光電子増倍管と シンチレータを用いた ミューオンの寿命測定

 Spring School 2023
 超高エネルギー宇宙線

 ウィンダ ジョセイン
 岡 明香里
 西田 優杜
 文川 優蘭
 和田 真優

-目的

-原理

-測定方法・セットアップ

-測定結果・考察

-まとめ

-目的

-測定方法・セットアップ

-測定結果・考察

-まとめ

To measure the lifetime of muon

-目的

-原理

-測定方法・セットアップ

-測定結果・考察

-まとめ

Who "discovered" muon?

Carl David Anderson

Seth Neddermeyer

Cosmic ray : High energy particle coming isotopically from universe

Atmosphere

The cosmic ray

The equation of pion decay

(a)

(a) Feynman diagram for decay of positive pion

(b)

(b) Feynman diagram for decay of negative pion

Lifetime of muon

$$N = N_0 \exp(-t/\tau_{\mu})$$

Time required for the number of particles to decrease to 1/e of the original particles

N = number of muon

 N_0 = normalization constant

t = time

 τ_{μ} = muon lifetime

To measure the lifetime of muon

-目的

-原理

-実験装置

-測定方法・セットアップ

-測定結果·考察

-まとめ

<u>使用したシンチレータと光電子増倍管</u>

有機シンチレータ (プラスチックシンチレータ) 蛍光剤(p-ターフェニル[C18H14]) を混ぜたプラスチック素材

荷電粒子が通過するとシンチレーション光 (~420nm)を放射(300個/1cm 程度の光子)

-目的

-測定方法・セットアップ

-測定結果・考察

-まとめ

<u>シンチレーション検出器を3枚重ね、</u> <u>それぞれのPMTからの信号を測定する。</u>

実際の測定の様子

ミューオン寿命測定 ブロックダイアグラム

ディスクリミネータで閾値設定

Coin.

環境放射線や暗電流による余計なノイズを少し でも無くすため「-50mV程度」に設定

<u>TDC</u>

ADC

TDC

[]	1100ns	-194. 00ns	S		▶Trig´d			98%	
12									
4					· · · · · · · · · · · · · · · · · · ·		· · · ·] · · · ·		
			UV.				n n n n n n n n n n n n n n n n n n n	~~~~	
	A: 1	Maximum	· · · · · · · · //. · ·	29. 5mV					
	B: 1 C: Off D: 4	Minimum Maximum		-814mV 77.5mV Edge	7. (DC	; -2'	76m¥	
le	1: 200 DC50Ω ΔV eCroy	mV 2: DC5 _637mV∆V	<mark>500mV</mark> 50Ω -1.59\ f:49.323	<mark>3:20.0mV</mark> DC50Ω /ΔV -63. 5Hz 500M	<mark>4: 2.0</mark> DC50Ω .7mVΔV S 500 poir	0V -6. 37V its	RTC:2023	3/03/0 <u>9</u>	11:59: <u>13</u>

-目的

-原理

-測定方法・セットアップ

-測定結果・考察

-まとめ

我々の測定(スプリングスクール) 測定期間:約2日 全事象数:約18万event

それぞれについてミューオンの寿命を求めた

ADCのcharge分布

-上中下シンチのcharge分布を比較

- ミューオン突き抜け時のcharge分布はLandau分布に従う

ADCのcharge分布

事前測定

我々の測定

Landau分布に従う→ミューオンは上シンチを突き抜ける

ADCのcharge分布

中シンチ

事前測定

我々の測定

charge>0→ミューオンが通っている

Decay time

• 測定期間:約10日間

- •全事象数:約10⁶event
- •解析時のセレクション: 上1回&中2回&下0回

図右上のN,tau,constはFitで得られた値

Decay time

理論的に予想される τ の値は 2.12±0.05µs

104 Entries 18822 2455 Mean Std Dev 5123 測定から得られたτの値は 10³ χ^2 / ndf 265.8 / 239 406.9 ± 13.3 N $2.02 \pm 0.04 \ \mu s$ 2019 ± 43.9 tau event count 0.331 - 0.203 10² CONSU 誤差は1σ程度に収まっている! 10 事象数Nと寿命ての関係式 10-1 5000 10000 15000 20000 25000 30000 $N = N_0 e^{-\frac{t}{\tau}} = N_0 exp$ decay time[ns]

<u>得られたグラフに対する考察</u>

1. 偶発的な信号はどれくらいあるか?

2.グラフ左端のピークは何者?

<u>1.偶発事象がどれくらいあるか?</u>

偶発事象:複数の独立な信号が偶然コインシデンスの条件 を満たし、カウントされる事象

これが多いと、測定で得られたデータも偶然そうなったと解釈出来てしまう。

<u>1.偶発事象がどれくらいあるか?</u>

得られたデータは、 測定期間10⁶s(約10日間)で約10⁶ event →<u>1秒当たり1event</u>

偶発事象の頻度は大体、 100Hz×100Hz×100ns = 10⁻³Hz →<u>1秒当たり0.001event</u>

→偶発事象は全データの中に1/1000程度しかいない!

	Entries	999175	
	Mean	18.62	
	Std Dev	16.96	
	χ^2 / ndf	5524 / 71	
	Prob	0	
	Constant	1.85e+05 ± 3.18e+02 9.199 ± 0.006	
	MPV		
	Sigma	2.483 ± 0.004	

事前測定の結果

Decay time

左端のピークは何者?

<我々の測定>

アフターパルスが測定された

PMT内で生じる粒子によって疑似的な信号が観測されること

- この部分での弾性散乱電子
 ⇒電子が光電面にが入り、早い ピークに
- PMT内の残留気体(*N*₂や*O*₂など)

⇒イオン化した粒子が光電面に 戻り、遅いピークに

アフターパルスとは?

PMT内で生じる粒子によって疑似的な信号が観測されること

- この部分での弾性散乱電子
 ⇒電子が光電面に入り、早い ピークに
- PMT内の残留気体(*N*₂や*O*₂など)

⇒イオン化した粒子が光電面に 戻り、遅いピークに

PMT内で生じる粒子によって疑似的な信号が観測されること

- この部分での弾性散乱電子
 ⇒電子が光電面に入り、早い
 ピークに
- PMT内の残留気体(*N*₂や*O*₂など)
- ⇒イオン化した粒子が光電面に 戻り、遅いピークに

アフターパルスとは?

PMT内で生じる粒子によって疑似的な信号が観測されること

- この部分での弾性散乱電子
 ⇒電子が光電面に入り、早い
 ピークに
- PMT内の残留気体(*N*₂や*O*₂など)
- ⇒イオン化した粒子が光電面に 戻り、遅いピークに

アフターパルスの様子

<事前観測>

<我々の測定>

電圧を10%高くするとtは0.95倍程度の大きさになるはず

<事前観測>

<電圧を大きくした測定>

<事前観測>

<電圧を大きくした測定>

どの観測結果でもピークが存在⇔位置が変わっていない

荷電粒子によるピークではない

Decay time

• 測定期間:約2日

• 全事象数:約18万event • 上1回、中2回、下0回

寿命 τ の値は、 $\tau = 1.42 \pm 0.24 \,\mu s$

理論値と大幅にずれている。 (理論値は 2.12 ± 0.05 µs)

この原因は、図右側のデー タが0か1ばかりで、<u>Gauss</u> <u>分布とみなせない</u>からだと 考えられる。

我々の測定の結果(bin数を下げた)

bin数を500→30に減らして、 FittingがGauss分布になる ようにした。

寿命 τ は2.016±0.133 μsと、 理論値と無矛盾な値が得られ た。 (理論値は2.12±0.05μs)

ミューオンの寿命の測定に成功した!!

-目的

-原理

-実験装置

-測定方法・セットアップ

-測定結果・考察

-今後の展望

-まとめ

ミューオン崩壊時のエネルギー分布

-中シンチのエネルギー較正をしたい

→ミューオンが全てのシンチを突き抜けたときを記録

エネルギー較正用の測定条件

ミューオン崩壊時のエネルギー分布

-ミューオン崩壊時のエネルギーの分布(Gauss分布)を見たい

→中シンチをできるだけ薄くする

ミューオンの寿命:2.197±0.0000022µs 測定結果: 2.016 ± 0.133µs -μ⁻の<u>原子核捕獲</u>の影響 ν_{μ} $\mu^- + p \rightarrow n +$ →磁場によってµ+とµ-に分けて測定 μ^- の見かけの寿命 $\tau_ \frac{\tau_{decay}\tau_{absorp}}{\tau_{decay}+\tau_{absorp}} < \tau_{decay}$ τ_{decay} :平均寿命、 dt/τ_{absorp} : μ^{-} がdt時間に吸収される割合

-目的

-原理

-実験装置

-測定方法・セットアップ

-測定結果・考察

-まとめ

まとめ

●空気シャワーから検出されるミューオンを測定することが出来た。

- ●ミューオンの寿命の測定が出来た。
 - 2.016±0.133μs(文献値との誤差1.6σ)
- ●アフターパルスの原因について考察した。
- ●ミューオン崩壊時のエネルギー分布がガウス分布になるかどうか を確かめたい。
- ●磁場をかけて実験することでµ⁺とµ⁻を区別して測定したい。

Thank you very much !!!

以下、発表で使わないスライド

または質問用

偶発事象の補足説明

偶発事象:別々の事象が同時に観測されて、それがeventとしてカウントされる

・上と中の2つのシンチレータはそれぞれ約100Hzの信号を発していることをオシロスコープで確認した。

bin数:50

Decay time

bin数:15

τ [μs]

bin数

<u>回路と解析でのselectionの違い</u>

- ・回路では単にU&M&!Lを取っている
- ・解析ではさらに厳しく、Uに1回、Mに2回、Lに0回のeventのみを 取っている

例えば、

電子2つがUとMのみ通る事象などが、解析によって削られる。

・特に、今回の測定では0~数10MeV程度のエネルギースケー ルのものが測定されている。

→このエネルギースケールではミューオンより電子の方が多い。

事前測定の結果一constな部分について

Decay time

<u>概算</u>赤の長方形の面積 Nev × (bin数) = 2.76 × 500 ≈ 1500 event

電圧を10%高くするとtは0.95倍程度の大きさになるはず

<事前観測>

<事前観測>

<電圧を大きくした測定>

どの観測結果でもピークが存在⇔位置が変わっていない

荷電粒子によるピークではない

荷電粒子でないパルス

PMTに接続されるケーブルが原因か?

ケーブルの劣化によってケーブル内で電子が反射するように。

⇒5nsにつき1m電子が移動

180~200 nsのピークは20 mケーブルの劣化が原因?

 μ^- の見かけの寿命 τ_-

τ_{decay} :平均寿命、 dt/τ_{absorp} : μ^{-} がdt時間に吸収される割合

