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Happy New Year!

About myself:
e Experimental neutrino physicist
e AI/ML applications and research
o Physics research and work unrelated (hobby!)

o Love to discuss / learn about challenges outside my domain
o Love to help a workshop, School (education), collaboration




Interest: AI/ML for HEP and Beyond

4 I
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools

L supported by a large community of researchers. )

e.g.) physics inference on data from imaging detectors 5=5., % ,.Lg
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Interest: AI/ML for HEP and Beyond

[

ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.
It’s naturally reusable across domains including software tools
supported by a large community of researchers.

~

Even for hands-on work!

man-centered [, .=}
Al/ML :



Interest: AI/ML for HEP and Beyond

p
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools
supported by a large community of researchers.

~

ML applicable at all stages of an experiment

Facilities:
detector, |:> Real data
accelerator, g

Target Physics Physics

... and nuisance Extraction

Design
.. : Synthetic
Optimization Shiglator E> data

Control/Operations
Optimization

Inverse Imaging

Fast/Differentiable
Surrogates

Discriminative
Physics Inference

Uncertainty
Quantification




Interest: AI/ML for HEP and Beyond

4 I
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools

supported by a large community of researchers.

ML applicable at all stages of an experiment

Facilities:
deteCtor’ E>
accelerator, g
X , _
T Today s focus: _ Physics
... and nuisance o Analysis & Detector Simulator | extraction

Design *
.. : Synthetic
Optimization Simulator E> data

Control/Operations

Optimization Inverse Imaging

Fast/Differentiable
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Discriminative
Physics Inference

Uncertainty
Quantification




rp 0 S,
RGNS TN

ts

Detectors

xperimen

E
and

ing

o
Imag

llati

sci

ig




ML for Analyzing Big Image Data in Neutrino Experiments

Neutrinos

4 ® v Y ™\ .
A Studying
electron neutrino Neutrinos

- Y,

change features
as they travel
(nu oscillation)




ML for Analyzing Big Image Data in Neutrino Experiments
Neutrino Oscillation Experiments

Goal: shoot a beam of particles (neutrinos),

detect at two locations, quantify the difference.
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Neutrino Oscillation Experiments

ML for Analyzing Big Image Data in Neutrino Experiments
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ML for Analyzing Big Image Data in Neutrino Experiments

Neutrino Oscillation Experiments

Challenges

1. Lack of an automated, quality analysis methods for big image data
2. Manual (“by-hand”) workflow for development & tuning

3. Imperfect physics modeling

Image “hand scanning”
by professionals was how neutrino

cTh 'N :t‘-’ iE‘ t R
data had been analyzed from e e e _
imaging detectors for long time e ubre shambar o

- -

| EE
W Collision creates = =




Outline

1. Introduction

2. ML-based data reconstruction

3. Differentiable simulation for detector physics modeling
4. Summary

9} ENERGY



ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML

ol AL

Y L
Machine Learning for Neutrino Image Data Analysis
e Goal: particle-level type and energy reconstruction

Electron’

> Neutrino

P

Input Data High-level
Output
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ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML

Machine Learning for Neutrino Image Data Analysis

e Goal: particle-level type and energy reconstruction

e How: extract physically meaningful, hierarchical features
(evidences) by chaining multiple ML models designed for each task

Electron’
Multi-task Neutrino
Cascade iy

Y

Kinematics

Inferegce , E Output

w/ interpretable
evidences 1




ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML

Machine Learning for Neutrino Image Data Analysis

e Goal: particle-level type and energy reconstruction

e How: extract physically meaningful, hierarchical features
(evidences) by chaining multiple ML models designed for each task

Input [ Pixel Features } [ Pixel Clustering ] [ Particle Clustering ]

Three major stages of reconstruction .



Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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Machine Learning in Neutrino Physics & HEP

Deep Neural Network for Data Reconstruction

Convolutional neural network (CNN)

Primarily aimed at image data

Learns spatially local features of various size

Translation invariant (target feature can be anywhere in image)
Image/Pixel level classification/regression, object detection

30cm  MicroBooNE MicroBooNE
Data :
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering

Clustering in the embedding space

e Use CNN to learn a transformation function from the 3D voxels to the embedding
space where clustering can be performed in a simple manner

21
Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering
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https://arxiv.org/abs/2007.03083

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: grouping particles as a cluster

___________



ML for Analyzing Big Image Data in Neutrino Experiments

Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle
Aggregation (GrapPA) o e
Input:

e Fragmented EM showers
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 2-b: Sparse Fragment Clustering

ol AR

Graph-NN for Particle
Aggregation (GrapPA)
Input:

e Fragmented EM showers

Node features:
e Centroid, Covariance matrix, PCA
e Start point, direction (PPN)

Input graph:
e Connect every node with every other node
(complete graph)

Edge features:
e Displacement vector
e Closest points of approach
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See Phys. Rev. D 104, 075004



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering
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https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: input & output
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

? Identifying Each Interaction?

700 T

600 &

Grouping task = re-use GrapPA!

e Interaction = a group of particles that

P / shared the same origin (i.e. neutrino
400 % e < ./ interaction)

0 LN ;\ e Edge classification to identify an

| . / interaction

e Node classification for particle type ID

&0 609

See Phys. Rev. D 104, 072004
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 3: Interaction Clustering
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 3: Interaction Clustering
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: input & output
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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https://arxiv.org/abs/2102.01033
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ML for Analyzing Big Image Data in Neutrino Experiments
Deep Neural Network for Data Reconstruction
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e Transfer-learning for multiple experiments!


https://arxiv.org/abs/2102.01033
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ML for Detector Physics Modeling

Automation of physics model tuning
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ML for Detector Physics Modeling

Automation of physics model tuning

The Catch

Supervised optimization with imperfect
simulation may be vulnerable to domain shift.

x +

esign(V,J(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence



https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

Automation of physics model tuning

The Catch

Supervised optimization with imperfect e
simulation may be vulnerable to domain shift. -
Tuning of simulation: tricky & “by hand” ey e
57.7% confidence 8.2% confidence 99.3 % confidence
Detector physics knowledge Detector physics knowledge
applied in simulation extracted in reconstruction

Detector Simulation

Ap

1+kg- ('([E/d.\‘)/rf t
Detector

physics model

parameters

Zicarus =
Q = Qo exp(—varitet/T)

2D,
i

Va

ol (1) =~ o2(0) + t

Simulation Input Detector Output Reconstructed
(true dE/dX) (ADC) el  (Calibrated dE/dX)


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

Automation of physics model tuning

The Catch

Supervised optimization with imperfect
simulation may be vulnerable to domain shift.

@+

Tuning of simulation: tricky & “by hand” — J- - e 4 a

57.7% confidence 8.2% confidence 99.3 % confidence

Research directions
e Make the optimization of reco chain robust against domain shift

[o Innovative simulator that can be automatically tuned with control dataset ]

e Learn data representations directly from data (+ use features to train reco chain)


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

Automation of physics model tuning

The Catch

Supervised optimization with imperfect
simulation may be vulnerable to domain shift.

+.007 x

; o / T+
2 : S * 14 99 ’ =g B esign(VoJ(0,x,y))
° “panda” “nematode” “gibbon™

57.7% confidence 8.2% confidence 99.3 % confidence

Develop a simulator that can be tuned
automatically on real data

Detector Simulation

Ap
1+kg- ((’[E/(].\‘)/rf

Q = Qo exp(—varigct/T)

Zicarus =

2D,
i

Va

a2 (t) = o (0) + t

Simulation Input Detector Output

(true dE/dX) (ADC)


https://arxiv.org/pdf/1412.6572.pdf

ML for Detector Physics Modeling

Gradient-based optimization

How: differentiable detector physics simulator

; ann LeCun
&y January 5,2018

, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

gradient
Input Output Optgllalz;tlon
X F (x|0) 5

parameters

0

L(F(x|0),y)

Qct gradiey



ML for Detector Physics Modeling

Differentiable surrogate for optical photon transport

Optical Detector
Simulation



ML for Detector Physics Modeling
LAr scintillator light detection

Photo-multiplier tubes (PMTs) detect scintillation photons

Optical Photon
Transport




ML for Detector Physics Modeling
LAr scintillator light detection —- .

Photo-multiplier tubes (PMTs) detect scintillation photons

produced isotropically from an Argon atom
1 meter muon produces ~ 5M photons

Optical Photon
Transport

B
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ML for Detector Physics Modeling

LAr scintillator light simulation

A marginalized “Visibility Map” for 3D voxelized volume Qptical Photon
used to estimate the mean photon count for each PMT Transport
Issue: static and not scalable

Example: ICARUS detector, 2D slice of a 3D map



ML for Detector Physics Modeling

LAr scintillator light simulation

A marginalized “Visibility Map” for 3D voxelized volume Qptical Photon
used to estimate the mean photon count for each PMT Transport
Issue: static and not scalable

Relative Bias =
e Implicitly optimized based on simulation

update (~2 weeks to produce each time) — Stat. Er.

- = Toy
= Toy+Noise

Toy+Noise
(Ref: Toy)

oo

(@)

e Limited scalability ... ~1E9 voxels for ICARUS

o Coarse voxel size (~5cm cubic)
o Large statistical error (~30k photons/vox.)

x*
0
L
m
©
o

N

Difficult to scale full DUNE -2

logio(vis)

Example: ICARUS detector, 2D slice of a 3D map



ML for Detector Physics Modeling

SIREN as a differentiableiSUnodateHONORICANCPICEIoNS., .~

e NS,

Differentiable Neural Scene Representation

[T

B T T 111

scalable version of SIREN
by adding spatial feature compression
(essentially a learnable kd-tree)

breakthrough on

high resolution image success of learning the

representation by a very 1st and 2nd order derivatives oo Ollly a few examples

simple nerual network


https://www.matthewtancik.com/nerf
https://vsitzmann.github.io/siren/
https://www.computationalimaging.org/publications/acorn/

ML for Detector Physics Modeling

ad R S\

Differentiable Neural Scene Representation

SIREN trained on “Toy + Noise”
successfully learned the underlying
analytical function shape (simulation)

SIREN for LArTPC detectors

e Designed as an implicit representation
of a continuous function in space Relative Bias =
(suited to “visibility”, “E-field”, etc.)
o Can be seen as a trade-off between

an analytical function and a table

SIREN provide ~— Stat. Err.
v Topg

improvement ,
. . = = = Toy+Noise
on simulation .
| Toy+Noise
already! (Ref: Toy)

X
n
L
28]
[0
o

e “Differentiable” implies we can directly
optimize against “data v.s. simulation
discrepancy” given control samples %

logio(vis)




ML for Detector Physics Modeling

SIREN as a differentiable surrogateioriopticalidetectors., , .

) B N\t

ICARUS: 2D slice, map (top) v.s. SIREN (bottom)




ML for Detector Physics Modeling

SIREN as a differentiable surrogateioriopticalidetectors., , .

o e A\t

ICARUS: 2D slice, map (top) v.s. SIREN (bottom)
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ML for Detector Physics Modeling

ad R S\

Training SIREN on real data

T Control dataset: 3D TPC trajectory for which XYZ
position of space-points are accurately measured

Deposited charge .
) t th it Quantum efficiency
Predicted P.E. atthe point1 of the PMT j

all points

Pj: Z CZ'XYXQjX(I)(I‘Z')j

lightyield  STREN prediction for
the point i at the PMT j

all PMTs

S (P; — 0,;)°
J J
Loss = g BB numerical stability,
j ~25 P.E.-squared

2
Pj—l—e



ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors., , .

e

Light Signal [p

events_2021_04_05_12_56_22_CEST:30151

s

=200 0 200
x [mm]

-200 200

z [mm]

events 2021 04 05 12 56 22 CEST.gz.h5:30151

-=- Pred. (uncalib.) b
Pred. (calib.)
Data

events_2021_04_05_12_56_22_CEST:1110

200 0 200 200 0 200
x [mm)] z [mm]

events 2021 04 05 12 56 22 CEST:1110

|
IS
o
o
1

Light Signal [p.e.

=== Pred. (uncalib.)
Pred. (calib.)
¢ Data

Light Signal [p.e.]

events_2021_04_05_12_56_22_CEST:1893

r

200 0 200 0 200
X [mm] z [mm]

events 2021 04 05 12 56 22 CEST:1893

Pred. (uncalib.)
Pred. (calib.)
¢ Data

$0000009000000000” 3°0%00000e

T T T
20 30 40
SiPM

e IS,




ML for Detector Physics Modeling

SIREN as a differentiable surrogate for optical detectors,,
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Training SIREN on real data

Module-0 TPC-0
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LCM

Pre-calib.
—— Fine tunning
-== From scratch
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ML for Detector Physics Modeling

SIREN as a differentiable surrogate for optical detectors.,

A

Implicit Neural Representation as a Differentiable Surrogate for Photon Propagatio
in a Monolithic Neutrino Detector

njie Lei,?* Ka Vang Tsang, Sean Gasiorowski,! Chuan Li,® Youssef Nashed,!
Gianluca Petrillo,! Olivia Piazza,® Daniel Ratner,! and Kazuhiro Terao!
(on behalf of the DeepLearnPhysics Collaboration)
)LAC National Accelerator Laboratory., Menlo Park, CA, 94025, USA
2Stanford University, Stanford, CA, 94305, USA
* Lambdalab Inc., San Francisco, (
" University of California, Berkeley, (

. 94720, US: . .
Optical photons are used as \l in a wide variety of particle detectors. Modern neutrino Pre rlnt ar S‘ 1‘ 7e : !: ! 10 O 1 [;O [;
>xperiments employ hundreds to tens of thousands of photon detectors to observe signal from millions e 0 M a

to billions of scintillation photons produced from energy depc n of charged particles. These

neutrino detc i 10°) tons of target volume, and may
consist of many materials i 1 result, modeling individual photon
omputational resour: As an alternative to tracking individual
nental community has traditionally used a look-up table, which cont

probabilit ring a photon per photon detector at each grid location in a uniformly v
detector volume. v ince the > of a table i h detector volume for
resolution, this method scales poorly for future larger detectors. Alternati
fitting a polynomial to the model could address the memo ue, but result

more, both look-up table and fitting approaches are prone to discrepancies betw
detector simulation and the r : stector response. We propose a new approach using
a implicit neural representation with periodic activation functions. In our approach, SIRF

to model the look-up table as a “3D scene” and reproduces the acceptance map with high accu
The number of parameters in our SIREN model is orders of magnitude smaller than the number
of voxels in the look-up table. As it models an underlying functional shape, SIREN is scalable to

al detector. Furthermore, SIRE E sfully n the spatial lients of _‘lu- photon Work Credit (from left) OllVla P. (UC Berkeley), Manle L (SLAC),

library, providing additional information for downstream applications. Finally, as SIREN is a neural

network representation, it is differentiable with respect to its > and therefore tunable via Patrick T (SLAC) GOI‘dOl’l A% (Stanford CS) Chuan L (Lambda Labs)
gradient descent. We demonstrate the potential of optimizing SIREN directly on real data, which * ’ ° ’ *

mitigates the concer: i 2 imulation discrepanci We further present an appli ion for

data reconstruction where SIREN is used to form a likelihood function for photon statistics.



https://arxiv.org/pdf/2211.01505.pdf

ML for Detector Physics Modeling
TPC Imaging Detector Simulation

Drift of Ionization
Electrons for Imaging




ML for Detector Physics Modeling

TPC Imaging Detector Simulation

Drift of Ionization

Electrons for Imaging Simulation steps:

- 1. Ionization of LAr from dE/dX
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ML for Detector Physics Modeling

TPC Imaging Detector Simulation

Drift of Ionization

< . .
. | Simulation steps:
Electrons for Imaging P
q,‘ . .-y 1. Ionization of LAr from dE/dX
1=l T W T e . . . .
e L ¢ 2. Ionization electron drift and diffuse in

E-field at a “constant” velocity, some
charge lost due to capture
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ML for Detector Physics Modeling

TPC Imaging Detector Simulation

Drift of Ionization

Electrons for Imaging :
R SNy - . . . :
“ "3 Wy _’c‘ %‘%&_’A ‘nu.‘ Ds.m,\,‘%gox%vf
h=
2
A Y 7 b
V\,.vv‘vv %
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Simulation steps:
1. Ionization of LAr from dE/dX

2. Ionization electron drift and diffuse in
E-field at a “constant” velocity, some
charge lost due to capture

3. Imaging by charge-sensitive plane
(detectors) at the anode



ML for Detector Physics Modeling

AD-enabled differentiable detector simulator

Drift of Ionization

Electrons for Imaging Simulation steps:

1. Ionization of LAr from dE/dX

Detector Simulation 2. Ionization electron drift and diffuse in
Ag E-field at a “constant” velocity, some

Bicarus = Tz
ICARUS =3 +kp-(dE/dx)/& Charge lost due to Capture

Q:Q Xr'—'rittT) ] 11
o exp( ldmf / 3. Imaging by charge-sensitive plane

2| (detectors) at the anode

A composite of a simple set of functions,
and it’s parallelizable for many segments...

Differentiable programming FMWKs?



ML for Detector Physics Modeling
AD-enabled differentiable detector simulator

=1 AL
o e A\t

Optimization of TPC detector response

Much work in progress(!) = take it as a grain of salt

e Use contained proton tracks and MIP muons (true
dE/dX can be well characterized)

e Simultaneous optimization of detector simulation _
parameters to minimize data/simulation shift SR

2000 3000 4000 ' 2000 3000 4000 1000 2000 3000 4000
training iterations training iterations training iterations




ML for Detector Physics Modeling
AD-enabled differentiable detector simulator

1 AR
ol " Y e \ )

Optimization of TPC detector response Detector Simulation

3 1 = 1 ] % = =
Much work in progress(!) = take it as a grain of salt FHCARYS = [ B )&

e Use contained proton tracks and MIP muons (true Q = Qo expl—varzet/7)
dE/dX can be well characterized)

e Simultaneous optimization of detector simulation
parameters to minimize data/simulation shift

Kb/eField

LR 5E-3 48 1 102 Degeneracy

0 1000 2000 3000 4000 0 1000 2000 3000 4000 1000 2000 3000 4000
training iterations training iterations training iterations




ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

ol AR

E.g. use for optimizing an image inverse solver
G (XY, 6c)

Inverse Image Solver

S

Liny = |G(Y) — X|?

X € D; Y € Dy

Input domain of Output domain of
LArTPC simulator LArTPC simulator

(inaccessible) (e.g. real data)



ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

ol AR

E.g. use for optimizing an image inverse solver
G (XY, 6c)

Inverse Image Solver
Linv = |G(Y) = X[°
and / or

Ecc = |F<G(Y)) B Y|2

30 200
o0
- 309 a

Y € Do
Input domain of Output domain of
LArTPC simulator F (Y| X, Or) LArTPC simulator

(inaccessible) Differentiable LArTPC Simulator (e.g.real data) e



ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

Drift & Detector
response

>

Image data
(charge/light, accessible)

N

Reconstruction

* $

Detector
calibration

N

=1 AL
0 [ B o \

Analysis

64




ML for Analyzing Big Image Data in Neutrino Experiments

Inverse imaging using a differentiable simulator .
D M
. dEMdX Drift & Detector Image data : :
(inaccessible) response I::> (charge/light, accessible) [:> Reconstruction [:> ATl
Detector
calibration
Near detector _
=
Far detector Detector
calibration
dE/dX Drift & Detector Image data . .
(inaccessible) response I::> (charge/light, accessible) I::> LRI Caan I::> falysis
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ML for Analyzing Big Image Data in Neutrino Experiments

Inverse imaging using a differentiable simulator

dE/dX Drift & Detector
. (inaccessible) | response

@

Image data
(charge/light, accessible)

=1 AL
0 | B o \

Near detectorl

dE/dX
(inferred) I:>

Reconstruction IZ:> Analysis

Detector calibration can
be automated

Far detector I

dE/dX Drift & Detector
(inaccessible) | response

=N
@

Image data

Reconstruction can be
shared across detectors.

(charge/light, accessible)
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.. Wrapping up ..




Data Reconstruction in Experimental Particle Physics
Wrapping-Up

1 A
D e AN

AI/ML applications expanding in neutrino exp.!

e End-to-end optimizable data reconstruction chain
e Differentiable simulator for detector physics model optimization
e Exciting next stage: inverse imaging and a full workflow automation

Topics not covered but I work on (let’s discuss!):

e Uncertainty quantification for ML methods
e Foundation models for physics toward general AI R&D
o Something much better than our “end-to-end” method will come out!
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Data Reconstruction in Experimental Particle Physics
Cross-domain HEP Al ecosystem

1AL

- Jhl‘\\o\
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.

It’s naturally reusable across domains including software tools

supported by a large community of researchers.

HEP Ecosystem for Al research

e Accessible education and training at all levels

¢ Reusable software tools to unlock modern compute
accelerators and networking (distributed ML)

e Public datasets with documentation and performance
metrics for transparent, reproducible science

e Artificial Intelligence and Technology Office (AITO)
o Federated, equitable, responsible, trustworthy Al
o Al is an accelerator. It is coming. Don’t avoid.

Participate to make sure the use is good.

Education and
training

Open source
and public
data

Distributed
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https://www.energy.gov/sites/default/files/2021-09/AITO%20Program%20Plan%2009-16-2021.pdf

