

最高エネルギー宇宙線

- Telescope ArrayとPierre Auger Observatory
- ・TA×4計画と拡張TA
 ・TA史上最高エネルギー宇宙線
 ・今後

高エネルギー宇宙線研究部門/TA実験前代表 荻尾 彰一

予習をするなら

グラフ用紙(片対数グラフ用紙)に手書きでプロットする実習をします。 データ点と用紙は次ページに貼り付けておきます。

グラフ用紙への手書きプロットについて、不慣れな方は以下を参考に <u>https://jikken.ihe.tohoku.ac.jp/science/advice/make-graphs.html</u>

実習で使うデータとグラフ用紙

(グラフ用紙はA4に印刷すると良いです)

log(E/eV) J [eV^{-1} m^{-2} sr^{-1} s^{-1}]

- 18.25 3.434e-31
- 18.35 1.625e-31
- 18.45 7.378e-32
- 18.55 3.508e-32
- 18.65 1.724e-32
- 18.75 8.445e-33
- 18.85 4.636e-33
- 18.95 2.468e-33
- 19.05 1.376e-33
- 19.15 7.481e-34
- 19.25 4.136e-34
- 19.35 2.111e-34
- 19.45 9.884e-35
- 19.55 5.634e-35
- 19.65 2.720e-35
- 19.75 1.827e-35
- 19.85 7.745e-36
- 19.95 2.475e-36
- 20.05 1.568e-36
- 20.15 1.233e-37
- 20.25 1.931e-37

最高エネルギー宇宙線研究で 解明したいこと

大きなエネルギーはどこまで?

・その仕組み=宇宙最大の 高エネルギー現象とは?

③どのくらいの到来頻度?

③どのくらいの到来頻度?

大きなエネルギーはどこまで? 観測史上最高エネルギーは 300,000,000,000,000,000,000eV = 3かける10の20乗= 3×10²⁰

最高エネルギー

于由線

288

①そのエネルギーは? = 3×10²⁰eV 可視光より20桁以上大きい (観測史上最高記録)

②その源は?

③どのくらいの到来頻度?

③どのくらいの到来頻度?

①そのエネルギーは? = 3×10²⁰eV 可視光より20桁以上大きい (観測史上最高記録)

②その源は?

?わかっていません

③どのくらいの到来頻度?

候補は考えられているでしょ?

3×10²⁰ eVは、 とんでもない高エネルギーなので、 候補となる宇宙現象は限られている (宇宙物理学の常識では…)

銀河と銀河の衝突

衝突しているNGC4038(左)とNGC4039(右)

NASA, ESA Hubble Composition & © Domingo Pestana

①そのエネルギーは? = 3×10²⁰eV 可視光より20桁以上大きい (観測史上最高記録)

②その源は?

?わかっていません 候補は 銀河と銀河の衝突、など

③どのくらいの到来頻度?

①そのエネルギーは? = 3×10²⁰eV 可視光より20桁以上大きい (観測史上最高記録)

②その源は?

?わかっていません 候補は 銀河と銀河の衝突、など

③どのくらいの到来頻度?

実際にグラフをプロットしてみよう!

どれくらいの頻度でやってくる?

300,000,000,000,000,000,00 eV というとんでもない高エネルギー粒子

到来頻度は、1km²に100年に1個 ←とても少ない!

1,000km²ってどれくらい?

①東大柏キャンパス 0.2 km²
 ②文京区 11 km²
 ③柏市 110 km²
 ④東京23区 630 km²
 ⑤琵琶湖 700 km²

①そのエネルギーは?
 = 3×10²⁰eV
 可視光より20桁以上大きい
 (観測史上最高記録)

②その源は?

?わかっていません 候補は 銀河と銀河の衝突、など

④どうやってつかまえる(見る)?

③どのくらいの到来頻度?

とても少ない! ~1km²に100年に1個 ①そのエネルギーは?
 = 3×10²⁰eV
 可視光より20桁以上大きい
 (観測史上最高記録)

②その源は?

?わかっていません 候補は 銀河と銀河の衝突、など

③どのくらいの到来頻度?

とても少ない! ~1km²に100年に1個

空気の厚さにして100g/cm² 進むごとに粒子を多重 (5個くらい)生成(ざっくりすぎる説明だけど)

大気の底で1000億個の放射線

大気上空で1020eVの宇宙線

「空気シャワー」

大気の底=地上に到来するこれらの粒子たちを とらえればよい

方法① 地上に落ちてきた 空気シャワー粒子 をつかまえる

放射線検出器を地上にならべる

方法① 地上に落ちてきた 空気シャワー粒子 をつかまえる

放射線検出器を地上にならべる

方法② このあたりの空気が光る

大気の発光を検出する

夜空の写真を撮る(撮りまくる)

方法② このあたりの空気が光る

大気の発光を検出する

graemewhipps-photography.com

方法② このあたりの空気が光る

大気の発光を検出する

夜空の写真を撮る(撮りまくる)

2つの方法の比較

①そのエネルギーは?
 = 3×10²⁰eV
 可視光より20桁以上大きい
 (観測史上最高記録)

②その源は?

?わかっていません 候補は 銀河と銀河の衝突、など

③どのくらいの到来頻度?

とても少ない! ~1km²に100年に1個

④どうやってつかまえる(見る)?

空気シャワーを捕まえる!

宇宙線望遠鏡実験(TA実験)

- 日本、米国、ロシア、韓国、ベルギー、チェコ、
 スロベニア、ポーランド
- ・35研究機関、約140人の共同研究者
- ・2003年から建設開始、2008年完成
- ・アメリカ合衆国ユタ州南西部

宇宙線望遠鏡実験(TA実験)

Telescope Array (TA) : UHECR observatory in the northern hemisphere

Telescope Array

Telescope Array

B. Dawson, VHEPU2018

Pierre Auger Observatory

About 500 members from 19 countries

PIERRE

AUGER

Published "Hotspot" (5 yr data)

Ap. J., 790, L21(2014)

E > 57 EeV (Observed 72 events) Events over-sampled using 20° circles 19 events fall in "Hotspot" centered at α =146.7°, δ =43.2°(Expected = 4.5 events) Li-Ma significance ~5.1 σ , chance probability in an isotropic sky to be 3.4 σ

TA×4計画 現行TA実験の南北に地表検出器500台増設 →1,000台、面積3,000km² 2015年から建設開始(予算がついた!) 2019年運用開始(約760台)

扇型はTA×4の 大気蛍光望遠鏡の視野

TA×4計画 現行TA実験の南北に地表検出器500台増設 →1,000台、面積3,000km² 2015年から建設開始(予算がついた!) 2019年運用開始(約760台)

扇型はTA×4の 大気蛍光望遠鏡の視野

TA実験観測史上最高エネルギー宇宙線

2021年5月27日に観測された宇宙線

42

2021年5月27日の早朝 4時35分56秒

© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)

この事象固有のエネルギー分解能の評価

銀河磁場での曲がり角を補正

Calculated by R. Higuchi

近傍天体分布から期待される異方性

100 EeV以上の28事象の到来方向分布

TAとAugerの100 EeV以上の到来方向分布

48

>50 EeVでの到来方向分布

🖗 中角度スケール(~25度)での異方性(hot/warm spots)が報告されている

📱 超銀河面に沿って宇宙線の到来数の過剰が見られる → 天体起源を示唆

■ 100 EeVでは等方的に分布 → 50 EeV以上とは別の起源かもしれない

Backup