Searches for Dark Matter with the MAGIC and CTA gammaray telescopes: Latest results and a glimpse into the future

Moritz Hütten ICRR Seminar December 8, 2021

Introduction: Searching for Dark Matter with gamma rays

The compelling evidence for Dark Matter

ICRR Seminar, Dec. 8, 2021

The Dark Matter theory jungle

ICRR Seminar, Dec. 8, 2021

Appeal of the WIMP paradigm "Weakly interacting massive particle" (WIMP) miracle:

 ρ

ICRR Seminar, Dec. 8, 2021

$$_{\chi} h^2 \simeq 0.12 \rho_{crit} \left(\frac{80}{g^*}\right)^{1/2} \left(\frac{m_{\chi}}{25 T_F}\right) \left(\frac{2.2 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle}\right)$$

Non-relativistic GeV to TeV particle with weak-scale cross section gives relic abundance matching observed cosmic DM density

Relic annihilation in space:

ICRR Seminar, Dec. 8, 2021

 $< \frac{1 \text{ interaction}}{\text{km}^3 \, 1000 \text{ years}} \quad \text{for} \quad \rho_{\chi} = \frac{1 \text{ GeV}}{\text{cm}^3}, \ \langle \sigma v \rangle = 10^{-26} \frac{\text{cm}^3}{\text{s}}, \ m_{\chi} = 1 \text{ GeV}$ (However: 2107.05685 investigate this possibility) Ine or sight

Relic annihilation in space:

ICRR Seminar, Dec. 8, 2021

 $< \frac{1 \text{ interaction}}{\text{km}^3 \, 1000 \text{ years}} \quad \text{for} \quad \rho_{\chi} = \frac{1 \text{ GeV}}{\text{cm}^3}, \ \langle \sigma v \rangle = 10^{-26} \frac{\text{cm}^3}{\text{s}}, \ m_{\chi} = 1 \text{ GeV}$ (However: 2107.05685 investigate this possibility) ·Ine Or sight Detectable fluxes! \bar{p}, \bar{p}, \ldots

Appeal of indirect dark matter searches

Produce DM particles in the lab: **Collider searches**

Indirect WIMP searches:

Probing the same mass budgets which provide DM gravitational evidence

Probing the same interaction (annihilation) explaining DM thermal relic abundance

ICRR Seminar, Dec. 8, 2021

Indirect searches

 $W^+, Z, \gamma, g, H, q^+, l^+$

New physics

 $W^{-}, Z, \gamma, g, H, q^{-}, l^{-}$

Indirect detection ingredients: Spectra Secondary spectra ("particle physics term")

ICRR Seminar, Dec. 8, 2021

NASA/G. Dinderman

Role of thumb:

TeV DM particles: most energy deposited in GeV-TeV final state particles:

High energy astronomy

Indirect detection ingredients: Dark Matter densities 2. *J*-factor ("astrophysical term")

Annihilation boost: Increased signal, but also increased uncertainty:

ICRR Seminar, Dec. 8, 2021

 $\frac{\mathrm{d}N_{\gamma,\nu,e,\dots}}{\mathrm{d}A\mathrm{d}t} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{\delta m_{\chi}^2} \times \int \frac{\mathrm{d}N_{\gamma,\nu,e,\dots}^{\text{per interact.}}}{\mathrm{d}E} \mathrm{d}E \times \int_{\Lambda\Omega} \int_{I_{\alpha}G} \rho_{\chi}^2 \,\mathrm{d}I\mathrm{d}\Omega$

Where to search? Dark matter structures at all scales

log (γ -ray intensity from DM annihilation), MH et al., 1806.08639

ICRR Seminar, Dec. 8, 2021

The searches with MAGIC and CTA

Indirect detection instruments

To detect energetic gamma rays from space

Fermi-LAT: ~20 MeV to ~300 GeV

ICRR Seminar, Dec. 8, 2021

Moritz Hütten | 12

HAWC (Mexico)

Imaging Air Cherenkov Telescopes (IACTs): MAGIC

Air shower

10

So far: No detection after 20+ years M. Doro, M. Sánchez-Conde, MH (2111.01198): all DM searches with IACTS:

 MAGIC alone: almost 1000h 				Target Segue 1	Year 2008 - 2009	Time [h] 29.4	IACT MAGIC [‡]	Limit Ann.	Ref. Aleksić et al. (2011)								
						-	2010-2011	(47.8)	VERITAS	A.+D.	Aliu et al. (2012)						
						2010 - 2013	(92.0)		Ann.	Archambault et al.							
• $dSnh \cdot > 1500 h$					16 I.	2010 2012				(2017)							
						2010 - 2013	157.9	MAGIC	A.+D.	Aleksić et al. (2014)	Target	Year	Time [h]	IACT	Limit	Bef.	
							2010 2018	194	VEDITAS	Ann.	Annen et al. (2016b) Kelley Hegleing (2018)	144.900	Intern	ediate N	lass Black H	[oles	10011
				Boötes 1	2010 - 2018	104	VERITAS		Accieving to a_{1} (2010)	Galactic Plane Survey	2004 - 2007	400	H.E.S.S.	Ann.	Aharonian et al. (2		
					소리는 그 눈님 가슴을 망성하려면 가.	Dootes 1	2009	(14.0)	VERITAS	Ann.	Archambault et al		2005 - 2006	25	MAGIC [‡]	Ann.	Doro et al. (2007)
Target	Year	$\operatorname{Time}\left[\mathrm{h}\right]$	IACT	\mathbf{Limit}	Ref.			(14.0)			(2017)			Globular	· Clusters		
	The Milky	y Way ce	ntral region	& halo		Coma Berenices	2010 - 2013	(8.6)	H.E.S.S.	Ann.	Abramowski et al. (2014)	M15	2002	0.2	Whipple	Ann.	Wood et al. (2008)
MW Centre	2004	(48.7)	H.E.S.S.	Ann.	Aharonian et al. (2006)		2010 - 2013	10.9		Ann.	Abdalla et al. (2018a)		2006 - 2007	15.2	H.E.S.S.	Ann.	Abramowski et al.
MW Inner Halo	2004 - 2008	(112)	H.E.S.S.	Ann.	Abramowski et al. (2011)		< 2018	37	VERITAS	_	Kelley-Hoskins (2018)	NGC 6388	2008 - 2009	27.2	H.E.S.S.	Ann.	Abramowski et al.
	2010	9.1		Ann.	Abramowski et al. (2015)		2018	50.2	MAGIC	Ann.	Maggio et al. (2021)			Other	galaxies		
	2004 - 2014 2014 - 2020	$204 \\ 546$	HESST	Ann. Ann	Abdallan et al. (2016) Monteneri et al. (2021)	Fornax	2010	6.0	H.E.S.S.	Ann.	Abramowski et al. (2014)	M33	2002 - 2004	7.9	Whipple	Ann.	Wood et al. (2008)
MW Outer Hele	2014 - 2020 2018	040 10	MACIC	Docov	Ninci et al. (2010)					Ann.	Abdalla et al. (2018a)	M32	2004	6.9	Whipple	Ann.	Wood et al. (2008)
	2018 Du	varf Satel	lite Galaxies	Decay	Nilei et al. (2013)	Ursa Major II	2014 - 2016	94.8	MAGIC	Ann.	Ahnen et al. (2018a)	WLM	2018	18.2	$H.E.S.S.^{\dagger}$	Ann.	Abdallah et al. (20
Draco	2003	7.4	Whipple	Ann.	Wood et al. (2008)	Triangulum II*	2014 - 2016	62.4	MAGIC	Ann.	Acciari et al. (2020)			Galaxy	Clusters		, , , , , , , , , , , , , , , , , , ,
Diado	2003	7.8	MAGIC [‡]	Ann.	Albert et al. $(2008b)$		< 2018	181	VERITAS	_	Kelley-Hoskins (2018)	Abell 2029	2003 - 2004	6.1	Whipple	-	Perkins et al. (2006
	2007	(18.4)	VERITAS	Ann.	Acciari et al. (2010)	Segue II	< 2018	19	VERITAS	—	Kelley-Hoskins (2018)	Perseus (Abell 426)	2004 - 2005	13.5	Whipple	_	Perkins et al. (2006
	2007 - 2013	(49.8)		Ann.	Archambault et al.	Canes Ven I	< 2018	14	VERITAS	_	Kelley-Hoskins (2018)		2008	24.4	MAGIC [‡]	Ann.	Aleksić et al. (2010
		()			(2017)	Canes Ven II	< 2018	14	VERITAS	_	Kelley-Hoskins (2018)		2009 - 2017	202.2	MAGIC	Decay	Acciari et al. (2018
	2007 - 2018	114		_	Kelley-Hoskins (2018)	Hercules	< 2018	13	VERITAS	_	Kelley-Hoskins (2018)	Fornax (Abell S0373)	2005	14.5	H.E.S.S.	Ann.	Abramowski et al.
	2018	52.6	MAGIC	Ann.	Maggio et al. (2021)	Sextans	< 2018	13	VERITAS	_	Kelley-Hoskins (2018)	Coma (Abell 1656)	2008	18.6	VERITAS	Ann.	Arlen et al. (2012)
Ursa Minor	2003	7.9	Whipple	Ann.	Wood et al. (2008)	Draco II	< 2018	10	VERITAS	_	Kelley-Hoskins (2018)			Line s	earches		
	2007	(18.9)	VERITAS	Ann.	Acciari et al. (2010)	Leo I	< 2018	7	VERITAS	_	Kelley-Hoskins (2018)	MW Inner Halo	2004 - 2008	(112)	H.E.S.S.	Ann.	Abramowski et
	2007 - 2013	(60.4)		Ann.	Archambault et al.	Leo II	< 2018	16	VERITAS	_	Kelley-Hoskins (2018)			· /			(2013c)
					(2017)	Leo IV	< 2018	3	VERITAS	_	Kelley-Hoskins (2018)		2014	15.2	$H.E.S.S.^{\dagger}$	Ann.	Abdalla et al. (201
	2007 - 2018	161		—	Kelley-Hoskins (2018)	Leo V	< 2018	3	VERITAS	_	Kelley-Hoskins (2018)		2004 - 2014	(254)	H.E.S.S.	Ann.	Abdalla et al. (201
Sagittarius	2006	(11.0)	H.E.S.S.	Ann.	Aharonian et al. (2008)	Reticulum II	2017 - 2018	18.3	H.E.S.S.	Ann.	Abdalla et al. (2020)		2013 - 2019	204	MAGIC	Ann.	Inada et al. (2021)
	2006 - 2012	90		Ann.	Abramowski et al. (2014)	Tucana II	2017 - 2018	16.4	H.E.S.S.	Ann.	Abdalla et al. (2020)	Segue 1 dSph	2010 - 2013	(157.9)	MAGIC	A.+D.	Aleksić et al. (2014
	2006 - 2012	(85.5)		Ann.	Abdalla et al. (2018a)	Tucana III*	2017 - 2018	23.6	H.E.S.S.	Ann.	Abdalla et al. (2020)	Five dSph galaxies	2006 - 2012	(137.1)	H.E.S.S.	Ann.	Abdalla et al. (201
Canis Major	2006	9.6	H.E.S.S.	Ann.	Aharonian et al. (2009a)	Tucana IV*	2017 - 2018	12.4	H.E.S.S.'	Ann.	Abdalla et al. (2020)	Five dSph galaxies	2007 - 2013	(229.8)	VERITAS	Ann.	Archambault et
Willman 1	2007 - 2008	13.7	VERITAS	Ann.	Acciari et al. (2010)	Grus II*	2018	11.3	H.E.S.S.	Ann.	Abdalla et al. (2020)			()			(2017)
		(13.6)		Ann.	$\operatorname{Archambault}$ et al.		0010	Dark sa	atellites			WLM	2018	(18.2)	$H.E.S.S.^{\dagger}$	Ann.	Abdallah et al. (20
	2000	1	Marat		(2017)	1FGL J2347.3+0710	2010	8.3	MAGIC	—	Nieto et al. $(2011a)$		2010	Charged	particles		instantar et an (20
Contration	2008	15.5	MAGIC ⁺	Ann.	Allu et al. (2009)	1FGL J0338.8+1313	2010-2011	10.7	MAGIC	_	Nieto et al. $(2011a)$	All-electron	2004 - 2007	239	H.E.S.S.	_	Aharonian et al. (
Scuptor	2008	(11.8)	п.е.з.з.	Ann.	Abramowski et al. (2011)	2FGL J0545.6+6018	2013-2015	8.0	VERITAS	Ann.	Nieto (2015)		2001 2001	200	111210101		2009b)
	2008 2000	19.5		Ann.	Abramourski et al. $(2018a)$	2FGL J1115.0-0701	2013-2015	13.8	VERITAS	Ann.	Nieto (2015)		2009 - 2012	296	VERITAS	_	Archer et al. (2018
Carina	2008 - 2009 2008 - 2009	(14.8)	HESS	Ann.	Abramowski et al. (2014)	13F HL J0929.2-4110	2018-2019	7.8	п.Е.З.З.' и рес†	Ann.	Abdallah et al. $(2021a)$		2009 - 2012	14	MAGIC	_	Borla Tridon et al
Janna	2008 - 2009 2008 - 2009	(19.0)	11.12.0.0.	Ann	Abramowski et al. (2011)	ЭГПЬ J1910.2-1525 ЭГНІ 19020-9 5027	2018 - 2019	0.U 0.0	п.Е.э.э.' игсе†	Ann.	Abdallah et al. $(2021a)$	Moon shadow	2010 - 2011	20	MAGIC	_	Colin et al. (2011)
	2003 - 2009 2008 - 2010	22.9		Ann	Abdalla et al. (2014)	3FHL 19104 5 ± 9117	2010 - 2019 2018 - 2010	0.0 5.5	п.е.з.з.' н е с с †	Ann.	Abdallah et al. $(2021a)$	TROOM DIGGOW	2014	1.2	VERITAS	_	Bird et al. (2016)
	Zood – Zood – Zood – Zood – Zzoo Thin. Housing et al. (2010a) Table 8.1 – Continued on next page				- Continued on next page	5F11L 52104.0+2117	2010 - 2019	0.0	п.е.а.а.	Table 8.1	- Continued on part parc		BULL	1.2	, 1910 1910		2010 (2010)
					southand on none page					Table 0.1	- Commuted on next page						

ICRR Seminar, Dec. 8, 2021

So far: No detection after 20+ years

MAGIC Dark Matter searches:

ICRR Seminar, Dec. 8, 2021

MAGIC searches in dwarf spheroidal galaxies

-	
no astrophysical background: clean targets	lower flux
Relatively robust J-factor constraints	Systematic J-fa dSphG (s

uxes than from GC region

actor uncertainties in ultrafaint stellar interlopers + bias)

Due to J-factor uncertainties, diversify targets to increase chance of discovery + obtain more robust limits

ICRR Seminar, Dec. 8, 2021

dSph Galaxies: Combined limits by MAGIC Combined analysis of more than 350h of MAGIC dSph observations

ICRR Seminar, Dec. 8, 2021

Ber	Coma enices		
	•	1	
	1	* *	

Target	Obs. time	J- factor log[GeV ² cm ⁻⁵							
Segue 1	158h	19.36±0.35							
Ursa Major II	95h	19.42±0.42							
Draco	52h	19.05±0.21							
Coma Berenices	50h	19.02±0.41							
Total observation time: 354h									
Tri II	62h	19.35±0.37							
Separately: A	cciari et al 2	020 100529							

dSph Galaxies: Combined limits by MAGIC No signal neither in Segue 1, UMa II, Draco, Coma, Tri II, nor after combination:

Accepted for publication in PDU two weeks ago and now on arXiv: https://arxiv.org/abs/2111.15009

ICRR Seminar, Dec. 8, 2021

dSph Galaxies: Combined limits by MAGIC + others

Add data from 4 more telescopes and 16 additional targets

Source name	Experiments	Distance	$\log_{10} J$	
		(kpc)	$\log_{10}(\text{GeV}^2\text{cm}^{-5}\text{sr})$	
Bootes I	Fermi-LAT, HAWC, VERITAS	66	$18.24^{+0.40}_{-0.37}$	
Canes Venatici I	Fermi-LAT	218	$17.44_{-0.28}^{+0.37}$	
Canes Venatici II	Fermi-LAT, HAWC	160	$17.65_{-0.43}^{+0.45}$	
Carina	Fermi-LAT, H.E.S.S.	105	$17.92^{+0.19}_{-0.11}$	
Coma Berenices	Fermi-LAT, HAWC, H.E.S.S., MAGIC	44	$19.02^{+0.37}_{-0.41}$	
Draco	Fermi-LAT, HAWC, MAGIC, VERITAS	76	$19.05^{+0.22}_{-0.21}$	
Fornax	Fermi-LAT, H.E.S.S.	147	$17.84_{-0.06}^{+0.11}$	
Hercules	Fermi-LAT, HAWC	132	$16.86^{+0.74}_{-0.68}$	
Leo I	Fermi-LAT, HAWC	254	$17.84^{+0.20}_{-0.16}$	
Leo II	Fermi-LAT, HAWC	233	$17.97_{-0.18}^{+0.20}$	
Leo IV	Fermi-LAT, HAWC	154	$16.32^{+1.06}_{-1.70}$	
Leo T	Fermi-LAT	417	$17.11_{-0.39}^{+0.44}$	
Leo V	Fermi-LAT	178	$16.37^{+0.94}_{-0.87}$	
Sculptor	Fermi-LAT, H.E.S.S.	86	$18.57_{-0.05}^{+0.07}$	
Segue I	Fermi-LAT, HAWC, MAGIC, VERITAS	23	$19.36^{+0.32}_{-0.35}$	
Segue II	Fermi-LAT	35	$16.21^{+1.06}_{-0.98}$	
Sextans	Fermi-LAT, HAWC	86	$17.92^{+0.35}_{-0.29}$	
Ursa Major I	Fermi-LAT, HAWC	97	$17.87_{-0.33}^{+0.56}$	
Ursa Major II	Fermi-LAT, HAWC, MAGIC	32	$19.42_{-0.42}^{+0.44}$	
Ursa Minor	Fermi-LAT, VERITAS	76	$18.95_{-0.18}^{+0.26}$	

ICRR Seminar, Dec. 8, 2021

2108.13646

• more than 500h of IACT data on 9 dSphs

- 10 years Fermi-LAT integrated time on 20 dSphs
- 1038 days of HAWC exposure on 12 dSphs

dSph Galaxies: Combined limits by MAGIC + others Add data from 4 more telescopes and 16 additional targets

ICRR Seminar, Dec. 8, 2021

2108.13646

• more than 500h of IACT data on 9 dSphs

- 10 years Fermi-LAT integrated time on 20 dSphs
- 1038 days of HAWC exposure on 12 dSphs

MAGIC searches at the Galactic center

By far strongest signal for all DM models

Large solid angle with high intensity

Limits: Uncertainty on cusp/ core

Astrophysical γ-ray backgrounds

Cosmic-ray background for Earth-bound instruments

Picture credit: D. López

Galactic Center rises only 32° above horizon for MAGIC

MAGIC searches at the Galactic center

Galactic center active region with diverse known y-ray emitters

ICRR Seminar, Dec. 8, 2021

MAGIC searches at the Galactic center

58° - 70° distance from zenith: large zenith angle observation (LZA)

Vertical observations

Large Zenith angle observations

LZA observations of the GC suitable for TeV DM line searches

ICRR Seminar, Dec. 8, 20

Sketch: T. Inada

 $l' \simeq l / \cos \theta_{\rm zd}$ $A_{\rm eff} \propto 1/\cos^2\theta_{\rm zd}$ Increased γ-ray detection area: larger statistics at TeV energies

Increased energy threshold

Search for DM line emission Ongoing project: T. Inada (ICRR), D. Kerszberg (IFAE), MH

- Sharp peak at DM mass
- $\chi\chi \rightarrow \gamma\gamma$ channel loop-suppressed by α^2 (Some TeV DM models expected with Sommerfeld enhanced σv)
- Line-like features also by three-body annihilations (virtual internal bremsstrahlung)

TeVPA 2021, Chengdu

T. Inada, D. Kerszberg, M. Hütten et al. for MAGIC | 25

GC line search: Results

- No significant line-like excess found

ICRR Seminar, Dec. 8, 2021

• Set upper limits at 95% C.L. on 15 masses between 912 GeV - 43 TeV

GC line search: Results

Limits obtained for Einasto (cuspy) and GC profile with ~500pc core (McMillan, 2017)

- For GC DM cusp: Competitive to most stringent limits to $\chi\chi \rightarrow \gamma\gamma$ at E > 10 TeV
- For GC DM core: Limit competitive to dSph results

ICRR Seminar, Dec. 8, 2021

Dark Matter decay searches in Galaxy clusters

ICRR Seminar, Dec. 8, 2021

MAGIC Dark Matter decay search in the Perseus cluster

- Optimal ON-region to set DM decay limits yet only ~8% of the total *J*-factor
- J-factor largest uncertainty proportional to cluster mass uncertainty

WIMP lifetime $> 10^{26}\,\mathrm{s}$ in wide mass range

The Cherenkov Telescope Array

Northern site (La Palma):

4 large-sized telescopes 15 medium-sized telescopes

Southern site (Chile):

ICRR Seminar, Dec. 8, 2021

Next generation Earth-bound yray telescope: Two arrays of Cherenkov telescopes in Chile/ La Palma

- Over 100 telescopes
- About 1500 scientists and engineers
- About 200 institutes
- 31 countries

4 large-sized telescopes 25 medium-sized telescopes 70 small-sized telescopes

The Large-Sized Telescope(s): CTA-LST

 Covers the lower energy range of CTA (> 20 GeV) • On La Palma: First LST ("LST-1") under commissioning since 2018 • LST 2-4 are under way

ICRR Young Researchers Workshop 2021

Big contribution of Japan and ICRR

M. Hütten for the Gamma-Ray Group | 31

CTA: Sensitivity

ICRR Seminar, Dec. 8, 2021

γ-ray energy range: 20 GeV – 300 TeV

CTA: Angular and energy resolutions

Energy resolution below 10%

ICRR Seminar, Dec. 8, 2021

Angular resolution: 0.03° – 0.10°

CTA: Field of view

Field of view diameter: ~ 7°: Large enough for large-sky surveys

ICRR Seminar, Dec. 8, 2021

Observation of Southern dSph candidates from Bechtol+ (2015) with 1.5° wobbles

CTA: Sensitivity to DM signal from Galactic Center

Galactic Center survey: Key Science project with CTA: 525h + 300h in 1st decade • Prime Dark Matter target with CTA

ICRR Seminar, Dec. 8, 2021

•

CTA: Sensitivity to DM signal from Galactic Center

study published (2007.16129)

The CTA consortium

Anastasia.Sokolenko@oeaw.ac.at, yanglli5@mail.sysu.edu.cn, gabrijela.zaharijas@ung.si

ICRR Seminar, Dec. 8, 2021

CTA: Sensitivity to DM signal from Galactic Center

CTA, 2007.16129

Galactic center observations with CTA can probe the thermal relic cross section of 500 GeV - 10 TeV WIMPs

ICRR Seminar, Dec. 8, 2021

Uncertainties on limits: Background modelling

ICRR Seminar, Dec. 8, 2021

Uncertainties on limits: DM profile

Galactic center observations with CTA can probe the thermal relic cross section of 500 GeV - 10 TeV WIMPs

CTA: Sensitivity to Line DM signal from Galactic Center

Refined analysis ongoing (separate publication)

ICRR Seminar, Dec. 8, 2021

CTA: What to reach with dSph Galaxies

CTA Key Science Project: 300h reserved for best dSph target at that time

ICRR Seminar, Dec. 8, 2021

Use dSph observations to confirm DM origin of a signal detected at Galactic Center:

r	1	2	3	4	5	6	7	8	9	10
actic halo	175 h	175 h	175 h							
t dSph	100 h	100 h	100 h							
				iı	n case oi	f detectio	on at GC	, large σ	v	
t dSph				150 h	150 h	150 h	150 h	150 h	150 h	150 h
actic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h
				iı	n case of	^f detectic	on at GC,	, small σ	v	
actic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h
					in case	e of no d	letection	at GC		
t Target				100 h	100 h	100 h	100 h	100 h	100 h	100 h

CTA observation strategy (1709.07997)

Galaxy cluster prospects with CTA

DSS2 color

0.5°

Perseus galaxy cluster DM halo model (random triaxiality)

Galaxy cluster prospects with CTA

DSS2 color

Analysis + publication ongoing (R. Adam, G. Brunetti, H. Goksu, S. Hernández Cadena,

MH, J. Pérez-Romero, M. Á. Sánchez-Conde for CTA)

MAGIC, E > 250 GeV1602.03099

Perseus galaxy cluster DM halo model with substructure

NCG 1275

CTA searches for Dark Galactic Subhalos

Chance detection sensitivity for CTA: Coronado-Blázquez et al., 2101.10003

ICRR Seminar, Dec. 8, 2021

z=0.0

Unknown position

Only theoretical evidence for existence Large modelling uncertainties

Summary: current constraints

ICRR Seminar, Dec. 8, 2021

Summary: Outlook

ICRR Seminar, Dec. 8, 2021

Conclusions

Indirect DM detection crucial to directly connect astrophysical and particle DM No DM detection so far with MAGIC, but competitive legacy limits Just starting to probe thermal relic cross sections for TeV DM with CTA Exotic effects may increase detection chance (resonances, enhanced lines) No need for WIMP miracle: DM could have been produced differently. Gamma-ray ightarrowobservations can also probe other DM candidates (next time)

ICRR Seminar, Dec. 8, 2021

