Gamma-ray observations of the super-fast variability of IC310

ICRR spring school 2021. Gamma group report

Kota Ichiki, Yuto Mochizuki, Kengo Shinoda, Keiya Uemichi, Taishi Ushirogi , Kazuki Usui

• Introduction

- Our Universe, Active Galactic Nuclei, Perseus cluster
- gamma-ray observation methods

γ-ray observations of AGNs in the Perseus cluster

- Fermi observations of IC310 serendipitous discovery
- MAGIC observations of IC310 lightning-fast variability

• Discussion and implications

- Eddington Limit
- relativistic effects in the jets
- measuring sizes of supermassive black holes
- A possible model for IC310 variability

Introduction

Gamma Rays and Our Universe

Gamma Rays

The energy range of γ ray is from 0.1MeV.

We observe about TeV energy.

 Our universe has many high energy objects-pulsars, GRBs (Gamma Ray Burst), and AGN (Active Galactic Nuclei).

SNRs Starbursts Binaries AGN Pulsars/PWN SMBH NS accretion, dynamo jets winds Shocks SN activity Manual Jets, winds Fermi Mech. Cosmic rays GRBs VHE γ -rays Unknowns (Gal Center) PBHs, QGrav Dark Matter Cosmological Fields

Our Universe

Active Galactic Nuclei

- Some galaxies have a brighter part in the center.
 - ➡ It is called AGN and it has supermassive black hole.
 - AGN emits jets of relativistic particles from the center.
- AGN looks differently depending on the viewing direction.

Structure of Active Galactic Nuclei

Cool, low velocity, low density gas clouds.

Hot, high velocity, dense gas clouds and hot electrons scatter.

Optical-thick dusty.

Blazar

- Blazar is a type of AGN with relativistic plasma jets pointing to our direction, highly variable
- Models of TeV blazars imply leptonic or hadronic particle acceleration.

Motivation of our study

How are AGN jets formed?

Gamma-ray flares are key to solve this problem.

Where are gamma-ray flares coming from?

Work out the jet generation mechanism and conditions in BH vicinity.

Perseus Cluster and IC310

東京フ

THE UNIVERSITY OF TOKYO

- AGNs in Perseuse Cluster emit electromagnetic waves.
- We observe **IC310**'s γ ray , but NGC is so bright that we couldn't.

γ -ray observation techniques

- Air shower is caused by (primary) Gamma Rays.
- Gamma rays → Pair-Production → Bremsstrahlung → Gamma rays
 → Pair-Production → Gamma rays

Cherenkov Light

- When traversed at v > c/n, the medium is polarized.
 Electromagnetic wave is generated, and it is Cherenkov light.
- At lower altitude, Cherenkov angle is larger. Cherenkov light is collected by telescopes, the light pool radius is 100m.

γ -ray observations of AGNs in the Perseus cluster

Fermi satellite

- Launched from Cape Canaveral Air Station on 11th June 2008 (NASA)
- Circular Orbit ~ 565 km
- Period ~ 95 min.

Large Area Telescope

Fermi observations: IC 310 discovery >100 GeV

- $(1\text{GeV}-10\text{GeV}) \rightarrow (10\text{GeV}-100\text{GeV}) \rightarrow (100\text{Gev}-300\text{GeV})$
- Energy range > 100GeV → IC 310 was discovered!

Fermi observations: IC 310 discovery >100 GeV

Observation Periods

- 1. 4th Aug 2008 1st Jan 2012
- 2. 1st Jan 2012 1st Jan 2016
- 3. 1st Jan 2016 1st Jan 2020

Modified Julian Date (MJD)

• 0(d) = 00:00:00, 17th Nov 1858

e.g. 12:00:00, 5th Mar 2021 ~ 59278.50(d) & 1000(d) ~ 3 yrs

Fermi observations: IC 310 spectrum and variability

 $TS \ge 9 \rightarrow$ the emission is detected (false-alarm probability $\le 0.3\%$) \rightarrow The source emission is not stable in time!

MAGIC telescopes

- Located on La Palma, 2200m above sea level
- 2 × 17m diameter mirror dishes
- Energy threshold: 50 GeV
- Energy resolution: 15% at 1 TeV

MAGIC telescopes

- Cherenkov light is reflected into the camera
- High sensitivity PMT

Observed IC310 between 2012-11-12 and 13

Perseus cluster with MAGIC eyes

IC 310 spectrum and variability

- Different Spectrum from Crab
- IC 310 exceeds Crab at 10 TeV

MAGIC flare: IC 310 spectrum and light curve

Total ~ 4 hours of observations

IC310 showed variability: flux increase by a factor of 10 at a short time scale

How to get timescale

$$f(x) = p_0 + p_1 \exp\left(\frac{x - p_2}{p_3}\right)$$

$$p_3 \sim 4.09 [\min]$$

Parameter	Value	unit
p0	8.65*10^-11	flux
p1	2.04*10^-10	flux
p2	5.62*10^4	MJD
р3	2.84*10^-3	MJD
prob	0.164 ICRR Institute for Cosmic Ray Unstitute for Cosmic Ray	Research 東京大学 THE UNIVERSITY OF TOKYO

Discussion and implications

Flux and Luminosity

- This graph is the data observed by the Magic Telescope
- The horizontal axis is Energy
 The vertical axis is Energy Flux per unit energy

This time we used 100 [GeV] to 10 [TeV] data

And we aimed to use this data to estimate the mass and size of black holes

Fig:Energy Flux

Flux and Luminosity

 $\frac{d\Phi}{dE}$: photon flux per unit energy $E\frac{d\Phi}{dE}$: energy flux per unit energy S :energy flux

$$S = \int E \frac{d\Phi}{dE} dE = \int E^2 \frac{d\Phi}{dE} d\{ln(E)\}$$

fermi S = 6.24×10^{-12} [erg/s/cm²] magic S = 1.35×10^{-10} [erg/s/cm²]

Combine fermi and magic $S = 1.41 \times 10^{-10} [erg/s/cm^2]$

Luminosity is $L = 4\pi r^2 \times S$

r = 81 [Mpc] has already known

As a result, $L = 1.67 \times 10^{44}$ [erg/s]

Eddington Luminosity

There is a maximum luminosity beyond which radiation pressure will overcome gravity, and material outside the object will be forced away from it rather than falling inwards

Eddington Luminosity

Accretion is only possible if gravitation dominates:

 $\frac{GMm_{\rm P}}{r^2} > \frac{\sigma_{\rm T}S}{c} = \frac{\sigma_{\rm T}}{c} \cdot \frac{L}{4\pi r^2}$ in astronomically meaningful units

$$L <$$
 1.3 $imes$ 10³⁸ erg s $^{-1} \cdot rac{M}{M_{\odot}}$

From using the result from experiment, we calculate

 $1.3 \times 10^6 M_{\odot} < M$

cf) $M_{BH} = 3^{+4}_{-2} \times 10^8 M_{sun}$ which shows in relation with velocity dispersion of bludeg stars of host galaxy indicate validity of this result.

Schwarzschild Radius

• Do you know Schwarzschild radius ?

Schwarzschild radius is the minimum radius that light cannot escape

it is given this formula

$$R_s = \frac{2GM_{BH}}{c^2}$$

now M has estimated by relation with velocity dispersion of bulge stars of host galaxy

$$M_{BH} = 3^{+4}_{-2} \times 10^8 M_{sun}$$

consequently we get $R_s = 9 \times 10^{11}$ [m]

Size of Emission region

- We estimate the size of emission region inside the AGN jet.
- Variability Time scale Δt is ~4 min.
- The emission region changed its physical state within 4 min.
- Size of the emission region should be smaller than c∆t, because information cannot travel faster than the light.

Doppler Effect

Time difference between P1 and P2(source): Δt Time difference between P1 and P2(observer): $\Delta t'$ Form Lorenz transformation

$$\Delta t' = \gamma \Delta t - \frac{V \gamma \Delta t \cos \theta}{c}$$
Therefore, frequency is
$$f' = \frac{1}{\gamma(1 - \beta \cos \theta)} f$$

$$d = V \Delta t \cos \theta$$

$$r = \frac{V \Delta t}{\gamma(1 - \beta \cos \theta)} f$$

Also, θ =15° and γ =10 is already given. Thus, we calculated δ =2.9

Size of Emission region

• Now we can calculate $c\Delta t_{\text{flar}}$!

the observed time scale is 4 min and doppler factor is $\delta \cong 3$

consequently $c\Delta t_{\text{flar}} = 2.2 \times 10^{11} \text{ [m]}$

in other word $R < 2.2 \times 10^{11}$ [m]

But $R_s = 9 \times 10^{11}$ [m]

It is strange that R is smaller than R_s

One model for IC 310 emission

size of emission region(polar vacuum gap regions,yellow area) R<2.7 $\times\,10^{11}$

size of event horizon(black area) $R=9 \times 10^{11}$

ergosphere(blue area)

- Rotating black hole with event horizon accretes plasma.
- The rotation of the black hole induce charge-separated magneto-sphere(red) with polar vacuum gap regions(yellow area)
- magneto-sphere has a component parallel to the magnetic field.

This model can explain why size of emission region is smaller than size of event horizon !

Summary

• We analyzed Fermi-LAT and MAGIC data of IC310.

- Very fast variability (~4min) was observed in November 12th. 2012.
- We found that flare luminosity is within the Eddington Limit.
- We also found that size of emission region is smaller than size of event horizon. It suggest that here is a little complex structure near the black hole.

Appendix

Explanation of theta square

Size of Emission region

- we expected that black hole is limited size
- Δt_{ligt} is defined by the time scale of a light
- Δt_{flar} is defined by the time scale of a flare

So size of Δt_{ligt} is $R = c \Delta t_{\text{ligt}}$ (It's like the thickness of the time interval of light)

and $\Delta t_{\text{ligt}} < \Delta t_{\text{flar}}$ because Light has the maximum propagation speed

thus we get $R < c\Delta t_{flar}$

