東京大学宇宙線研究所 理論グルーフ

 $\phi * j$ $2 cg^2 D(q)$

 $\frac{1}{2}eR + eg_{ij*}\tilde{D}$ $\mu \phi^{i}\tilde{D}\mu$ (宇宙論) 川崎雅裕 (素粒子論) 伊部昌宏

10

\$1Mg

EOMD MXI + CEMUPO JU DO JUD $F_{(ab)} F_{(a)}^{(a)} F_{(b)}^{(a)} + \frac{1}{8} e_{e^{\mu\nu\rho\sigma}} f_{(ab)} F_{(ab)}^{(a)} F_{(ab)}^{$ $(3名)_{\mu b}$ D: $(6名)_{\alpha}$ 为 (α) 为 (α) 为 (α) 为 (α) (α)

理論グループの研究

- 物質は究極的には何から出来ているのか?
- 相互作用の基本法則は何か?

- 宇宙は何でできているのか?
- 宇宙はどのように始まりそして進化して来たのか?
- 宇宙は今後どうなって行くのか?

これらの疑問に答える理論を考えるのが理論グループの研究です

標準模型を越える物理?

- •標準模型は最終理論か?
- ヒッグスの質量の起源は?
- ニュートリノの質量の起源は?
- 宇宙の物質反物質非対称性の起源は?
- 暗黒物質は何か?

- 標準模型では電磁力と弱い力が統一された。更なる統一は期待出来るか?
- 超対称性?

究極の理論への道は遠く、 まだまだ考えることが沢山ある!

宇宙初期

- ビッグバン標準宇宙論
 - 宇宙が誕生して約1秒から現在までの宇宙の進化を正しく記述する
- インフレーション宇宙モデル
 - さらに初期の宇宙を記述し標準モデルを補う
 - 宇宙の平坦さ(宇宙が長生き)を説明
 - 宇宙が因果律を超えて一様に見えることを説明
 - 銀河の種(密度揺らぎ)を説明
 - •最近の宇宙背景放射の観測からインフレーションの証拠

誕生直後 (10-36 秒)の宇宙を理解できる時代になった

宇宙論の問題

- インフレーションを起こす素粒子モデル
- 宇宙の物質・反物質非対称性
- ダークマター・ダークエネルギー

宇宙論と素粒子論はもはや切り離せない!

http://map.gsfc.nasa.gov

宇宙論の問題

EHT による M87 BH の画像 (質量 ~10°M_☉)

重力波観測を通じて太陽質量の数十倍の重いブラックホールが発見 銀河中心には **10³⁻⁹M**_☉の巨大ブラックホールが存在

巨大ブラックホールの起源は未だ不明...

インフレーションなどの初期宇宙に起源?

研究例 1:インフレーションや原始ブラックホールに関する研究 (cf. 2017 Inomata (当時D1), Kawasaki, Mukaida, Yanagida)

✓ <u>原始ブラックホール</u>

O(1)の揺らぎ $\delta = (\rho - \rho_{average})/\rho_{average}$ がハッブルホライズン H^{-1} に入ると

Collapsed objects : Mass ~ 4π/3 ρ H⁻³ ~ M_{SUN} (T/0.2GeV)²

シュワルツシルト半径 G Mass ~ H⁻¹ が object 半径を超える→原始ブラックホール

暗黒物質の候補??

✔ 例えば揺らぎのタネはインフレーションでつくる

✓ <u>原始ブラックホール暗黒物質</u>

✓ 様々な観測から原始ブラックホールの存在量は厳しく制限されている...
 ✓ 初期密度ゆらぎのスペクトルに対しても様々な制限
 ✓ 模型を上手につくると制限と矛盾ないPBH 暗黒物質模型も可能
 ✓ LIGOで見つかった 30 M_{SUN} 程度の質量のブラックホールも同時に説明可能!
 (川崎研は原始ブラックホールの理論研究でも世界をリードしています)

研究例 2:Axion 模型と新たなタイプの Cosmic String 2020 Hiramatsu, Ibe, Suzuki

標準模型における強い CP の破れの問題

✓ QCD には CP の破れを起こすパラメータ θ が許される = strong CP

$$\mathcal{L}_{\rm SM} \ni \frac{g_s^2}{32\pi^2} \theta G^{\mu\nu} \tilde{G}_{\mu\nu}$$

✓ 強い相互作用の CP の破れは中性子にスピンに比例する電気双極子を誘導

実験的には全く見つかっていない!

 $d_n/e \sim 10^{-15} \,\theta \, \text{cm}$ [1979 Crewther, Veccia, Veneziano, Witten] $d_n/e < 2.9 \, x \, 10^{-26} \, \text{cm} @ 90\% \text{CL} [hep-ex/0602020] \rightarrow \theta < 10^{-11}$

なぜ **θ** がこんなに小さいのか? = Strong CP problem

研究例 2: Axion 模型と新たなタイプの Cosmic String 2020 Hiramatsu, Ibe, Suzuki

✓ QCD に対し量子アノマリーを持つ U(1) 対称性が存在すれば解決できる [1977 Peccei & Quinn]

$$\mathcal{L}_{\rm SM} \ni \frac{g_s^2}{32\pi^2} \theta G^{\mu\nu} \tilde{G}_{\mu\nu} \qquad \qquad \mathcal{L}_{\rm SM} \ni \frac{g_s^2}{32\pi^2} \theta G^{\mu\nu} \tilde{G}_{\mu\nu}$$

(異なる θ を持つ理論同士が等価になるため $\theta = 0$ とも等価)

✓ QCD にはもそのような対称性はない = 自発的に破れている

Axion = Goldstone Boson が存在するはず!

Axion は暗黒物質の候補

研究例 2:Axion 模型と新たなタイプの Cosmic String 2020 Hiramatsu, Ibe, Suzuki

✓ 量子アノマリーを持つ U(1) PQ 対称性は本当に存在するのか?

量子重力まで考えるとゲージ対称性以外は不自然

量子アノマリーがあるとゲージ対称性には出来ない

✓ ゲージ対称性でプロテクトした U(1) PQ 対称性なら可能

1992 Barr, Seckel see also 2017, Fukda, Suzuki, Yanagida and MI

(標準模型における偶然対称性=バリオン対称性など同様な仕組み)

✓ U(1) 対称性の破れ→ Cosmic String が形成

Cosmic String 形成は 宇宙論を議論するのに重要

研究例 2: Axion 模型と新たなタイプの Cosmic String 2020 Hiramatsu, Ibe, Suzuki

✔ ゲージU(1)XU(1)pq 模型における Cosmic String の Simulation

普通の Cosmic String の衝突 = Reconnection

http://numerus.sakura.ne.jp/research/open/NewString3D/

研究例 2: Axion 模型と新たなタイプの Cosmic String 2020 Hiramatsu, Ibe, Suzuki

✔ ゲージU(1)XU(1)pq 模型における Cosmic String の Simulation

新しいタイプの Cosmic String の衝突

横から

この模型の Cosmic String network の evolution は非常に複雑 宇宙論的に問題の無い ゲージ U(1) X U(1)_{PQ}模型の可能性を明らかにした <u>http://numerus.sakura.ne.jp/research/open/NewString3D/</u>

理論グループの成果

- ・多岐にわたる
- ・データベース(INSPIRE)で検索してください

http://inspirehep.net/

find ea Kawasaki, Masahiro or ea Ibe, Masahiro

• 最近の理論グループ全体の論文数

2011	2012	2013	2014	2015	2016	2017	2018	2019
23	37	36	34	40	21	25	27	26

1人当たり毎年約2-3編

理論グループの特徴

- •素粒子・宇宙の研究室が一体的に運営
 - ・セミナーは共通、学生は同じ部屋 (水曜日: ランチ・ジャーナル、金曜日: コロキウム)
 - •素粒子と宇宙の両方に興味がある学生に最適
- 閑静な柏キャンパス
- 数物連携宇宙研究機構(IPMU)
 - ・IPMUの人々との積極的に共同研究しています。
 - IPMU の学生との共同のゼミ等があります。

サブコース:川崎(宇宙論)A5、伊部(素粒子論)A1

進学後の道のり

- M1~M2
 - •基礎勉強(とても大事) 場の理論、宇宙論
 - 講義(本郷) M1前半は本郷中心の生活
 - 教科書や論文を読むゼミ@柏 or 本郷
 - •興味のある分野の論文を読む hep-ph, astro-phをチェック
- D1~D3

- 修士論文の内容は学術雑誌に発表
- 独立した研究者になる
 自ら研究課題
 - ・博士論文を完成

自ら研究課題を見つけ研究を 遂行する ● ゼミに使う教科書の例

最近の修士課程の学生の研究例

Formation of supermassive primordial black holes by Affleck-Dine mechanism

Masahiro Kawasaki^{*a,b*} Kai Murai^{*a,b*}

Big Bang Nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe

Graciela B. Gelmini,^a Masahiro Kawasaki,^{b,c} Alexander Kusenko,^{a,c} Kai Murai,^{b,c} Volodymyr Takhistov^a

Cosmological Constraint on Dark Photon from $N_{\rm eff}$

Masahiro Ibe $^{a,b},$ Shin Kobayashi a, Yuhei Nakayama a and Satoshi Shirai b

卒業後の進路

修士	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	R1
進学	3	3	1	2	1	2	2	2	2	3	1
就職	0	1	0	0	0	1	0	0	2	0	0

博士	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	R1
研究 職	2	1	0	1	2	0]]]]	2
就職	0	0	0	1	1	0	0	0	1	1	0

- 大学院で何を学び、研究するかは人生における重要な 選択なのでよく調べて決めてください
- ●興味のある方は午後のオンライン研究室訪問にお越しください。
- ●申し訳ありませんが伊部は15時45分までです。。。