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概要

スーパーカミオカンデは陽子崩壊、CP 対称性の破れ、超新星ニュートリノの観測などを目的とした大型水

チェレンコフ検出器である。現在スーパーカミオカンデで用いられている再構成および粒子識別プログラムで

ある fiTQun には計算コストが高いという課題がある。

そこで本研究ではより計算コストの低い粒子識別プログラムとして CNN を用いて、スーパーカミオカンデ

のシミュレーションデータに対して粒子識別を行なった。識別を行なった粒子は e/µ,e/π0,e/γ の３組であり、

各組について電子の運動量 pe = 200, 500, 1000 MeV の３パターンを CNN のモデル MobileNetV3 を用いて

学習を行った。そして学習の結果得られたモデルを用いて識別の正答率と計算時間を求めて fiTQun と比較し

た。また、各粒子および運動量について観測される光量の角度分布を比較することで、CNN による識別正答

率の結果の説明を試みた。

得られた CNN による識別結果は e/µ での識別率は約 1.0 と高精度であった一方で e/π0 では 0.7∼0.9 で運

動量が増加することにともなって精度が低下し、e/γ の識別率は 0.5 と識別困難であった。この結果が e/µ で

は CNN が fiTQun を上回ったものの、e/π0 では CNN は fiTQun を上回ることができなかった。

CNN の計算時間については、1event あたり 0.02 秒であり、fiTQun の再構成時間の 10−4 と非常に短い時

間での識別を達成した。
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第 1章

序論

1.1 ニュートリノ

ニュートリノは標準理論においてレプトンに分類され、電荷 0、スピン 1/2 の素粒子である。ニュートリノ

には３世代があり、電子ニュートリノ、ミューオンニュートリノ、タウニュートリノと呼ばれる。これらは同

じ世代のレプトン、電子、ミューオン、タウオンと、荷電カレント（CC）相互作用によって入れ替わる。一方

で、中性カレント（NC）弱相互作用ではニュートリノは種類を変えずに相互作用する。ニュートリノは弱い

相互作用のみをするため、ほとんど物質と反応しない。

1.2 ニュートリノ振動

ニュートリノ振動とは、ニュートリノが飛行中にフレーバーを変えることである。この現象の発見により、

ニュートリノの質量が 0 ではないことがわかり、標準模型を超える物理の発見となった。この節ではニュート

リノ振動の基礎的な理論を説明する。

1.2.1 ３世代のニュートリノ振動

まず、ニュートリノが正規直行する固有状態で書けるとし、各フレーバー固有状態はユニタリーな混合行列

U と質量固有状態によって表すことができるとする。

|να⟩ =
∑
i

Uαi |νi⟩ |νi⟩ =
∑
α

U∗
αi |να⟩

U†U = 1
∑
i

UαiU
∗
βi = δαβ

∑
α

UαiU
∗
αj = δij

質量固有状態 νi は定常状態で、次の時間依存性を示す。

|νi(x, t)⟩ = e−iEit |νi(x, 0)⟩

ニュートリノが x = 0 で運動量 p で放出されたとすると、

|νi(x, 0)⟩ = eipx |νi⟩

相対論的な時、

Ei =
√
m2

i + p2i ≃ pi +
m2

i

2pi
≃ E +

m2
i

2E

6



フレーバーニュートリノ |να⟩が t=0 に運動量 p で放出されたとすると、

|ν(x, t)⟩ =
∑
i

Uαie
−iEit |νi⟩ =

∑
i,β

UαiU
∗
βie

ipxe−iEt |νβ⟩

よってフレーバー変換 να → νβ の振幅の時間依存性は

A(α→ β)(t) = ⟨νβ |ν(x, t)⟩ =
∑
i

U∗
βiUαie

ipxe−iEt

距離の関数として表すと、

A(α→ β)(t) =
∑
i

U∗
βiUαiexp(−i

m2
i

2

L

E
) = A(α→ β)(L)

遷移確率 P は遷移振幅 A から得られて、

P (α→ β)(t) = |A(α→ β)|2 =
∑
i

∑
j

UαiU
∗
αjU

∗
βiUβje

−i(Ei−Ej)t

=
∑
i

|UαiU
∗
βi|2 + 2Re

∑
j>i

UαiU
∗
αjU

∗
βiUβjexp(−i

∆m2

2
)
L

E

1.2.2 ２フレーバーでのニュートリノ振動

ここでは νe, νµ 間の振動を考える。νe, νµ と ν1, ν2 の関係が次のように表せる。(
νe
νµ

)
=

(
cosθ sinθ
−sinθ cosθ

)(
ν1
ν2

)
前節の式を用いて対応する遷移確率は、

P (νe → νµ) = P (νµ → νe)

= sin22θ × sin2(∆m2

4

L

E
)

= sin22θ × sin2(π L

L0
)

with L0 = 2.48
E/MeV
∆m2/eV2 m

1.2.3 ニュートリノ振動における CP violation

ニュートリノ振動における CP violation とは να → νβ の振動確率が να → νβ の振動確率と異なることを

意味する。すなわち、
∆PCP

αβ = P (να → νβ)− P (να → νβ) ̸= 0 (α ̸= β)

PMNS 行列

UPMNS =

1 0 0
0 C23 S23

0 −S23 C23

 C13 0 S13e
−iδ

0 1 0
−S13e

−iδ 0 C13

 C12 S12 0
−S12 C12 0
0 0 1


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図1.1 pp-chain

を用いると、

∆PCP
αβ = −16Jαβsin(

∆m2
12

4E
L)sin(∆m2

23

4E
L)sin(∆m2

13

4E
L)

Jαβ ≡ Im[Uα1U
∗
α2U

∗
β1Uβ2] = ±c12s12c23s23c213s13sinδ

と表すことができる。よって全ての混合角が 0, π
2 , π でなく、sinδ ̸= 0 を示すことができれば CP が破れてい

ると言える。

1.3 ニュートリノ実験

1.3.1 太陽ニュートリノ

太陽では核融合によりエネルギが作られている。水素が融合してヘリウムを生み出す過程は主に次のようで

ある。
4p→ 4He+ 2e+ + 2νe

初の太陽ニュートリノ実験は 1968 年アメリカで行われたホームステーク実験で、ニュートリノを検出した

反応は
37Cl+ νe → 37Ar+ e−

であり、エネルギー閾値は 814 keVであった。標準太陽モデルによって予想された値は 7.5± 1.0 SNUであり、

主に 8B ニュートリノから構成されている。しかし、実際に観測された値は 2.56±0.16(stat.)±0.15(sys.) SNU
と理論値の約 1/3 であった。その後、いくつか行われた太陽ニュートリノ実験でも観測された電子ニュートリ

ノが、理論値よりも少ないことが確認され、この問題は太陽ニュートリノ問題と呼ばれていた。

この問題に対して、決定的となる実験結果を出したのが 1999 年から開始された SNO 実験である。SNO 実験

では 1000 t の重水を使ったチェレンコフ検出器による観測が行われた。この検出器でのニュートリノの反応
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は複数あり、それは

νe + d→ e− + p+ p (CC)
ν + e− → ν + e− (ES)
ν + d→ ν + p+ n (NC)

の３つである。このうち、CC は νe のみに感度があり、ES はすべてのフレーバーに感度があるが、νe が支配

的である。一方で、NC はすべてのフレーバに同等の感度があるため、全ニュートリノ数を決定できる。

SNO 実験の測定結果は図1.2のようであり、全ニュートリノフラックスは標準太陽モデルの予想と一致した

図1.2 SNO による太陽ニュートリノの測定結果　横軸：νe フラックス　　縦軸：νµ, ντ フラックス　点

線は標準太陽モデルによる予想値を示す。[1]

のに対し、電子ニュートリノフラックスは全ニュートリノフラックスの約 1/3 であった。この測定結果によ

り、ニュートリノは失われているのではなく、他のフレーバーに変化していることが示唆された。

1.3.2 大気ニュートリノ

大気ニュートリノは、宇宙線と大気の相互作用によって生じたパイオンやミューオンの崩壊によって生まれ

るニュートリノのことである。

π+ → µ+νµ µ+ → e+νeνµ

π− → µ−νµ µ− → e−νeνµ

ニュートリノ振動の指標として次の式で定義される R− ratio が重要になる。

R =
[N(µ− like)/N(e− like)]obs
[N(µ− like)/N(e− like)]exp

大気ニュートリノの観測はスーパーカミオカンデ（SK）実験や IMB などが行っていて、R − ratio の測定値

は表1.1のようであった。
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Experiment R
SK(sub-GeV) 0.638± 0.017± 0.050

SK(multi-GeV) 0.675± 0.034± 0.080

IMB 0.54± 0.05± 0.11

表1.1 R-ratio の SK と IMB による測定値

表1.1からわかるように R− ratio はおよそ 0.6 と１からずれていて、これはニュートリノ振動が起きている

ことを示唆している。さらに詳しいことはニュートリノの頂点角分布を見ることでわかる。

SK による νe と νµ の頂点各分布は図1.3に示されている。図1.3からわかるように、MC の予想値に一致して

図1.3 SK による e− like イベントと µ− like イベントの天頂各分布

斜線の領域はニュートリノ振動がないとした場合の MC による予想値で、実線はニュートリノ振動がある

としてデータに fit した値を示す [2]

いる e− like イベントと異なり、cosθ が小さくなるほど、予想値と観測値が離れていっている。この結果から

νµ → ντ のニュートリノ振動が起きていると説明できる。

1.3.3 超新星ニュートリノ

超新星は２つの異なる星の終状態から発生する。一つは連星系が融合してチャンドラセカール質量を超えた

とき、もう一つは巨星内部でこれ以上核融合によってエネルギーを生み出せなくなり、重力的に不安定になっ

たときである。

重力崩壊が起こっている大質量性のコアでは高温高密度のため電子捕獲反応 p+ e→ n+ νe が起こる。こ

の時、星内部には密度が 1011 g/cm3 以上と非常に高いためにニュートリノが星の外に出られない領域があり、

電子ニュートリノの閉じ込めが起こる。この閉じ込めらたニュートリノが超新星爆発時に一斉に放出されルコ

とで超新星ニュートリノとして検出される。

超新星ニュートリノの検出するためのリアルタイム処理する検出器としては、SK などのチェレンコフ検出

器か KamLAND などの液体シンチレータが挙げられる。
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実際に観測された超新星ニュートリノイベントは SN1987A であり、カミオカカンデでは 12 イベント、IMB
では８イベントが観測された。

もう少し書く

1.3.4 加速器ニュートリノ

加速器ニュートリノ実験では、加速器側で νµ ビームを生み出し、O(100 km) だけ離れた検出器でビームを

検出する。νµ ビームを生成する方法は、加速した陽子ビームを炭素などの標的に衝突させて荷電パイオンを

生成させ、電磁ホーンによってパイオンの方向を制御する。飛行中にパイオンが µ と νµ に崩壊し、ミューオ

ンは壁で止められる。残った νµ が前置検出器および遠方検出器で検出される。

代表的な加速器ニュートリノ実験としては T2K 実験があり、J-PARC で生成した ν ビームを SK で検出する

実験である。

ν ビームは 30 GeV の陽子から生成され、炭素標的から 280 m の位置にある前置検出器でニュートリノ振動

前の ν ビームの性質を計測し、295 km の位置にある SK で振動したニュートリノを観測する。図1.4の左図は

T2K 実験で観測された νe 候補イベントについての図であり、右図は観測結果から計算された sin22θ13 の値

を示している。この実験によって初めて νµ → νe が観測された。

図1.4 左図：T2K で観測された νe 候補と sin22θ13 = 0.144 で fit した MC による予想値

右図：δcp の関数として sin22θ13 の 68%,90%CL。実線は sin22θ13 の最良値を示す。上図はニュートリノ

質量階層について正常階層、下図は逆階層と想定している。[3]

1.3.5 ハイパーカミオカンデ

ハイパーカミオカンデはカミオカンデ、スーパーカミオカンデに続く次世代型大型水チェレンコフ検出器

で、岐阜県神岡町に建設中である。大きさは直径 68 m、高さ 71 m、水容量 26 万トンであり、2028 年に実験

が開始される予定である。主な研究目的としては、ニュートリノの CP 対称性の破れの発見、陽子崩壊の探索、

超新星爆発からのニュートリノの観測があげられる。
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1.4 論文の概要

続く２章ではスーパーカミオカンデについて、特に粒子識別を行う fiTQun に注目して説明を行う。３章で

は畳み込みニューラルネットワークについて、ニューラルネットワークとは何かから説明し、また最後の節

では本研究で扱ったモデルである MobileNetV3 について簡単に記述している。４章では本研究で行なった

CNN による粒子識別の方法について説明し、５章で結果を６章で結果に対する考察を行なう。そして、最後

の７章で本研究の結論を記述している。
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第 2章

スーパーカミオカンデ

スーパーカミオカンデとは岐阜県神岡町に位置する巨大水チェレンコフ検出器である (図2.1)。その大きさ

は直径 39 m、高さ 42 m の円柱形であり、水容量は 50, 000 トンに及ぶ。スーパーカミオカンデ実験の目的

は、陽子崩壊、太陽ニュートリノ、大気ニュートリノ、超新星ニュートリノ、T2K 実験などの人工ニュートリ

ノの観測が挙げられる。

2.1 スーパーカミオカンデ検出器

SK の水槽は池の山地下 1000 m に位置し、水容量 50,000 トンのタンク内は内部検出器と外部検出機に光

学的に分かれている。内部検出機には 20 inch PMT が 11,129 個、外部検出機には 8 inch PMT が 1,885 個

設置されており、内部検出器が主検出器として、外部検出器は veto 検出器として機能している。SK タンクが

地下 1000 m にあることで、バックグラウンドとなる宇宙線ミューオンが 1000 m の岩盤によって遮蔽され、

SK タンクに到達する数を大幅に減じている。また、PMT は磁場による影響を受けやすいため、磁気補償コ

イルをタンクの壁に設置することで地磁気を相殺して、残存磁場を 50 mG 以下にまで減らしている。

図2.1 SK タンクのスケッチ [5]
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図2.2 SK の PMT[5]

2.1.1 内部検出器（ID）

SK タンクは PMT を設置する円柱形の構造体によって２つの領域に分けられていて、内側は直径 33.8 m,
高さ 36.2 m で 32, 000 トンの水が内包され、これが内部検出器 (ID) と呼ばれる。ID の PMT は 70 cm 間隔

で 11,129 個配置されていて、ID 表面のうち 40 % が光電面によってカバーされている。20 inch PMT(図2.2)
はバイアルカリ (Sb-K-Cs) 光電面でピーク QE は 21 %(360 ∼ 400 nm) である。ID PMTs にかけられてい

る電圧は 1700∼ 2000 V であり、ゲイン 107 がとなるように設定されている。

2.1.2 外部検出器（OD）

分けられた領域の外側を外部検出器（OD）とよび、1,885 個の PMT が設置されている。OD PMT は ID
よりも疎であるため、波長変換板を用いることと、tyvek sheet を OD 表面につくることによって光収集効率

をあげている。OD は宇宙線ミューオンや周囲の岩盤からの放射線によるバックグラウンドの veto 検出器と

して機能している。

2.2 検出原理

SK は水チェレンコフ検出器という名前の通り、チェレンコフ光を PMT で検出することでタンクに入射す

る粒子を検出している。チェレンコフ光とは荷電粒子が屈折率 n の媒質中を光速 c/n を超える速度で運動す

るときに放射される光である。この光は円錐状に伝播していき (図2.3)、円錐の開口角 θ は

cos θ =
1

nβ

また、荷電粒子が単位長さ進むあたり、単位波長あたりの光子数は

d2N

dxdλ
=

2πα

λ2
(1− 1

n2β2
)
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図2.3 チェレンコフリング

媒質が水の場合、屈折率 n が n = 1.33 なので開口角 θ は約 42◦ である。また、このときチェレンコフ閾値は

電子について 0.569 MeV/c, ミューオンについて 115.7MeV/c、陽子について 1.04 GeV/c である。

2.3 DAQシステム

図2.4 QTC とその周り [6]

図2.4は PMT からの信号を処理する QTC（Charge to Time converter）とその周りの機器を表している。

チェレンコフ光が PMT の光電面に入射すると光電効果で電子が放出され、放出された電子は PMT の増幅部

で約 107 倍に増幅された信号として出力される。PMT の出力信号は同軸ケーブルを通って、３つの信号に分

けられて QTC に入力される。QTC の３つの入力は小中大の３つのゲインに対応し、これによって電荷につ

いての広いダイナミックレンジと十分な分解能を確保している。QTC に入った信号がディスクリミネータの

閾値（ 1
4p.e.）を超えると電荷の積分が始まる。また、同時に hit の信号が出される。電荷の積分は 400 ns だ

け行われ、その後一定電流での放電が行われる。出力信号は電荷積分が始まった時から、積分電荷が放電によ

ってコンパレータの閾値を下回ったときまでの間、一定電圧で出力される。放電によってコンパレータの閾値

を下回るまでの時間は積分電荷の大きさによって変わるため、出力信号の立ち下がり時間から積分電荷を、立

ち上がり時間から hit の時間を読み取ることができる。図2.5は QTC のタイミングチャートを表している。ま
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た、図2.6には QTC の仕様を示してある。

図2.5 QTC のタイミングチャート

図2.6 QTC の仕様

QTC の出力は TDC（Time to Digital converter）に入力され、TDC では入力の立ち上がりと立ち下がり

を検出して信号の幅を測定する。その後 TDC からの出力は FPGA(Field Programmable Gate Array) に渡

され、電荷、タイミング、入力チャンネルの情報を含んだ 6 バイトセルに変換され、イーサネットでフロント

エンド PC に送信される。
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2.4 SKのフェーズ
SK の実験は 1996 年から始まり、今に至るまで複数回のアップデートを経てきた。この節では SK−I から

SK-VIII までの各フェーズについてまとめる

フェーズ 運転期間 IDPMT の本数 エレクトロニクス Gd 濃度 備考

SK-I 1996.4∼2001.7 11, 146 ATM 0 % PMT の破損事故 (2001)
SK-II 2002.12∼2005.10 5, 182 ATM 0 % PMT に防爆カバーを装着

SK-III 2006∼2008.8 11, 129 ATM 0 %
SK-IV 2008.9∼2018.6 11, 129 QBEE 0 %
SK-V 2019.1∼2020.6 11, 129 QBEE 0 % SK-Gd の準備フェーズ

SK-VI 2020.7∼2022.6 11, 129 QBEE 0.011 %
SK-VII 2022.6∼2024.9 11, 129 QBEE 0.03 % 補償コイルの一部が故障 (2023)
SK-VIII 2024.9∼ 11, 129 QBEE 0.033 % 補償コイル修理完了

表2.1 SK の各フェーズにおける状態

2.5 水循環・浄化システム

チェレンコフ光の透過性や自然放射線を抑える観点からタンク内の水は清浄である必要性があるため、SK
では水清浄化システムを用いている。図2.7は SK-IV の水清浄化システムを表した図である。このシステムに

よってタンク内の水は 60 ton/h で循環され、水温は約 13 度に保たれている。

図2.7 SK の水清浄化システム [8]

2.6 事象選別

オフラインプロセスでの事象選別

DAQ からの出力はオンライントリガーをかけられた後、オフライン較正をされる。この段階のイベントレ

ートは約 106/day であり、宇宙線ミューオンイベントや水中に含まれるラドンなどの放射性物質によるイベ
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ントが多く含まれている。事象選別ではこれらのバックグラウンド事象を選別して取り除き、より効率的に物

理解析を行う。

SK で観測される大気ニュートリノイベントは大きく３つに分類される。すなわち、Fully con-
tained(FC),Partially contained(PC),Upward-going muon(Up-mu) に分けられる。FC は粒子が内部検出器

内でのみエネルギーを落とし、外部検出器に何の反応もないイベント。PC は内部検出器の外でもエネルギー

を落としているイベント。Up-mu は ID の周りでニュートリノ反応によって生成されたミューオンが上向き

に ID 中を移動したイベント。

本研究では FC イベントのみを扱うので、この節では FC イベントの事象選別のみを記述する。FC イベン

トの事象選別は 5 つのステップからなる。

2.6.1 １つ目の選別

１つ目の選別は以下の２つからなる。

1. ID PMT の総電荷が 200 p.e. 以下のイベントを除去する

2. イベントトリガー周りの 800 ns で OD PMT の hit 数が 55 よりも大きいイベントを除去する

これらは宇宙線ミューオンによるイベントと水に含まれる不純物による低エネルギーの放射線イベントを取り

除くことを目的としている。これらのカットによってイベントレートは約 103/day にまで減る。

2.6.2 ２つ目の選別

２つ目の選別は以下の２つからなる

1. OD PMT の hit が 30 よりも大きくかつ、ID PMT の総電荷が 100, 000 p.e. よりも小さいイベントを除

去する

2. 1 つの ID PMT の電荷が ID PMT の総電荷の半分を超えているイベントを除去する

1 つ目のカットはより低エネルギーの宇宙線ミューオンイベントをカットしつつ、超高エネルギーの FC イベ

ントで OD に光漏れが起きているイベントを保持している。２つ目のカットはいずれか一つの PMT での電

気的ノイズイベントを取り除いている。これらのカットによって、イベントレートは約 102/day となる。

2.6.3 ３つ目の選別

3 つ目の選別は 1,2 つ目の選別で除去できなかったミューオンイベントやノイズイベントを除去することを

目的とする以下の複数のカットからなる。

ハードミューオン

1 TeV 以上の高エネルギーミューオンはハードミューオンと呼ばれ、次のカットで除去される。

1. メイントリガー後の 500 ns 間での OD hit が 40 以上のイベントを除去する

貫通ミューオン

貫通ミューオンについてのフィットは次の条件を満たすときにかけられる。

1. 1 つの ID PMT によって観測された電子が 231 p.e. よりも大きい

2. ID PMT の hit 数が 1000 以上
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フィットの適合度が 0.75 以上の場合貫通ミューオンとして除去される。

停止ミューオン

貫通ミューオンのようにフィットをかけられ、適合度が 0 以上の時停止ミューオンとして除去される。

ケーブル穴ミューオン

SK にはケーブルを通すための穴が１２個あり、そこには OD PMT がない。そのため、その穴を通ったミ

ューオンは OD を hit させることなく ID に侵入できる。このミューオンを除去するために、ケーブル穴には

プラスチックシンチレータが設置され、シンチレータに反応が会った時、ケーブル穴ミューオンとして除去さ

れる。

フラッシャーイベント

フラッシャーイベントは PMT での放電によって引き起こされるイベントである。フラッシャーイベントは

hit のタイミング分布が広がっている傾向にあるため、イベントトリガー後の 500 ns 間、100ns ごとの ID hit
が常に 20 以上のイベントがフラッシャイベントとして除去される。

３つ目の選別によってイベントレートは 45/day となる。

2.6.4 ４つ目の選別

４つ目の選別では、残ったフラッシャーイベントをパターンマッチングによって除去する。フラッシャーイ

ベントは同様の PMT hit パターンを繰り返す傾向にあるため、異なるイベント間での電荷パターンの相関を

計算して、高い相関にあるイベントを除去する。この選別によってイベントレートは 18/day となる。

2.6.5 ５つ目の選別

5 つ目の選別は残ったミューオンイベントとフラッシャーイベントを除去することを目的とする。

チェレンコフ閾値以下のミューオンは ID PMT に hit を生み出さないが、崩壊によって生じた電子によって

イベントトリガーがかかることがある。このミューオンを取り除くために次のカットをかける。

1. トリガー前の −8800 ns から −100 ns の間のいずれかの 200 ns 間に OD hit が９以上のイベントを除

去する

フラッシャーイベントについてより厳しいカットをかけるために、再構成によって得られた hit 時間をもと

に 3 つ目の選別と同様のカットをかける。

５つ目の選別によってイベントレートは約 16/day となる。

2.6.6 FC選別のまとめ

最終的な FC ニュートリノイベントは次の条件を満たすイベント。

1. 再構成されたバーテックスが有効体積内にあること。ただし、有効体積とは ID 壁から 2 m 離れた内側

の体積のこと

2. 最大の OD hit クラスターの hit 数が 16 より小さい

3. 可視エネルギーが 30 MeV 以上であること。
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シミュレーションによると真の有効体積内のニュートリノイベントのうち、FC ニュートリノイベントと判

定される確率は約 98 % であり、背景事象が混ざる確率は 0.1 % 以下である。また、最終的なイベントレート

は～8/day となる。

2.7 事象再構成

SK で用いられている事象再構成法には、APfit,fiTQun,Bonsai がある。AP fit は現在大気ニュートリノ

の解析などには使われている。fiTQun は SK-IV で開発され、特にバーテックスの決定や粒子識別の精度に

おいて APfit よりも優れているが計算コストがかかる欠点がある。Bonsai は低エネルギー領域で用いられ、

特に太陽ニュートリノの解析で役立っている。ここでは fiTQun の事象再構成法について詳しく説明した後、

fiTQun を用いた粒子識別の精度や所要時間について議論する。

2.7.1 尤度関数

fiTQun では最尤法を用いている。SK のイベントの情報は各 PMT で hit したかどうか、hit した時間、検

出された電荷である。ここで、粒子種やその運動量、バーテックスなどの情報すべてを含んだ仮説 x を導入す

ると、尤度関数は次のようになる。

L(x) =
unhit∏

j

Pj(unhit|x)
hit∏
i

{1− Pi(unhit|x)}fq(qi|x)ft(ti|x)

この式において、Pj(unhit|x) は仮説 x のに PMTj が hit しなかった確率を表し、fq(qi|x) は仮説 x におい

て PMTi の電荷が qi になる確率を表し、ft(ti|x) は仮説 x で PMTi が hit した時間が ti になる確率を表して

いる。fiTQun では、この尤度関数を最大にするような仮説 x を求めることで、粒子の種類、運動量、バーテ

ックスを導き出している。

2.7.2 期待光電子数

実際の計算においては期待光電子数 µ、すなわち仮説 x のときの各 PMT における平均光電子数、を導入し

て次の尤度関数について考える。

L(x) =
unhit∏

j

Pj(unhit|µj)

hit∏
i

{1− Pi(unhit|µi)}fq(qi|µi)ft(ti|x)

期待光電子数を計算するときには、直接 PMT に入射する光と散乱、反射して PMT に入射する光を別々に考

えた上で最後に足し合わせる。直接光による期待光電子数を計算するには、粒子の軌跡上の各点からのチェレ

ンコフ放射を各 PMT への距離、水の光透過率、PMT の光入射角依存性を考慮した上で、粒子軌跡上積分す

ることで得られる。間接光による期待光電子数は、直接光の性質と事前にシミュレーションによって得られた

散乱関数との積を粒子の軌跡上積分することで得られる。複数のチェレンコフリングがある場合には各リング

について個別に期待光電子数を計算したのちに足し合わせる。
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2.7.3 unhitの確率

µ が平均光電子数なので、実際の光電子数は平均 µ の Poisson 分布に従う。そのため、unhit の確率は e−µ

となるはずである。しかし、実際には信号が一定の閾値を越えないと hit とならないため、3 次までの補正を

含めて、次の式のように unhit の確率を近似している。

P (unhit|µ) ≈ (1 + a1µ+ a2µ
2 + a3µ

3)e−µ

2.7.4 電荷尤度、時間尤度

電荷尤度は平均 µi の Poisson 分布と PMT で観測された電荷を比較することで得られる。

時間尤度は ft(ti|texp
i ,Γ, p, µi) と表すことができる。ここで、texp

i は予想される hit 時間、Γ はいそう、p は

運動量を意味する。texp
i は軌跡の中点で放出された光が直接 PMT に入射したときの時間を意味し、次の式で

表される。
texp
i = t+ smid/c+ |RPMT

i − x− smidd|/cn

ただし、x と t はバーテックスと粒子が作られた時間,d は粒子の方向 RPMT
i は i 番目の PMT の位置、smid

は軌跡の長さの半分、cn = c/n を意味する。時間尤度が期待光電子数に依存するのは、hit が記録されるのが

一つ目の光子が PMT に到達したときであり、その分布の不定性は入射光子数が多いほど小さくなる。時間尤

度の関数はパーティクルガンシミュレーションで決定される。直接光と間接光による時間尤度は別々に計算さ

れた後に合わせられる。また、複数リングがある場合も同様に個別のリングで計算した後に合わせられる。

2.7.5 バーテックスの prefit

尤度関数を最大化、実際には −lnL(x) を最小化する際に、局所最小値に止まってしまうことがないように、

初期値を適切に決定することが重要になる。そこで fiTQun では、時間の情報だけを用いて、vertex の位置

と hit の時間を大まかに予測して初期値を決定する方法をとっている。予測は、以下の尤度関数を最大化する

vertex の位置 x と hit の時間 t を求めることで行なっている。

G(x, t) :=
hit∑
i

exp(−(T i
res/σ)

2/2)

T i
res := ti − t− |Ri

PMT − x|/cn

パラメータ σ の値が prefit の精度を決定する。prefit は複数回行われ、段々パラメータ空間のグリッドの大き

さと σ の値を小さくしていくことで効率的に高い精度で fit することができる。

2.7.6 1-リング再構成

バーテックスの prefit が終わったら、粒子の方向の初期値を決める。そのために、単位球上に等間隔に設定

された 400 点について尤度を計算する。その次は運動量の初期値を決定するために、まず観測された総電荷か

ら大まかな運動量の値を決め、その後運動量についての尤度スキャンをする。以上のように全てのパラメータ

の初期値を決定したら、全てのパラメータを同時に動かしながら MINIUT パッケージの SIMPLEX アルゴリ

ズムによって −lnL(x) を最小化する。以上で最尤法によって予測された粒子のパラメータが決定される。
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2.8 粒子識別

fiTQun による粒子識別は各粒子仮説ごとの best-fit 尤度関数を比較することによって行われる。例えば、e

と µ は log(Le/Lµ) の値によって識別される。図2.8が PID 尤度関数 log(Le/Lµ) による粒子識別の例を示し

ている。

図2.8 FC １ーリング Sub-GeV(左図),Multi-GeV(右図) イベントの PID 尤度関数（log(Le/Lµ) による

e-like イベントと µ-like イベントの識別。点が観測データ、ヒストグラムが大気ニュートリノ MC を表し

ている [9]

2.8.1 fiTQunによる e/µ識別

fiTQun による e/µ の誤識別率は表2.3のようであった。

運動量

粒子種
e µ

200 MeV/c 0.4 % 0.8 %
500 MeV/c 0.0 % 0.4 %
1000 MeV/c 0.0 % 0.1 %

表2.2 fiTQun による e/µ の誤識別率

また再構成および識別にかかった時間は表2.3のようであった。ただし、この時用いた CPU は Intel(R)
Xeon(R) Gold 6348 CPU @ 2.60GHz であった。

運動量 (MeV/c) 時間 (s/events)
200 85.6
500 136.8
1000 177.9

表2.3 fiTQun により再構成および識別にかかった時間
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2.8.2 fiTQunによる e/π0 識別

e と π0 の場合も log(Le/Lπ0) の値によって識別するが、MC による e と π0 イベントを π0fit によって再構

成された不変質量と log(Lπ0/Le) についてプロットすると図2.9のようになるため、識別には再構成された不

変質量も用いて、
log(Lπ0/Le) < 175− 0.875mπ0(MeV/c2)

を満たす場合に e と判定する。

図2.9 e イベント（左）と π0 イベント（右）　縦軸：対数尤度比　横軸：π0fit によって再構成された不

変質量　マゼンタの線が e と π0 を識別する線

fiTQun による e/π0 の誤識別率は表2.4のようであった。

運動量

粒子種
e π0

200 MeV/c 5 % 2 %
500 MeV/c 12 % 5 %
1000 MeV/c 29 % 16 %

表2.4 fiTQun による e/π0 の誤識別率
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第 3章

畳み込みニューラルネットワーク

本章では畳み込みニューラルネットワーク（CNN）について説明する。CNN は画像処理の分野で幅広く利

用されており、本研究においても CNN の 1 モデルである MobileNetV3 を画像認識に使用している。

3.1 ニューラルネットワーク

ニューラルネットワークとは脳のニューロンの仕組みにヒントを得た機械学習の１種である。ニューラルネ

ットワークは複雑なデータの関係性を捉えることができ、画像認識、音声認識、自然言語処理など多岐に渡っ

て利用されている。

3.1.1 ニューラルネットワークの仕組み

ニューラルネットワークは入力層、一つ以上の隠れ層、出力層から構成されている。各層には複数のニュー

ロンがあり、各ニューロンは前の層のすべてのニューロンからの出力を入力として受け取る。

ニューロン間のつながりは重みを持っていて、前の層からの出力に重みをかけた値とニューラルネットワー

図3.1 簡単なニューラルネットワークの例

ク自身が持つバイアスとの総和を活性化関数によって変換した値が次のニューロンへの出力となる。活性化関

数には sigmoid 関数 f(x) = 1
1+e−x や ReLU 関数 f(x) = max(0, x) が用いられる。
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図3.2 ニューロン間の入出力

3.1.2 ニューラルネットワークの学習

ニューラルネットワークの学習とは訓練データから重みパラメータの値を決定することをいう。その

ために用いられる指標は損失関数と呼ばれ、２乗和誤差 E = 1
2

∑
k(yk − tk)

2, 交差エントロピー誤差

E = −
∑

k tklogyk がよく使用される。ここで yk はニューラルネットワークの出力、tk は教師データ、k は

データの次元数を表す。この損失関数が小さくなるように重みパラメータを学習していく。そのために、各重

みパラメータに関する損失関数の勾配を求め、重みパラメータを勾配方向に微少量だけ更新する。この時の微

少量を学習率と呼ぶ。

3.1.3 パラメータの最適化

3.1.2節での重みパラメータ最適化方法は確率的勾配降下法（SGD）と呼ばれ、以下のように数式で表せる。

W←W− η
∂L

∂W
ここで η は学習率を表す。SGD は単純で実装も簡単だが、関数の形状が等方的でないと非効率な経路で探索

することになる。そのため、問題によっては SGD よりも効率的な最適化法が存在する。ここでは最適化法の

例をいくつか紹介する。

Momentum
Momentum という手法は数式で以下のように表される。

v← αv− η
∂L

∂W
W←W + v

SGD と比べると更新経路のジグザク度合いが軽減される。

AdaGrad
AdaGrad はパラメータの要素ごとに適応的に学習率を調整しながら学習を行う手法。AdaGrad の更新方法

は数式で以下のように表される。

h← h +
∂L

∂W ⊙ ∂L

∂W
W←W− η

1√
h

∂L

∂W
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パラメータの要素の中で大きく更新された要素は、学習係数が小さくなるようにしている。

Adam
Momentum と AdaGrad を融合したような手法。本研究では optimizer に Adam を使用している。Adam

の更新方法を数式で表すと, 減衰パラメータ ρ, ρf ∈ (0, 1) と t 番目の反復で学習率 αt を用いて以下のように

なる。Adam のオリジナル論文では ρ と ρf の初期値をそれぞれ 0.999 と 0.9 に設定することをすすめている。

A← ρA + (1− ρ)(
∂L

∂W )2

F← ρfF + (1− ρf )(
∂L

∂W )

W←W− αt√
A

F

αt = α(

√
1− ρt

1− ρtf
)

3.1.4 正則化

機械学習の問題では過学習が問題になることがよくある。過学習とは訓練データだけに適応しすぎてしま

い、訓練データに含まれない他のデータにはうまく対応できない状態をいう。機械学習では汎化性能が求めら

れるため、過学習を抑制するテクニックが重要になる。

Weight decay
過学習抑制のために使われる手法に Weight decay という手法がある。Weight decay は、すべての重みに

対して損失関数に 1
2λW2 を加算する。これは、学習の過程において大きな重みを持つことに対してペナルテ

ィを課すことで、過学習を抑制しようというもの。

Dropout
Dropout は、ニューロンをランダムに消去しながら学習する手法。訓練時に隠れ層のニューロンをランダム

に選び出し、選出したニューロンを消去する。これは毎回異なるモデルを学習させていると解釈でき、アンサ

ンブル学習と同様の効果を擬似的に一つのネットワークで実現していると考えることができる。

3.1.5 ハイパーパラメータの最適化

ニューラルネットワークでは重みやバイアスといったパラメータとは別に、ハイパーパラメータが数多く登

場する。ここでいうハイパーパラメータとは、例えば、各層のニューロンのサイズやバッチサイズ、パラメ

ータ更新の際の学習率や weight decay など。そのようなハイパーパラメータは、適切な値に設定しなければ、

性能の悪いモデルになってしまう。そのため、ハイパーパラメータの最適化を行うことは重要になる。

3.2 畳み込みニューラルネットワーク

ニューラルネットワークの１種である畳み込みニューラルネットワーク（CNN）は主に画像認識や音声認

識などで利用されている。CNN は図3.1のような全結合層に加えて、特徴的な２つの層、畳み込み層とプーリ
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ング層から構成される。

3.2.1 畳み込み層

全結合層では３次元データを１次元にして入力する必要がある関係上、データの形状が無視されてしまう。

一方、畳み込み層は入力を３次元のデータとして受け取り、３次元のデータとして出力するため、データの形

状を維持できる。

畳み込み演算

畳み込み層で行う処理は畳み込み演算と呼ばれ、画像処理でいうところのフィルター演算に相当する。2 次

元データに対しては２次元のフィルタを用いて積和演算をすることで出力を計算する。CNN の場合、フィル

図3.3 畳み込み演算の例

タのパラメータがこれまでの重みに対応し、これを学習により最適化していく。

畳み込み演算の特徴の一つは並進等価性である。これは、畳み込み全体に渡ってフィルタのパラメータを共有

しているためである。

パディング

畳み込み演算において、出力サイズが入力サイズから縮小されてしまうのを防ぐために、入力データの周囲

に固定のデータ（例えば 0 など) を埋めるパディングという処理を行うことがある。例えば、図3.3でパディン

グの幅を１に設定すれば、出力サイズも (4,4) になってサイズが保たれる。

図3.4 パディングの例

ストライド

フィルターを適用する位置の間隔をストライドという。ストライドを大きくすれば、出力サイズが小さくな

る。
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3.2.2 プーリング層

プーリングとは、縦・横方向の空間を小さくする演算。図3.5は 2× 2 の MaX プーリングをストライド２で

行った場合である。プーリングには Max プーリングの他に Average プーリングなどがあるが、画像認識では

Max プーリングが主に用いられる。

プーリングは入力データの小さなずれに対して、同じような結果を返すため、入力データの微小なずれに対し

てロバストになるという特徴がある。

図3.5 MaX プーリングの例

3.2.3 事前学習

これまで CNN の構成について話してきたが、実際の学習においてはゼロから CNN を構築することはほと

んどなく、ImageNet などの膨大なデータセットですでに学習済みの CNN モデルから学習を始めることが多

い。この手法によって、事前学習の段階でエッジやテクスチャなどの画像分野に汎用性の高い特徴量はすでに

学習されており、自分のタスク固有の特徴量を効率的に学習することができるため、少ない訓練データかつ短

時間で高精度なモデルを構築することができる。

3.3 MobileNetV3
MobileNetV3 は 2019 年に発表された CNN のモデルであり、様々なテクニックによりパラメータ数を削減

することにより、軽量かつ高性能な CNN が実現された。MobileNetV3 の具体的な構成は図3.6に示している。

3.3.1 ボトルネック

ボトルネックとは残差学習で計算量を減らすためのブロック設計のこと。基本構造は

1. 1× 1 畳込み　チャンネル圧縮

2. 3× 3 畳込み　特徴抽出

3. 1× 1 畳込み　チャンネル復元

4. スキップ接続　入力を出力に足す残差学習

からなる (図3.7)。このボトルネック構造により、勾配消失と効率の良い計算が達成される。
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図3.6 MobileNetV3 の仕様

Operator の Bneck は Bottle neck の略。SE は Squeeze and Excitation モジュールをそのブロックで使

用してるか否かを表す。NL は活性化関数を表し、HS は h-swish 関数、RE は ReLU 関数を意味する。

図3.7 ボトルネック構造 [10]

3.3.2 Squeeze and Excitationモジュール

以下の 3 つのステップからなる。

1. squeeze 　各チャンネルの空間情報をグローバル平均プーリングによって１つの数に圧縮して、１次元ベク

トルにする。

2. excitation 　１次元ベクトルを２層の全結合層に通すことで、各チャンネルの重要度を学習する。

3. scaling 　得られた重みを元の入力の各チャンネルに掛け合わせる。

このモジュールによって、入力に応じてどのチャンネルが重要であるかネットワーク自体が適応的に判断する

ため、モデルの精度が向上する。
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図3.8 squeeze and excitation モジュール

3.3.3 h-swish関数

h-swish 関数とは以下で定義される関数。

h-swish(x) = x
ReLU6(x+ 3)

6
ReLU6(x) = min(max(x,0),6)
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第 4章

CNNによる粒子識別の方法

4.1 物理背景

SK では大気ニュートリノや T2K 実験において、νe, νµ を観測するため、νe +N → e +N による e イベ

ント、νµ + N → µ + N による µ イベントを識別できる必要がある。また、T2K 実験によるニュートリノ

ビームによる中性カレント相互作用 ν + N → ν + N + π0 によって生じる π0 が崩壊して生まれる 2γ によ

るイベントもあるため、π0 イベントとの識別も必要になる。そのため、本研究では MObileNetV3 を用いて

e/µ,e/π0,e/γ の識別を行った。本章ではシミュレーションデータの生成方法、データの前処理方法、CNN に

よる学習方法について説明を行う。

4.2 光量調整

粒子識別に先立って、粒子種以外の情報が等価になるように、異なる粒子間においてスーパーカミオカンデ

で検出される平均総光量が等しくなるような粒子の運動量のペアを求めたい。

4.2.1 光量調整の方法

まず、各粒子について運動量と平均総光量の関係を求める

e と π0 については

運動量 p = {100 MeV, 200 MeV, 300 MeV, 400 MeV, 500 MeV},
µ については p = {300 MeV, 400 MeV, 500 MeV, 600 MeV, 700 MeV}の５点について平均総光量を求めて、

運動量と平均総光量の関係をプロットし、１次または２次関数で近似する。

そして、上で求めた関係式から各粒子ペアについて、平均総光量が一致するような運動量の関係式を求める。

最後に電子の運動量 pe が pe = {200 MeV, 500 MeV, 1000 MeV}の時に平均総光量が一致する µ と π0 の運

動量を求める。

4.2.2 光量調整の結果

プロットから求められた運動量と平均総光量 (potot) の関係式は

potot = 9.61 (pe/MeV) + 74.1

potot = 0.00242 (pµ/MeV)2 + 7.37 (pµ/MeV)− 1300
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図4.1 各粒子の運動量と総光量の関係　左上：e、右上：µ、左下 π0

potot = 0.00346 (pπ0
/MeV)2 + 6.43 ∗ (pπ0

/MeV) + 996

上式から平均総光量が一致するような運動量の関係式は

e と µ について

(pe/MeV) = 1

9.61
{0.00242(pµ/MeV)2 + 7.37(pµ/MeV)− 1370}

e と π0 について

(pe/MeV) = 1

9.61
{0.00344(pπ0

/MeV)2 + 6.43(pπ0
/MeV) + 922}

よって pe = {200 MeV, 500 MeV, 1000 MeV}の時に平均総光量が一致する µ と π0 の運動量は、

表4.1 各粒子種の平均総光量が等しくなるような運動量

平均総光量

粒子種
e µ π0

2000 p.e. 200 MeV/c 396 MeV/c 146 MeV/c
4880 p.e. 500 MeV/c 685 MeV/c 480 MeV/c
9700 p.e. 1000 MeV/c 1154 MeV/c 991 MeV/c

4.3 シミュレーションデータ生成

シミュレーションデータの生成は、SKdetsim(SK のシミュレーションプログラム) で e,µ,γ,π0 それぞれを

10,000 events ずつ生成した。この時、運動量は表4.2の通り各粒子３パターンずつで、バーテックスは有効体

積内 (壁から 2m 以上離れた領域) でランダム、粒子の方向もランダムとした。
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平均総光量

粒子種
e µ γ π0

2000 p.e. 200 MeV/c 396 MeV/c 200 MeV/c 146 MeV/c
4880 p.e. 500 MeV/c 685 MeV/c 500 MeV/c 480 MeV/c
9700 p.e. 1000 MeV/c 1154 MeV/c 1000 MeV/c 991 MeV/c

表4.2 生成した各粒子の運動量

ここで運動量を決定した方法は、節4.2で見たように各粒子イベントでの平均総光量が一致するようにして

決定した。図4.3が SKdetsim で生成したイベントディスプレイの例である。e は電磁シャワーを発生させるた

め、µ と比べてリングの輪郭がぼやけている。γ も最初以外は e と同じ物理過程でシャワーを発生させるため、

e と同様のリングになる。π0 については検出器内で 2 つの γ に崩壊するため、リングが２つ検出される。

図4.2 SKdetsim で生成したイベントの例。左上が e イベント, 右上が µ イベント、左下が γ イベント、

右下が π0 イベントに対応する。4 つの粒子ともバーテックスは中心、粒子の運動量方向は斜め下にした

4.4 データの前処理

SKdetsim の出力ファイル（dat 形式）を CSV 形式に変換した後、CSV 形式から hdf5 形式に変換した。

hdf5 形式に変換する際に hit time の情報は落として、hit charge の情報のみをファイルに保存して, 粒子識別

には hit charge の情報のみを使用した。この際、SK の円筒展開図から 224× 224 の正方形の画像に変形して

CNN の入力にするために、側面はそのままに上面と底面を極座標表示によって四角に変形して側面の上下に

貼り付けるという変換を行った。（図4.3、図4.4）
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図4.3 上底面を長方形に変換する方法

図4.4 円筒画像から正方形画像への変換

その後、それぞれ 10,000 eventsの異なる２粒子のイベントセットを 7 : 3の割合で train dataと validation
data にランダムに割り振り、各粒子の train data 同士、validation data 同士を結合させた。

4.5 ハイパーパラメータの調整

CNN のモデルを決定する際には、３章で説明したように悪いモデルにならないようにハイパーパラメータ

の調整を行う必要がある。ここではいくつかの異なる learning rate と weight decay の値で e と µ の識別を

行なって各モデルでの accuracy を計算し、最適なハイパーパラメータを求めた。この時、pe = 500 MeV と

した。また、learning rate と weight decay の値は表4.3のように変化させた。

Wd
Lr

0.0001 0.001 0.01

0.00001 model 1 model 2 model 3
0.0001 model 4 model 5 model 6
0.001 model 7 model 8 model 9

表4.3 ハイパーパラメータの調整のための各モデル　 Lr は learning rate 　 Wd は weight decay の略

得られた結果は図4.5のようであった。ここで各モデルの accuracy は 96 ∼ 100 epoch の accuracy を平均

した値をとった。
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図4.5 ハイパーパラメータ調整　各モデルの accuracy

図4.5からわかるように明らかに model 6 と model 9 の性能が悪く、他のモデルはいずれも accuracy が

0.99 を超えている。このため、model 6 と model 9 に共通する learnig rate の値 0.01 が悪さをしていると判

断して、learning rate には一つ小さな値 0.001 を採用し、Weight decay は調べた範囲では accuracy に影響

がなかったため、真ん中の値 0.0001 を採用した。すなわち、本研究ではモデル 5 のハイパーパラメータであ

る、Lr = 0.001,Wd = 0.0001 を選択した。

4.6 CNNによる学習
表4.4に示したモデルとハイパーパラメータで train data について学習を行った。学習を行ったモデルと各

ハイパーパラメータは表4.4に示されている。

model mobilenetv3_large_100.ra_in1k
criterion BCEwithLogitsLoss
optimizer AdamW
batch size 32

learning rate 0.001
weight decay 0.0001

epochs 100

表4.4 CNN のモデルとハイパーパラメータ

学習の結果得られた 0 ∼ 100までの各 epochのモデルを用いて、train data と validation data で e と µ の

識別を行い、それぞれの dataset についての accuracy を計算した。ここでの accuracy の定義は

(e と判定された真の e イベント数)+ (µ と判定された真の µ イベント数)
全イベント数

である。また前節で見たように、laerning rate と weight decay の値は調整を行なって決定した。
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第 5章

CNNによる粒子識別の結果

5.1 eと µの識別

CNN による e と µ の識別の acuuracy の各 epoch における値は図5.1∼5.3のようになった。また、最終的

な accuracy の値は表5.1に示した。図5.1からわかるように、pe = 200 MeV/c では valid data の accuracy
について、0 epoch から 0.9 とかなり高いもののおおよそ 40 epoch までは epoch ごとの accuracy のふら

つきが大きく、40 epoch 以降はほとんど安定して accuracy の値は 0.98 程度で落ち着いている。一方で、

pe = 500, 1000 MeV/c では、train,valid data ともに 0 epoch から accuracy が 1.0 と非常に高く 100 epoch
まで安定している。運動量に関わらず accuracy に時々見られる下向きのスパイクは MobileNet 固有のもので

ある。

pe(MeV/c) pµ(MeV/c) accuracy at 100 epoch
200 396 0.98± 0.01

500 685 1.00± 0.01

1000 1154 1.00± 0.01

表5.1 e と µ の運動量のペアと 100 epoch でのモデルによる e/µ の識別正答率

5.2 eと γ の識別

CNN による e と γ の識別の結果は図5.4∼5.6のようになった。また、100 epoch における accuracy は

表5.2に示した。

e の運動量 γ の運動量 accuracy at 100 epoch
200 MeV/c 200 MeV/c 0.52± 0.01

500 MeV/c 500 MeV/c 0.51± 0.01

1000 MeV/c 1000 MeV/c 0.49± 0.01

表5.2 e と γ の運動量のペアと 100 epoch でのモデルによる e/γ の識別正答率

図5.4∼5.6からわかるように、いずれの運動量においても train data は 0 epoch では accuracy が 0.5 であ
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図5.1 運動量 200 MeV/c の eと運動量 396 MeV/c
の µ の識別における accuracy

図5.2 運動量 500 MeV/c の eと運動量 685 MeV/c
の µ の識別における accuracy

図5.3 運 動 量 1000 MeV/c の e と 運 動 量

1154 MeV/c の µ の識別における accuracy

るものの 20 epoch 学習した段階では 0.9 を超え、100 epoch ではほぼ 1 となっているが、一方で valid data
は最初から最後までほぼ 0.5 のままであり、学習がうまくいかず過学習が起きていると言える。

5.3 eと π0 の識別

CNN による e と π0 の識別の結果は図5.7∼5.9のようになった。また、100 epoch における accuracy は

表5.3に示した。図5.7∼5.9からわかるように、train data はいずれの運動量でも accuracy の値について、

0 epoch における 0.6 ∼ 0.8 から学習が進み 100 epoch ではほぼ１を達成している一方で、valid data の

accuracy は運動量 200 MeV/c では 0.95, 運動量 500 MeV/c では 0.75, 運動量 1000 MeV/c では 0.7 と train
data よりも低く、e/π0 でも過学習が起きていると言える。また、運動量が大きくなるほど valid data の

accuracyが下がっている。これは、π0 が崩壊するときに２つの γ が出て SKでは 2リングが観測されるが、π0

の運動量が高いほど２つの γ の運動量方向が一致しやすく、すなわち２つのリングが重なりやすくなるために、

e と一つの γ の識別に近づき、識別の accuracy が低くなると考えられる。参考のために、pe = 500 MeV/c
の時の e, π0 それぞれの誤識別率は表5.4のようであった。ただし、この結果は epoch によって少し安定しない

ため 96∼100 epoch の平均値をとった。
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図5.4 運動量 200 MeV/c の eと運動量 200 MeV/c
の γ の識別における accuracy

図5.5 運動量 500 MeV/c の eと運動量 500 MeV/c
の γ の識別における accuracy

図5.6 運 動 量 1000 MeV/c の e と 運 動 量

1000 MeV/c の γ の識別における accuracy

e の運動量 π0 の運動量 accuracy at 100 epoch
200 MeV/c 146 MeV/c 0.95± 0.01

500 MeV/c 480 MeV/c 0.77± 0.01

1000 MeV/c 991 MeV/c 0.70± 0.01

表5.3 e と π0 の運動量のペアと 100 epoch でのモデルによる e/π0 の識別正答率

e π0

0.74± 0.01 0.81± 0.01

表5.4 e, π0 それぞれの accuracy 　 pe = 500 MeV/c での 96∼100 epoch での平均値
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図5.7 運動量 200 MeV/c の eと運動量 146 MeV/c
の π0 の識別における accuracy

図5.8 運動量 500 MeV/c の eと運動量 480 MeV/c
の π0 の識別における accuracy

図5.9 運 動 量 1000 MeV/c の e と 運 動 量

991 MeV/c の π0 の識別における accuracy
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第 6章

考察

6.1 fiTQunと CNNの性能比較
6.1.1 accuracyの比較

CNN による粒子識別の精度を fiTQun による粒子識別の精度と比較すると表6.1のようになる。表6.1か

pe(MeV/c) e/µ by CNN e/µ by fiTQun e/π0 by CNN e/π0 by fiTQun e/γ byCNN
200 0.98± 0.01 0.94± 0.01 0.95± 0.01 0.96± 0.01 0.52± 0.01

500 1.00± 0.01 0.98± 0.01 0.77± 0.01 0.91± 0.01 0.51± 0.01

1000 1.00± 0.01 1.00± 0.01 0.70± 0.01 0.77± 0.01 0.49± 0.01

表6.1 CNN と fiTQun による粒子識別の accuracy の比較

らわかるように e/µ の accuracy は CNN の方が良い一方で、e/π0 の accuracy は pe = 500, 1000 MeV/c
で fiTQun の方が 0.1 程度高くなっている。また、CNN による e/γ の識別はうまくいかなかった。CNN と

fiTQun での accuracy の違いは、おそらく画像認識の精度は CNN の方が高いために PMT の電荷の情報だ

けで識別できる場合は CNN の方が accuracy が高くなる一方で、今回 CNN には含んでいない時間の情報を

fiTQun が含んでいるために、電荷の情報だけでは区別しにくく時間の情報が識別に必要な場合は fiTQun の

方が accuracy が高くなると考えられる。すなわち、e/µ は電荷だけでほとんど識別できるため CNN の方が

accuracy が高く、e/π0 の γ の２リングがほとんど重なっているイベント群は電荷だけでは識別が難しいため

fiTQun の方が accuracy が高くなったと考えられる。

6.1.2 CNNによる識別に要する時間

ここでは、MobileNetV3 を用いた e/µ, e/π0 識別の評価にかかる時間を pe = 200, 500, 1000 MeV/c につ

いて測定した。この時 GPU は Ndivia A100 40GB を用いた。測定結果は表6.2のようであった。また、各モ

デルの学習にかかった時間は約 10 時間程度 (100 epoch) であった。

6.1.3 計算時間の比較

識別にかかる時間についても CNN と fiTQun で比較すると表6.3のようである。fiTQun については粒子識

別に再構成も含まれているため単純な時間の比較は難しいが、粒子を識別するという用途に限れば CNN の方
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pe(MeV/c) e/µ の識別時間 (s/events) e/π0 の識別時間 (s/events)
200 0.020 0.020
500 0.024 0.020
1000 0.020 0.011

表6.2 CNN による計算時間

pe (MeV/c) e/µ by CNN (s/event) e/π0 by CNN (s/event) fiTQun (s/event)
200 0.020 0.020 85.6
500 0.024 0.020 136.8
1000 0.020 0.011 177.9

表6.3 CNN と fiTQun による粒子識別に要する時間の比較

が圧倒的に計算時間が短いことがわかる。

6.2 光量の角度分布

6.2.1 粒子による光量の角度分布の違い

本節では粒子ごとの光量の角度分布の違いから、粒子識別での accuracy の違いの説明を試みる。ここでの

角度とは粒子の運動量方向とバーテックスから各 PMT を結んだ直線がなす角のことを意味する。また、各

PMT で検出された電荷を光量とみなしている。図6.1が光量の角度分布について電子と各粒子での比較をした

図である。ここで青線が電子、赤線が他の粒子に対応している。右上の e と µ の図では、µ の方が 42◦ 付近の

光量のエッジがはっきりしており、42◦ 以上の角度で e と µ の光量の違いがはっきりとわかる。一方で、左下

の e と γ の図では互いの光量分布がほとんど重なっており違いが見られない。また、右下の e と π0 の図につ

いては、e の方がピークが鋭くなっているものの、ピーク以外の部分では光量に大きな違いはない。

以上より、e と µ では広い角度範囲で光量に違いあるため CNN によってほぼ完全に識別することができた

が、e と γ では光量の角度分布全体が一致しているために CNN によっても識別することができなかったと説

明できる。また、e と π0 は角度光量分布のピーク位置での光量の差はあるが、e と µ ほど広い角度範囲の差で

はないために CNN による粒子識別の accuracy が 75 % 程度に収まってしまったと考えられる。

6.2.2 運動量による光量の角度分布の違い

本節では e と π0 の光量角度分布について、運動量

(pe, pπ0) = {(200 MeV/c�146 MeV/c), (500 MeV/c, 480 MeV/c), (1000 MeV/c, 991 MeV/c)}
の３組での違いから粒子識別の accuracy の違いの説明を試みる。図6.2が角運動量での光量角度分布を表して

いる。図からわかるように運動量が高いほど互いの光量角度分布の差が小さくなっており、これは CNN によ

る粒子識別の accuracy が運動量が高くなるほど低くなることに対応しているといえる。

41



h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

240

310× h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

Charge vs angle 
h_qang_0

Entries    1.931626e+07

Mean    60.39

RMS     32.86

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

240

310× h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

Charge vs angle 

h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

240

310× h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

Charge vs angle 
h_qang_0

Entries    1.931626e+07

Mean    60.39

RMS     32.86

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

240

310× h_qang_0
Entries    1.931626e+07

Mean    60.39

RMS     32.86

Charge vs angle 

図6.1 e の光量角度分布（青線）と µ, γ, π0 の光量角度分布（赤線）　左上：e のみ、右上：e と µ、左下：

e と γ、右下:e と π0 　運動量は (pe, pµ, pγ , pπ0) = (500 MeV/c�685 MeV/c�500 MeV/c�480 MeV/c)
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図6.2 e の光量角度分布（青線）と π0 の光量角度分布 (赤線) 　左上：pe = 200 MeV/c 　右上：

pe = 500 MeV/c 　左下：pe = 1000 MeV/c
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本研究では SK での粒子識別の精度および計算時間の向上を目的として、CNN の 1 モデルである

MobileNetV3 を用いて SK のシミュレーションデータにおける e/µ, e/γ, e/π0 の粒子識別を行った。シミュ

レーションデータは各粒子 10000 events ずつ生成し、MobileNetV3 によって 100 epochs の学習を行なった。

学習結果は e/µ の識別率が 1.0 程度まで識別でき、e/π0 の識別率は 70% から 90% で運動量が上がるほど識

別率が下がった。e/γ については識別率が約 0.5 と識別がうまくいかなかった。また、識別にかかった時間は

1event あたり約 0.02 秒であった。

CNN による識別結果を fiTQun の結果と比較すると、　 accuracy については e/µ は CNN が上回ったが、

e/π0 は CNN が下回る結果となった。識別にかかる時間は CNN の方が約 1/10000 と非常に速い結果にな

った。

また、本研究で光量の角度分布から粒子識別における accuracy の違いの説明を試み、実際光量の角度分布

から粒子の違いおよび運動量の違いによる accuracy の差を定性的に説明をすることができた。

以上から、CNN はこれまで用いられてきた fiTQun に比べて非常に短い時間で粒子識別を行うことができ

ると言える。そのため、より計算コストの低いプログラムが必要となるハイパーカミオカンデ実験において

CNN を用いたイベントの解析を行うことが考えられる。

今後の展望としては、より計算コストが高い CNN である ResNet などのモデルを用いることで accuracy
の向上を図ることが期待される。粒子識別以外に運動量やバーテックスも機械学習によって求めることで、

fiTQun が行なっている事象再構成を置き換えることができることも考えられる。
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