Studying the Earth with neutrinos: **Borexino and Theia**

University of Tokyo joint seminar by ILANCE, IPMU and ICRR August 31st 2022

Zara Bagdasarian^{1,2} ¹University of California, Berkeley, ²Lawrence Berkeley National Laboratory

Earth Formation

Credit:ESO/L. Calçada

4.54 billion years ago

Primitive Silicate Mantle

- Accretion from solar nebula, a deep terrestrial magma ocean
- Siderophile elements (affinity) to iron) 32.3% of Earth's mass segregate to the core
- Lithophile (affinity to silicates) elements in the primitive silicate mantle (aka Bulk Silicate Earth)
- U and Th heavy but prefer to bind with silicates

Earth's Heat Budget

Earth's Heat Budget

Integrated surface heat flux: $H_{tot} = (47 \pm 2) TW$

Earth's Heat Budget

Integrated surface heat flux: $H_{tot} = (47 \pm 2) TW$

Predictions by different models: Radiogenic heat = 10 - 35 TW

Bulk Silicate Earth

- meteorites, with some corrections for the observed abundances in the Earth
- Identify the distribution of heat producing elements in the Earth
- Predict Radiogenic heat

Different BSE Models: Cosmochemical	Geochemical	Geodynamical	Fully radiogenic
(11 ± 2) TW	(20 ± 4) TW	(33 ± 3) TW	(47 ± 2) TW
	Predicted Ra	diogenic Heat	

Various inputs: composition of the chondritic meteorites, correlations with the composition of the solar photosphere, composition of rock samples from upper mantle and crust, energy needed to run mantle convection... Abundances of U/Th/K (and thus also radiogenic heat) in

Berkelev

- Original composition of primitive mantle derived from the composition of the chondritic

BSE = Lithosphere + MANTLE

Geoneutrinos - direct probe of the deep Earth. Released heat and geoneutrino flux in a well fixed ratio

Contribution of the radiogenic heat flux to the total Earth's surface flux: margin test and input to many geophysical and geochemical models of the Earth

U/Th bulk ratio: tests and discrimination among geological models, Earth composition models, study of the mantle homogeneity or stratification, insights to the Earth's formation, testing additional sources of heat

Antineutrino detection

Prompt positron annihilaiton + delayed neutron capture

Current State of Affairs

- Currently there are only two measurements in the world: KamLAND(Japan) Borexino (Italy)
- High statistics geoneutrinos studies at a different location -> better understanding of mantle signal. Future experiments: JUNO, SNO+, Theia, Jinping, Ocean Bottom Detector

JUNO

SNO+

Theia

Borexino

KamLAND

Jinping

OBD

Current State of Affairs

- Currently there are only two measurements in the world: KamLAND(Japan) Borexino (Italy)
- High statistics geoneutrinos studies at a different location -> better understanding of mantle signal. Future experiments: JUNO, SNO+, Theia, Jinping, Ocean Bottom Detector

JUNO

SNO+

Borexino at Laboratori Nazionali del Gran Sasso (LNGS)

CV

- Data taking: May 2007 October 2021
- **Location:** Gran Sasso National Laboratories, Hall C

Qualifications:

- Unprecedented scintillator radiopurity
- Low-energy threshold
- High light yield
- Good energy and position resolution

Interests/Activities:

- Solar neutrinos
- Geoneutrinos
- Physics beyond the Standard Model
- **Detection channels:** elastic scattering (ES), inverse beta decay (IBD)
- **Weakness:** Limited directionality, "small" (~300t)

Borexino detector at Hall C. **Credit: Borexino Collaboration**

Laboratori Nazionali del Gran Sasso Credit: LNGS

With my students at LNGS. Credit: Zara Bagdasarian

Expected Geoneutrino signal at LNGS

Local and global geological information:

Local Crust (~500 km around LNGS)

Bulk Lithosphere

Mantle = Bulk Silicate Earth model - lithosphere

Total

S (U +Th) [NIU]	H (U+Th+K
9.2 ± 1.2	—
25.9 +4.9 - 4.1	8.1 +1.9 _
2.5 - 19.6	3.2 - 25
28.5 - 45.5	11.3 - 33
	S (U +Th) [NIU] 9.2 ± 1.2 $25.9^{+4.9} - 4.1$ 2.5 - 19.6 28.5 - 45.5

1 NIU corresponds to 1 antineutrino event detected via IBD over 1 year by a detector with 100% detection efficiency containing 10³² free target protons (roughly corresponds to 1 kton of LS).

Antineutrino backgrounds

Reactor antineutrinos:

For all ~440 world reactors (1.2 TW total power) - large distance to LNGS (no reactors in Italy) - With and without 5 MeV excess

Atmospheric:

Estimated 50% uncertainty on the prediction

- Indications of overestimation
- Included in the systematic error
- Atmospheric neutrino fluxes

from HKKM2014 (>100 MeV) and FLUKA (<100 MeV)

Matter effects included

Non-Antineutrino backgrounds

Background Type	Events	
⁹ Li background	3.6 ± 1.0	
Untagged Muons	0.023 ± 0.007	
Fast n's (μ in WT)	< 0.013	
Fast n's (μ in rock)	<1.43	
Accidental coincidences	3.846 ± 0.017	
(α, n) in scintillator	0.81 ± 0.13	
(α, \mathbf{n}) in buffer	<2.6	
(γ, \mathbf{n})	< 0.34	
Fission in PMTs	< 0.057	
²¹⁴ Bi- ²¹⁴ Po	0.003 ± 0.0010	
Total	8.28 ± 1.01	

Berkeley

(α ,n) in scintillator

⁹Li cosmogenic background

Spectral fit: Measured geoneutrinos at LNGS

- Unbinned likelihood fit of charge spectrum of 154 prompt events
- \odot S(Th)/S(U) = 2.7 (corresponds to chondritic Th/U mass ratio of 3.9)
- Reactor signal unconstrained: result compatible with expectations
- ⁹Li, accidentals, and (α, n) backgrounds constrained according to expectations
- Systematics include atmospheric neutrinos, shape of reactor spectrum, detection efficiency, vessel shape, and position reconstruction

Spectral fit with U and Th free

Geoneutrinos: 50.4 +46.8% -44.05% (tot) events

- In agreement with the fit with Th/U fixed
- Larger error
- No sensitivity to measure Th/U ratio

First no-mantle signal exclusion with 99% C.L.

Mantle: 23.7 + 10.7 - 10.1 (tot) events

Fit performed with signal from lithosphere constrained to $(28.8 \pm 5, 6)$ events with S(Th)/S(U) = 0.29• Mantle PDF constructed with S(Th)/S(U) = 0.26, maintaining the global Th/U ratio as in CI chondrites Sensitivity study using log-likelihood ratio method: null hypothesis rejected with 99.0% C.L.

Radiogenic heat

Mantle radiogenic heat from U + Th: **24.6**^{+11.1}-10.4 **TW**

Compatible with predictions • Least (2.4 σ) compatible with the CosmoChemical model (CC) predicting lowest U+Th mantle abundances

Earth radiogenic heat from U+Th+K: 38.2^{+13.6}-12.7 **TW**

Assuming 18% ⁴⁰K mantle contribution Lithospheric radiogenic heat U+Th+K:8.1^{+1.9}-1.4 TW

Current State of Affairs

- Currently there are only two measurements in the world: KamLAND(Japan) Borexino (Italy)
- High statistics geoneutrinos studies at a different location -> better understanding of mantle signal. Future experiments: JUNO, SNO+, Theia, Jinping, Ocean Bottom Detector

JUNO

SNO+

Borexino

Jinping

KamLAND

OBD

How to broaden the current physics reach

Scintillation Detectors:
High light yield
Low energy threshold
Good energy and position

resolutions

S Limited in size by absorption and cost

S Limited directionality

Water-based Liquid Scintillation (WbLS) Detectors: Get best of two worlds

Cherenkov Detectors: Directional information

- Can be very large (low
- absorption)
- Particle ID at high energies
- No access to physics below
- the Cherenkov threshold
- S Low light yield

Water-based Liquid Scintillator - Basics

- Water-based Liquid Scintillator (WbLS) is a mixture of pure water and oil-based liquid scintillator
- WbLS is made using a surfactant (soap-like) such as PRS* (hydrophilic head and hydrophobic tail) to hold the scintillator molecules in water in a "micelle" structure
- Combines the advantages of water (transparency, low cost) and liquid scintillator (high light yield)
- Emission of prompt Cherenkov light and delayed lacksquarescintillation light
- Low cost and environmentally-friendlier than pure LS

water surfactant oil drop micelle

Theia: multipurpose neutrino detector

solar neutrinos (CNO, 8B)

diffuse supernova neutrinos (DSNB)

burst supernova neutrinos

geoneutrinos

->staged approach

neutrino mass ordering

neutrino CPviolating phase δ

neutrinoless double beta decay

nucleon decay

Theia-25 possible design, considered for this study

Volume: 17ktonne

Target material: water-based liquid scintillator (500 photons/MeV)

Can be placed at fourth DUNE cavern (Depth: 4300 m.w.e.)

Located at **Sanford** Underground **Research facility** (SURF)

Input Antineutrino Signal

Geoneutrinos: crust and mantle

	S(U) [NIU]	S(Th) [NIU]
Crust	28.6	8.5
Mantle	7.3	2.0
Total	35.8	10.5

Nuclear Reactors: 29.4 ± 0.8 NIU ~700-1000 km baseline

- Closest ones: Monticello (790 km) Cooper (802 km)

Monte Carlo simulations and Event reconstruction

Configuration:

- Geometry: cylinder 70m x 18m Ø
- Target: Wbls (3% LS, 97% Water)
- 90% photo coverage with 10" PMTs

Considered Signals and Backgrounds:

- Geo and reactor neutrinos
- Cosmogenic, fast neutrons, (α, n)
- Accidental coincidences

Event Reconstruction:

- Energy resolution (3%WbLS) ~ $12\%/\sqrt{E}$
- Vertex reconstruction:
 - Geoneutrinos: (58.0 ± 0.3) cm \perp cylinder axis (32.8 ± 0.2) cm \parallel cylinder axis
 - Reactor: lacksquare

 (34.3 ± 0.2) cm \perp cylinder axis

 (26.6 ± 0.1) cm \parallel cylinder axis

Boosted Decision Tree and Merged dataset

The output of BDT training: the weight for each background hypothesis

The variables for training BDT: n400 (energy estimator), dwall (min distance to the wall), chi2 of the vertex reconstruction:

Signals and backgrounds in merged dataset

Stacked PDFs of all the signals and backgrounds

	Post-BDT	Pair cand.	Pair cai
	singles rate	post-merging	in ROI
	[Hz]	[evts/yr]	[evts/yr
PMT 214 Bi	4.24	6.80×10^{4}	24.0
PMT ²⁰⁸ Tl	3.10	4.68×10^{4}	13.6
PMT 40 K	1.47	2.41×10^4	11.6
Water ^{214}Bi	8.18×10^{-1}	1.21×10^4	32.9
Water 208 Tl	1.59×10^{-2}	0.21×10^4	0.78
Cosmic ^{17}N	5.78×10^{-6}	182	7.10
Atm. $NCQE$	1.13×10^{-6}	35.6	10.7
Cosmic n	4.48×10^{-4}	1411	69.6
$\mathrm{PMTs}(\alpha, n)$	1.51×10^{-4}	786	0.35
$^{18}\mathrm{O}(lpha,n)$	4.58×10^{-7}	14.5	12.8
Reactor	7.61×10^{-6}	240	166
Geoneutrinos	9.36×10^{-6}	205	221
Geoneumos	9.00×10	230	

Box analysis

Stacked PDFs of all the signals and backgrounds

- Optimizing the selection cuts to maximize
 - $\sqrt{S+B}$
 - Energy ranges (E_prompt, E_delayed)
 - Position (definition of fiducial volume (FV) in and ρ)
 - Time and space correlation (dt, dR)
- In one year (excluding systematics):

Geo:
$$\frac{S}{\sqrt{S+B}} = 11.2$$
 Reactor: $\frac{S}{\sqrt{S+B}}$
Geo + Reactor: $\frac{S}{\sqrt{S+B}} = 15.0$

Used to define ROI for the fit (see next slide)

Likelihood fit results - Geo vs Reactors

- backgrounds: $N_{geo} = 218^{+28}_{-20}$, $N_{rea} = 170^{+24}_{-20}$

Geoneutrinos

Likelihood fit results - Geo U vs Th

- Sampling PDFs to create 1000 toy experiments
- Likelihood fit of N_U vs N_{Th} , marginalizing other backgrounds, including reactor neutrinos

$$N_U = 180^{+26}_{-22}, N_{Th} = 39^{+18}_{-15}$$

• Extracting $N_{Th}/N_U = 0.22 \pm 0.13$, corresponding to $Th/U = 4.3 \pm 2.6$ (60% rel error) (with input of 4.22)

Relative uncertainty reduced to 15% in ten years

Summary of expected measurements in one year

	Geo fixed U/Th ratio		Free U/Th ratio	
	N(Geo) [events]	N(rea) [events]	N(U) [events]	N(Th) [events]
Best Fit	218	170	180	39
+1 sigma	28	24	26	18
-1 sigma	20	20	22	15

	Geo fixed U/Th ratio	Free U/Th ratio	
	S(Geo) [NIU]	S(U) [NIU]	S(Th) [NIU]
Best Fit	45.9	35.48	10.63
+1 sigma	5.9	5.1	4.9
-1 sigma	4.2	4.3	4.1

Input: 35.8 10.5	Input:	35.8	10.5
------------------	--------	------	------

The extraction of mantle signal

 $S_{mantle} = S_{total} - S_{crust}$

$$H_{rad} = 10.7 \pm [5.0, 5.3]$$
 NIU

Conclusions

- Borexino: New geoneutrino measurement almost twice as many as published by the collaboration in 2015, due to updated statistics and improved analysis.
- Borexino: Null-hypothesis of mantle signal rejected at 99% C.L. using "well-known" lithosphere contribution.
- Borexino: Signal in agreement with geological predictions, with a preference for models predicting high U and Th abundances
- Theia: Likelihood fit extracting geoneutrinos rate with 8.6% precision and reactor neutrons with 6.7% precision in just one year
- Theia: Extracting U and Th individual rates, and measuring Th/U ratio with 56%-15% precision
- Theia: First high statistics measurement in a new geographical location useful to extract mantle contribution

now

or later @ZaraBagdasarian zara.bagdasarian@berkeley.edu https://www.zarabagdasarian.com

QUESTIONS ARE WELCOME

