2019 (令和元) 年度 共同利用研究·研究成果報告書

研究課題名	和文 : 次世代の超高エネルギー宇宙線観測のためのフレネルレンズ型
	大気蛍光望遠鏡の開発研究
	英文: Research and development of a Fresnel lens air fluorescence
	telescope for the next generation UHECR observation
研究代表者	多米田裕一郎 大阪電気通信大学 工学部 講師
参加研究者	冨田孝幸 信州大学 学術研究院工学系 助教
岩倉広和	信州大学 総合理工学研究科 修士2年
中村雄也	信州大学 総合理工学研究科 修士1年
窪田悠人	信州大学 工学部 学部4年
池田大輔	東京大学 地震研究所 特任研究員
山崎勝也	中部大学 工学部 助教
鍵谷鷹	大阪電気通信大学 工学部 学部4年
柴田規迪	大阪電気通信大学 工学部 学部4年

研究成果概要

本研究の目的は、将来の超高エネルギー宙線観測施設の大規模化を想定して、現在に比 べて低コストで製作可能な検出器 "CRAFFT"を開発し、宇宙線空気シャワー観測能力 を実証することである。現在超高エネルギー宇宙線の観測実験として、TA実験を拡張す る TAx4 実験が建設中にある。本研究は、TAx4 実験の次の世代の超高エネルギー宇宙 線実験を想定している。本年度は、宇宙線空気シャワーのジオメトリ再構成手法の開発、 解析精度向上のための PMT の配置の再検討、及び、PMT の再配置計画に伴って新しく 選定した PMT の較正システムの構築を行なった。

1. 宇宙線空気シャワーのジオメトリ再構成手法の開発

検出器シミュレーションを用いて、CRAFFTによる宇宙線空気シャワーのジオメトリの 再構成手法に着手した。CRAFFTはPMTあたりの視野が広いため視野内を空気シャワ ーが横切った時の軌跡が得られないため、FADCにより得られた時間毎のPMTからの 信号強度である波形を用いてジオメトリなどを解析する。コア位置、到来方向、エネル ギーや *X*max をパラメータとして変化させ波形をシミュレートし、データと比較すること でジオメトリを決定する。本年度は、エネルギーと*X*maxを固定しジオメトリが決定する かを検討した。図1に示す様にコア位置と到来方向が決定できることがわかった。

2. 解析精度向上のための PMT の配置の再検討

CRAFFT では視野を PMT を1本でまかなうが、現段階では試作機であり視野あたりの PMT の本数は最適とは言えない。よって、PMT の本数や配置を変えならが再構成の精 度が向上する配置を決定するためのシミュレーションを作成した。図2.は、シミュレー ションにより得られた三角形のライトガイドを用い PMT を配置した場合の受光感度マ

整理番号 E18