmospheric monitoring: LIDAR: T.Tomida, Poster 1279
- Atmospheric monitoring: CLF-LIDAR: D.Oku, Poster 1278
- Atmospheric monitoring: IR camera: F. Shibata, Poster 1277

ELS: Electron Accelerator

T.Shibata Oral 1252 (Aug 17)

•40MeV, 10⁹ electrons
•E2E calibration of FD energies
•First shot in Sep.2010
•Analysis ongoing

Event Display of ELS Shower Data : Sep.5th .2010. AM04:30 (UTC) Energy : 41.1MeV First Shot in Sep.2010

DATA

Bistatic Radar at TA

Tort support & monade into the 1 A TA

Air shower plasma should reflect low-VHF (~50 MHz) radiation (Blackett and Lovell, 1940).

Low-cost remote sensing technique

J.Belz: Oral 1314 J.Belz *et al.*: Poster 1315

Bistatic Radar at TA

TALE: TA Low-Energy Extension

G.Thomson et al.: Poster 1307

All a the stand the second of the second of

•Drastic change of composition at ~10¹⁷eV?

Galactic-to-extra-galactic transition?
Second knee?
LHC √s !

Importance of 10^{16~18}eV

TALE: TA Low-Energy Extension

G.Thomson et al.: Poster 1307

the all the second to an and the second of t

Conclusion

- 3 years TA full operation
- Energy Spectrum:
 - Consistent with HiRes
 - SD/FD energy scale difference
 - Ankle at 10^{18.69} eV
 - Cut-off at 1019.68 eV: Deficit: 3.90
- Proton dominant composition up to the cut-off energy
- Anisotropy: Need more statistics!
 - Compatible with both isotropy and AGN/LSS correlation hypothesis

Conclusion

- 3 years TA full operation
- Energy Spectrum:
 - Consistent with HiRes
 - SD/FD energy scale difference
 - Ankle at 10^{18.69} eV
 - Cut-off at 1019.68 eV: Deficit: 3.90
- Proton dominant composition up to the cut-off energy
- Anisotropy: Need more statistics!
 - Compatible with both isotropy and AGN/LSS correlation hypothesis
- Question: Have we seen the GZK cut-off?
 - Consistency between composition and the position of E_{cut} ?
 - Anisotropy: CR horizon? z_{max} dep.? B-field? Spectral shape around E_{cut}?

- ----

When the the state of the state

Understanding Our Detectors

Understanding Our Detectorshe distribution of

TA FLY Model

- Spectral lines and their relative intensities are from Abbasi et al. Astropart. Phys., 29 77-86 (2008)
 Defined in 300-420nm
- Scaled to the Kakimoto's yield in 300-400nm, Kakimoto et al. NIM A, **372** 527-533 (1996)
 - (The total yield of the TA FLY model in 300-420nm is slightly larger than Kakimoto's.)

• Spectral lines and relative intensities are from FLASH:

$$\int_{300}^{420} f_{\rm FLASH}(\lambda) d\lambda = 1$$

Abbasi et al. Astropart. Phys., **29** 77-86 (2008) Figure 9.

- $FLY_{TA}(\lambda)$ ([ph/MeV] or [ph/m]) is defined by scaling $f_{FLASH}(\lambda)$ $FLY_{TA}(\lambda) \ [ph/MeV] \equiv \alpha f_{FLASH}(\lambda)$
 - $\bullet \, {\rm The \ scaling \ factor} \ \alpha \ \ {\rm is \ obtained \ as}$

 $\alpha \int_{300}^{400} f_{\rm FLASH}(\lambda) d\lambda = K = {\rm Kakimoto's} \ @ \rm IOI3hPa/293K$

• Therefore

$$FLY_{\text{TA}}(\lambda) \equiv \frac{K}{\int_{300}^{400} f_{\text{FLASH}}(\lambda) d\lambda} f_{\text{FLASH}}(\lambda)$$

$$\text{Note that} \quad \int_{300}^{420} FLY_{\text{TA}}(\lambda) d\lambda > K$$

SD Analysis: Data Quality Cuts

- Good data fits:
 - $\chi^2/d.o.f.: > 4.0$
 - Pointing direction resolution: < 5°
 - Fractional S800 uncertainty: < 25%</p>
- Good shower geometry:
 - Border Cut > 1200m
 - Zenith Angle Cut: < 45°
- 3 years, 10,997 events

SD Analysis: Data/MC Comparisons

Azimuthal angle

Zenith angle

SD Analysis: Data/MC Comparisons

20000

20000

χ² / ndf

const

slope

7.841e-07

Core Position (E-W)

Core X [m]

10000

10000

350

300

250

200

150

100

50

1.

Core Position (N-S)

Data / MC comparison

Red points: Data, Blue histograms : MC

Signal Characteristics

Signal-to-Noise

Phase Modulation

- Assume 20 kW transmitter
- Prediction for received power for 10¹⁸, 10¹⁹, 10²⁰ eV showers, 30° from zenith, typical TA distances and antenna gain.
- Horizontal line: Galactic noise floor (4 MHz B.W.)

- Predicted signal for 10¹⁹ eV shower, 30° from zenith; frequency vs time.
- Rapid movement of "target" produces Doppler-like frequency shift.
- Unique signature for air shower echoes!

TA-MD & HiRes Spectra

D.Rodriguez et al., Poster 1303

Three years data of TA-MD, refurbished HiRes-I detector
~1/3 HiRes-I exposure

•Excellent agreement between HiRes and MD: HiRes is still alive!

ELS observation

Observation for the reflected radio from ELS shower to confirm the method

- Set the observer to the roof of BR station •Radio path: CRC - ELS - BR
- Receiver : Five-element Yagi antenna
 - Design is fixed (see other file)
- Also we can measure the cross-section
 - Distance: CRC-BR >> ELS-BR

BR

10m

- Can measure the power of coming radio from CRC by seeing to CRC
- Cross-section is obtained by the ratio of detected power: seeing to ELS / seeing to CRC

BR-CRC

- •For this test, E-Plane of trans. wave should be vertical.
- •Geometry b/w BR and CRC is better for radio transmission.

Auto-correlation: Event Clustering?

Event counting as a function of angular distances
No significant clustering found
Clustering at 57EeV in 10~20°? < 3σ

UHE Photon Limit by SD

G.Rubtsov, Oral 1266
Gamma-showers have curved front.
Use SD 3 years data

STATISTICAL POWER

