観測的宇宙論グループ (A8サブコース 大内研)

東京大学宇宙線研究所 大内 正己

メンバー

教授大内正己

助教 小野 宜昭、播金優一

秘書(兼)...... 井戸村 貴子

研究員........青山尚平、Chris Lovell

学生 磯部優樹、張也弛、孫東昇、

徐弈、梅田滉也、松本明訓

宇宙史

(3つの未解決問題)

3) 宇宙大規模構造形成? (銀河形成と化学進化)

宇宙の歴史(模式図)

未知の4億年


2) 宇宙再電離史? (再電離源)

1) 初期宇宙の熱史、 初代天体形成?

ビッグバン・

現在(138億年)

大口径望遠鏡

ALMA (ESO/国立天文台/NRAO)

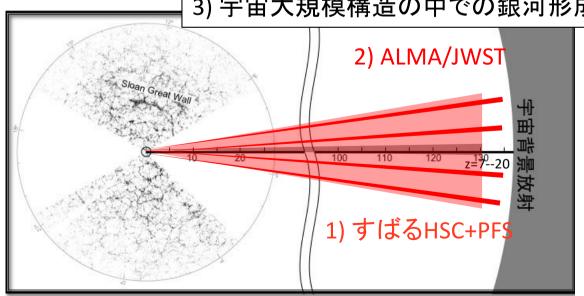
研究活動

観測準備風景(©NHK)

観測

- すばる望遠鏡(ハワイ)
- ケック望遠鏡(ハワイ)
- ハッブル宇宙望遠鏡(→軌道上)
- ALMA望遠鏡(→チリ)
- 国内/国際会議
 - アメリカ、ドイツ、イタリア、スイス、イギリスなど含む

今後5年間の研究(2023-2028年) 2つの柱

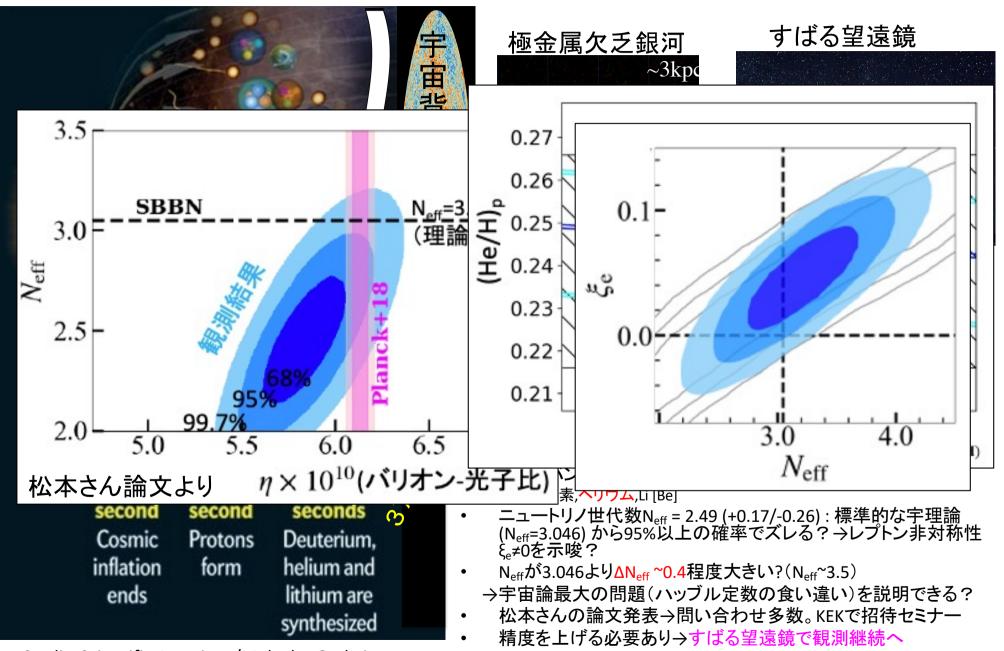

- 1) すばるHSCと次世代PFSの広域深宇宙探査 (Tokyo, NAOJ, PU, Taiwan etc)
- 2) ALMAやJWST等による高感度深宇宙探査 (U. Tokyo, University of California etc.)

未解決の問題

- 1) 初期宇宙の熱史/初代天体形成
- 2) 宇宙再電離史と再電離源
- 3) 宇宙大規模構造の中での銀河形成と化学進化

研究テーマ(学生)

- 張也弛: HETDEX広域面分光観測による超巨大ブラックホールの宇宙進化
- 磯部優樹:すばるとJWSTの可視光-近赤外線分光で迫る銀河形成
- 孫東昇: すばるとSDSS, HETDEXで明かすz=2宇宙大規模構造とAGNの電離
- 徐弈:マゼラン望遠鏡の分光データを用いた小質量銀河のアウトフロー
- 梅田滉也:すばるとJWST、MWA 21cm電波観測で探る宇宙再電離
- 松本明訓:原始 He 質量比による初期宇宙(t~1秒)の熱史と新素粒子の探索

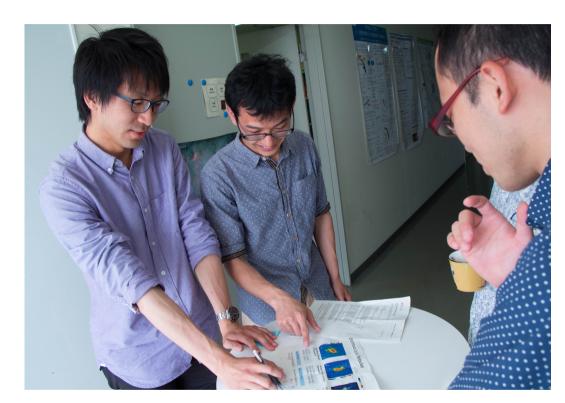

研究テーマ(学生)

- 張也弛: HETDEX広域面分光観測による超巨大ブラックホールの宇宙進化
- 磯部優樹:すばるとJWSTの可視光-近赤外線分光で迫る銀河形成
- 孫東昇: すばるとSDSS, HETDEXで明かすz=2宇宙大規模構造とAGNの電離
- 徐弈:マゼラン望遠鏡の分光データを用いた小質量銀河のアウトフロー
- 梅田滉也:すばるとJWST、MWA 21cm電波観測で探る宇宙再電離
- 松本明訓:原始 He 質量比による初期宇宙(t~1秒)の熱史と新素粒子の探索

研究テーマ(学生)

- 張也弛: HETDEX広域面分光観測による超巨大ブラックホールの宇宙進化
- 磯部優樹:すばるとJWSTの可視光-近赤外線分光で迫る銀河形成
- 孫東昇: すばるとSDSS, HETDEXで明かすz=2宇宙大規模構造とAGNの電離
- 徐弈:マゼラン望遠鏡の分光データを用いた小質量銀河のアウトフロー
- ・ すばるとJWST、MWA 21cm電波観測で探る宇宙再電離
- 松本明訓:原始 He 質量比による初期宇宙(t~1秒)の熱史と新素粒子の探索

ビッグバン宇宙に残された謎



Credit: Scientific American/Malcolm Godwin

研究室の日常風景

教員とのマンツーマンのミーティング

学生同士の研究の議論

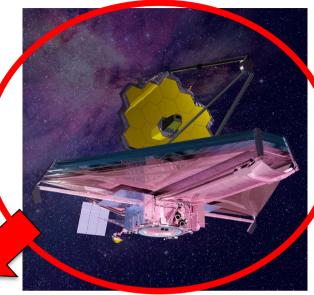
「アフターコロナ」の現在は、対面とonlineのhybrid

卒業生の進路

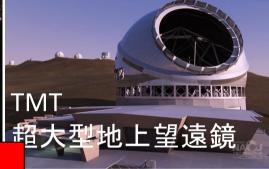
・ 15名の卒業生。進路の例

研究職

- 藤本征史(2019): ニールス・ボーア研究所(デンマーク)
- 播金優一(2019): NAOJ/ロンドン大学→東大ICRR
- 張海浜(2020):清華大学
- 一菅原悠馬(2020): 早稲田大学


民間•官公庁

- 内藤 嘉章(2015): Ernst & Young
- 玉澤裕子(2016): 富士通→高エネルギー研・広報
- 向江史朗(2020): 資生堂
- 小島崇史(2020): 警察庁


1) すばるHSC/PFS探査

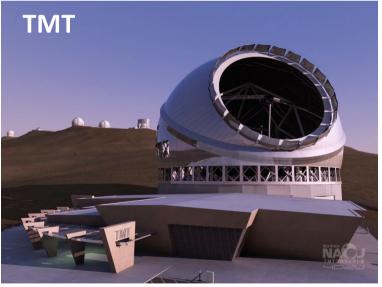
将来の研究 (博士取得後)

2) JWST/ALMA探査

10年後 TMT (2030年頃) Roman 宇宙望遠鏡超大型地上望遠鏡

20年後 (2040年頃)

まとめ


- 宇宙史の研究(初期宇宙、大規模構造、銀河形成など)
- 大型望遠鏡による観測(すばる,ハッブル,ALMA等)
- 最近の学生さんの研究(1つの例)

JWSTを使った研究、約10年後のTMT, Roman ST, そして約20年後の次世代超大型宇宙望遠鏡(LUVOIR等)へ

バーチャルLabでお話しましょう

今年7月初期データ公開 大型宇宙望遠鏡

2030年頃完成予定超大型地上望遠鏡

2040年頃(計画)超大型宇宙望遠鏡