Spring School 2024年3月@ICRR

$\frac{1}{2}eR + eg_{ij*}\tilde{D}_{\mu}\phi^{i}\tilde{D}_{\mu}\phi^{*j} - \frac{1}{2}eg^{2}D_{(q)}$ $tie_{g_{ij}} \times \chi_{ig_{H}}$ $\mu \chi_{i}$ $\mu \chi_{i}$ $tee \mu \nu_{po}$ $\mu \delta_{\nu} \tilde{D}_{\nu}$ 川崎雅裕, 大学宇宙線研究所 $^{(6)}$ $^{(2)}$ $^{(3$ $\frac{1}{(a)}$ $\frac{1}{2} f I$ $\frac{1}{2} (ab) D \left[e I(a) \right] (a) \left[e I(a) \right] (a) \left[e I(a) \right] (b) \left[e I(a) \left[$

\$1 Mg

10

今日の話

- 1. ビッグバン宇宙論の進展
- 2. インフレーション宇宙モデル
- 3. 密度揺らぎと重力波の生成
- 4. 重力波の直接検出と宇宙論

1. 宇宙論の進展

標準ビッグバン宇宙モデルの確立 (1960年代)

1.1 アインシュタイン(Einstein)の一般相対性理論

• 1915年 一般相対性理論発表

Die Grundlage der Allgemeine Relätivitatstheorie

- ▶古典重力理論の完成
 現代宇宙論の始まり
- Einstein 方程式

1916.

ANNALEN DER PHYSIK. VIERTE FOLGE. BAND 49.

1. Die Grundlage der allgemeinen Relativitätstheorie; von A. Einstein.

Die im nachfolgenden dargelegte Theorie bildet die denkbar weitgehendste Verallgemeinerung der heute allgemein als "Relativitätstheorie" bezeichneten Theorie; die letztere nenne ich im folgenden zur Unterscheidung von der ersteren "spezielle Relativitätstheorie" und setze sie als bekannt voraus. Die Verallgemeinerung der Relativitätstheorie wurde sehr erleichtert durch die Gestalt, welche der speziellen Relativitätstheorie durch Minkowski gegeben wurde, welcher Mathematiker zuerst die formale Gleichwertigkeit der räumlichen

1.2 膨張宇宙

フリードマン (Friedmann): 膨張宇宙の解の発見 (1922)

A Ppaymen

- ハッブル (Hubble)の発見 (1929)
 - ▶ 遠方の銀河は銀河までの距離に比 例した速さで遠ざかっている

宇宙膨張の証拠

▶ Hubble定数

 $H_0 = (67.8 \pm 0.9) \text{ km/s/Mpc}$

- 1.3 ビッグバン宇宙
 - ルメーテル (Lemaître)

▶ 宇宙は原始的原子の爆発で始まった (1927)

- ガモフ(Gamov):熱い宇宙モデル(1946)
 - ▶ 宇宙は高温・高密度状態で始まった

断熱圧縮すると熱くなる dS = 0 dV < 0

 $dE = -PdV + TdS \quad \Rightarrow \quad dE = -PdV > 0 \quad dE > 0 \quad \Rightarrow \quad dT > 0$

熱力学第1法則

• ガモフの予言

☑ 宇宙初期にヘリウムが合成される

☑ 熱い宇宙の痕跡として宇宙背景放射が存在

1.4 元素合成

 宇宙が誕生して約1秒から数分の間に He4 (とHe3、D、Li7) が合 成される

1.5 宇宙背景放射

ペンジャス (Penzias)・ウィルソン (Wilson)の発見 (1965)

▶ ビッグバン宇宙モデルの確立[1978ノーベル賞]

- 宇宙が誕生して38万年後(再結合時:水素原子が形成)に放出
- COBEの観測(1993)

▶ T=2.73Kの完全なプランク分布

1.6 再結合

- T = 3000K(時刻38万年後)
 - ▶ それまで自由に運動していた電子が陽子と結合して水素 原子を作る $e^- + p \rightarrow H + \gamma$
- 再結合後は光子は散乱 (コンプトン散乱) されずに直進する

$$e^- + \gamma \not\Join e^- + \gamma$$

- 1.7 宇宙背景放射のゆらぎ
- 宇宙が誕生して38万年後(再結合時:水素原子が形成)に放出
- COBEの観測 [2006年ノーベル賞]
 - ▶ 完全なプランク分布
 - ▶ 非等方性の発見 🛑 密度揺らぎ
- WMAPの観測 (2003~)
- Planckの観測 (2013~)

光と電子の散乱が切れる

1.8 構造形成

 宇宙初期の微小な密度ゆらぎ(~10⁻⁵)が重力不安定性に よって成長し、銀河・銀河団を形成する

• 構造形成にはダークマターが必要

▶ 銀河スケールのバリオンの揺らぎは光子との相互作用に よって減衰してしまう (Silk damping)

▶ ダークマターは減衰を受けない

1.8標準ビッグバン宇宙モデルの問題

- 標準宇宙モデルは宇宙が誕生して約1秒から現在までの宇宙の様子を正しく記述することに成功
- 宇宙のさらに初期に適用しようとすると問題が生じる
 - ▶ 平坦性問題:138億年たった現在も宇宙は平坦に近い
 - ▶ 地平線問題:因果関係を超えた相関がある
 - ▶ 密度揺らぎの問題:密度揺らぎの起源が不明

1.9 地平線問題

- 宇宙の地平線:宇宙が誕生したときから光速で到達で きる最大の長さ
- 宇宙背景放射は宇宙が誕生して
 約38万年後に放出された光
- 宇宙背景放射は非常に等方的

宇宙背景放射が出たときの地平線

因果関係の無い2点から
 出た光が同じ強さなのは
 不自然

2. インフレーション宇宙モデル

真空のエネルギー =スカラー場(インフラトン場)の
 ポテンシャルエネルギーρv が宇宙を支配する

$$\frac{da}{dt} = \sqrt{\frac{8\pi G\rho_V}{3}}a \quad \Rightarrow \quad a \propto \exp(H_{\inf}t)$$

フリードマン方程式 $\left(\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho a^2$

 $H_{inf} = \sqrt{8\pi G \rho_V / 3}$: inflation中のハッブルパラメター

10-36 秒の間に宇宙が1026 倍以上に大きくなる

急激な膨張の後、真空のエネルギーが
 解放されて熱い宇宙になる

2.1 地平線問題の解決

A、Bの2点はインフレーションによって大きき引き離されたことを考慮すると、過去においては因果関係があった

2.2 スローロール・インフレーション

- 平坦なポテンシャルをゆっくり運動するインフラトン場に よってインフレーションが実現される
 = スローロール・インフレーション (Slow-Roll inflation)

 - ▶ カオティック・インフレーション (chaotic inflation)

3.1 インフレーションによる密度揺らぎの生成

インフラトン場の量子ゆらぎはインフレーション中に引き
 延ばされて長波長の古典的な揺らぎになる

$$\delta\phi$$
 量子ゆらぎ(振動) $ightarrow \delta\phi$ 古典的揺らぎ(振動しない)
インフレーション

● 宇宙の場所ごとにインフラトン場がわずかに異なる値

$$\begin{split} \phi(t,\vec{x}) &= \phi(t) + \delta \phi(t,\vec{x}) \\ \delta \phi(t,\vec{x}) &\simeq \frac{H_{\inf}}{2\pi} \end{split} \begin{array}{l} H_{\inf} &= \sqrt{8\pi G \rho_V/3} \\ & \text{inflation中のハッブルパラメタ-} \end{split}$$

● 密度揺らぎの生成 ━━> 宇宙の構造の形成

3.2 重力波の生成

 スカラー場と同様に重力子 (graviton) も揺らぎを獲得し、重力 波 (空間が伸び縮みする波)が生成される

$$h_{ij}(t,z) = \begin{pmatrix} h_+ & h_{\times} & 0\\ h_{\times} & -h_+ & 0\\ 0 & 0 & 0 \end{pmatrix} e^{i\omega(t-z)}$$
$$h_{+,\times} \sim \sqrt{G}H_{inf}$$

2つの独立なモード(+モードとXモード)

3.3 宇宙背景放射の温度揺らぎ

- 宇宙背景放射:再結合時(約38万年)に放出された光
- プランク分布 → 温度で光の強度が決まる
- 密度揺らぎ (+重力ポテンシャル揺らぎ) → 温度の揺らぎ

観測

角度ごとの揺らぎの大きさ (数学的にはフーリエ変換 球面上なので球面調和関数で 展開)を測定

3.3 宇宙背景放射の温度揺らぎ

- WMAP Planckの結果
- Inflationの予言と一致

0.25

0.20

0.15

0.10

0.05

0.00

- Conver

Concave

0.94

0.96

Primordial tilt (n_s)

3.4 宇宙背景放射の偏光

• 偏光は電子とのコンプトン散乱で生成される

3.6 Bモードの観測

- inflation起源のBモードの検出を目指して実験が行われ(計画されて)いる
 - Keck Array/BICEP3 @ South Pole
 - POLARBEAR-2/Simos Array @ Atacama

3.7 重力波モードの発見とインフレーション もし、重力波モードが発見されたら

- インフレーションでの重力波生成
 - 重力波の振幅 h はインフレーションを起こす真空
 のエネルギー p_{inf} だけで決まる

 H_{inf} : inflation中のハッブル $h \sim \sqrt{G} H_{\text{inf}} \sim G \rho_{\text{inf}}^{1/2}$ G :重力定数

• 重力波モードの観測

 $\rho_{\rm inf} \sim (10^{15-16} {\rm GeV})^4$

4. 重力波の直接検出と宇宙論

2015年米国LIGOがBH-BH合体による重力波を史上初めて検出

BH mass ~
$$30M_{\odot}$$

 $M_1 = 36^{+5}_{-4} M_{\odot}$
 $M_2 = 29^{+4}_{-4} M_{\odot}$
 $\Rightarrow M_f = 62^{+4}_{-4} M_{\odot}$

4.1 LIGO ブッラクホールの起源

大きな質量~30-50 M_{solar}

原始ブラックホール?

スピンが小さい?

Hawking 1971

4.2 原始ブラックホール (Primordial BH)

• 大きな密度ゆらぎ δ (~ 0.4)の領域が重力崩壊してBHになる 密度 $\delta > \delta_c$ 空間 $\rho = \bar{\rho}(1+\delta)$ BH

- インフレーションによって(小スケールで)大きなゆらぎが生成?
- インフレーションは一般にはスケール不変な揺らぎ

k

4.3 密度揺らぎからの重力波

- 原始ブラックホールを作るような大きな揺らぎがあると揺らぎ から重力波が生成される
- 将来の重力波検出器で観測できる可能性
- パルサー・タイミング・アレイ実験
 - ▶ 世界中の電波望遠鏡で多くのパルサー を観測して重力波によって れる到着時間のずれを観測
 - NANOGrav, EPTA, IPTA, ...

https://nanograv.org/science/telescopes

- 4.3 密度揺らぎからの重力波
 - パルサー・タイミング・アレイ実験
 - 電波望遠鏡で多くのパルサーを観測して重力波
 によって起こされる到着時間のずれを観測
 - 2023年背景重力波が発見された?
 - ▶ 巨大BH合体,密度揺らぎ・・・・

まとめ

- ビッグバン宇宙モデルは宇宙が誕生して約1秒から現在までの 宇宙の様子を正しく記述することに成功
- インフレーション宇宙モデルでは、誕生直後 (約10-36 秒)に急激な宇宙膨張が起こり、その後熱い宇宙(ビッグバン)が実現される。
- インフレーション宇宙は地平性問題などを解決し、宇宙の密度 揺らぎの起源を説明する。
- インフレーション宇宙で予言される揺らぎは、宇宙背景放射の 観測によって、検証されつつある。
- 誕生して間もない宇宙で起こったことが観測によって確かめられるエキサイティングな時代に突入した。