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Abstract. Ultra-light axion-like particle (ULAP) is one of attractive candidates for cold dark
matter. Because the de Broglie wavelength of ULAP with mass ∼ 10−22eV is O(kpc), the
suppression of the small scale structure by the uncertainty principle can solve the core-cusp
problem. Frequently, ULAP is assumed to be uniformly distributed in the present universe.
In typical ULAP potentials, however, strong self-resonance at the beginning of oscillation
invokes the large fluctuations, which may cause the formation of the dense localized object,
oscillon. In this paper, we confirm the oscillon formation in a ULAP potential by numerical
simulation and analytically derive its lifetime.
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1 Introduction

Identifying the dark matter is the issue of greatest concern both in particle physics and
cosmology. Amongst various models, cosmological constant and cold dark matter (ΛCDM)
model is the most favored by many observations [1, 2].

ΛCDM model significantly succeeds in explaining large-scale structure of the universe
though, it still has astronomical problems in small scales. One of the famous problems is
the core-cusp problem, in which the tension between the simulated cusp profile [3–5] and
observed cored profile of the galactic center [6–8] is reported. This problem is solved, for
example, when dark matter is ultra-light (m ∼ 10−22 eV) and coherently oscillating [9, 10].
This is because the large de Broglie wavelength of the ultra-light particle, approximately the
same scale as the galactic center (∼ kpc), smears out the central excessive density. This
particle is often called ultra-light axion-like particle (ULAP) because it is ultra-light and
coherently oscillating like QCD axion [11–13].

In this case, clumps of ULAP can be formed by the gravity interaction like axion star [14]
(we call it ”ULA star” with an analogy to QCD axion). ULA star is a kind of soliton
that the attractive forces from gravity and repulsive forces from the kinetic pressure are
balanced. Some studies show that ULAP forms ULA star by gravity interaction at the
galactic center [15–17]. The existence of the star solution is also proved in the contest of
axion [18, 19] (the axion star formation is also confirmed in Ref. [20]).

Before the ULA star formation, however, self-interaction of ULAP can lead to the oscil-
lon [21–23] formation by parametric resonance [24–27] in the radiation dominated universe.
Oscillon is a spatially localized solitonic state of a real scalar field, which often survives for
a long time because of the conservation of the adiabatic invariance [28, 29]. The existence
of such dense objects in the universe affects the current observational constraint [30–32] and
proposed experiments [33, 34].

The possibility of long lifetime oscillons in a ULAP potential is pointed out in Ref. [35],
but their formation and precise lifetime is unclear because analytical estimation of the fluc-
tuation growth and lifetime is difficult. In this paper, we confirm the oscillon formation by
classical lattice simulation in a particular parameter region. We also calculate the oscillon
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lifetime by the analytical method derived in Ref. [36], which shows that produced ULAP
oscillons live long, maybe up to the present day.

In Sec. 2, we show that the condition for the oscillon formation is satisfied in a typical
ULAP potential. In Sec. 3, we numerically confirm the oscillon formation by the classical
lattice simulation. In Sec. 4, we analytically derive the lifetime of produced oscillon and
briefly discuss the cosmological consequence. Finally, in Sec. 5, we conclude our results.

2 Oscillon of Ultra-Light Axion Particle

In the context of ULAP, we often use the cosine potential with an analogy to axion. In
that case, however, large initial fluctuations are necessary for the oscillon formation because
the instability generated by the cosine potential is too weak to enhance the fluctuations. In
addition, the resultant oscillon is unstable (the lifetime is O(100)m) [37] and hardly leave
interesting cosmological effects [38, 39].

Still many other potentials of ULAP are suggested [40–43], instead of the cosine potential
we use the following potential [44–46]

V (φ) =
m2F 2

2p

[
1−

(
1 +

φ2

F 2

)−p]
, (p > −1) (2.1)

where p > −1 is necessary to guarantee the existence of the oscillon solution (see 2.1 and
Eq. (2.9)). In the following subsections, we will show that the two general conditions necessary
for the oscillon formation are satisfied;

1. The existence of the oscillon solution,

2. The large fluctuations δφ/φ0 ∼ O(1).

Note that these conditions are not sufficient but just necessary. To confirm the oscillon
formation, we should perform classical lattice simulation.

2.1 Oscillon solution

First, let us show that the oscillon configuration can be realized in the potential Eq. (2.1).

Oscillon is the non-topological pseudo soliton approximately conserving the adiabatic
invariant I [28] defined as

I ≡ 1

ω

∫
d3xφ̇2, (2.2)

where the overline represents the time average over periodic motion of φ and ω does its
oscillation frequency almost the same as the mass of φ.

The oscillon configuration is obtained by minimizing the time-averaged energy E for a
given I. With the use of the Lagrangian multiplier method,

Eλ = E + λ

(
I − 1

ω

∫
dx3φ̇2

)
, (2.3)

=

∫
d3x

[(
1− 2λ

ω

)
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ)

]
+ λI. (2.4)
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Assuming that the periodic motion of φ is written as φ(x) ' Φ(x) cosωt and defining V (Φ) ≡
2V (φ), Eq. (2.4) becomes

Eω =
1

2

∫
d3x

[
ω (ω − 2λ)

1

2
Φ2 +

1

2
(∇Φ)2 + V (Φ)

]
+ λI, (2.5)

=
1

2

∫
d3x

[
1

2
(∇Φ)2 + V (Φ)− 1

2
ω2Φ2

]
+ ωI. (2.6)

where we use the relation λ = ω [36] in the last line. Because the lowest energy configuration
is realized in the spherically symmetric configuration, we set Φ(x) = Φ(r) and impose the
boundary condition as

Φ|r→∞ = 0,
dΦ

dr

∣∣∣∣
r→0

= 0. (2.7)

Under this condition, by differentiating Eω by Φ to get the extremum we obtain

d2Φ

dr2
+

2

r

dΦ

dr
+

d

dΦ

(
1

2
ω2Φ2 − V (Φ)

)
= 0. (2.8)

This equation is considered as the equations of motion of Φ moving in the potential ω2Φ2/2−
V (Φ) with friction. Thus the condition for existing the solution satisfying the boundary
condition Eq. (2.7) is

min

[
V (Φ)

Φ2

]
< ω2 < m2. (2.9)

Because the ULAP potential Eq. (2.1) of p > −1 satisfies Eq. (2.9), the oscillon configuration
is realized when the ULAP fluctuations are large enough.

2.2 Instability growth

Not only the existence of the oscillon solution but also the large spatial inhomogeneity is
necessary for the oscillon formation. In the ULAP case, however, the field value is almost
uniform at the beginning of the oscillation because the homogeneous initial value is set by
inflation. Therefore, we discuss the growth of the small initial fluctuations by Floquet analysis
in this subsection.

For analytical purposes, we expand the potential Eq. (2.1) up to a quartic order under
φ < F ,

V (φ) ' m2F 2

2

(
φ2

F 2
− p+ 1

2

φ4

F 4

)
. (2.10)

Assuming that the background is dominated by the harmonic oscillation φ0 ' Φ cos(mt),
the equation of motion of the k-mode fluctuations without cosmic expansion leads to the
Mathieu equation,

¨δφk +
[
k2 + V ′′(φ0)

]
δφk = 0, (2.11)

⇔ ¨δφk +

[
k2 +m2 − 3(p+ 1)

2
m2

(
Φ

F

)2

(1 + cos 2mt)

]
δφk ' 0. (2.12)

When Φ . F , the narrow instability band is induced with the approximate growth rate
(Floquet exponent)

µmax

m
' 3(p+ 1)

8

(
Φ

F

)2

, at
k

m
'
√

3(p+ 1)

2

Φ

F
, (2.13)
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p varying
Initial field value 〈φ̄i〉 2π/3

Box size L 8
Grid size N 2563

Final time 50
Time step 0.01

Table 1. Simulation parameters. p is changed in every simulation to set the appropriate potential.

which shows that the larger p leads to the stronger instability 1. In an expanding universe,
when µmax/H & 1, the fluctuation growth beats the cosmic expansion and it can lead to
large enough fluctuations for the oscillon formation.

3 Oscillon Formation

In this section, we verify the oscillon production by the classical lattice simulation after a
brief explanation of the simulation setup. The oscillon formation in the potential Eq. (2.1)
is confirmed in many papers in the inflationary context [47–50]. Here, we test the formation
in the radiation dominated universe.

3.1 Simulation setup

In the simulation, the units of the field, time, space, etc. are taken to be F and m−1, that is,

φ̄ ≡ φ

F
, τ̄ ≡ mτ, x̄ ≡ mx, . . . etc. (3.1)

where the overline denotes the dimensionless program variables and τ is the conformal time.
The equation of motion of φ̄ is represented by

φ̄′′ + 2
a′

a
φ̄′ − ∆̄φ̄+ a2∂V

∂φ̄
= 0, V =

1

2p

[
1−

(
1 + φ̄2

)−p]
. (3.2)

where dash denotes the derivative of τ . As the initial condition,

• Hubble parameter: ULAP starts to oscillate in the radiation dominated universe, so
we take Hi = 1/2t = m.

• Scale factor: the initial scale factor is set to be unity ai = 1. (in the radiation dominated
universe a = τ̄).

• Field values: the initial field value and its derivative are set as

φ̄i =
2

3
π(1 + ζ), φ̄′i = 0. (3.3)

where ζ is the uniform random fluctuations of O(10−5) 2.

The other simulation parameters are shown in Table 1.
We utilize our lattice simulation code used in Refs. [36, 51], in which the time evolution

is calculated by the fourth-order symplectic integration scheme and the spatial derivatives are
calculated by the fourth-order central difference scheme. We impose the periodic boundary
condition on the boundary.

1 See Ref. [35] for Floquet exponent of other p.
2 The initial field average 〈φ̄i〉 = 2π/3 is just the benchmark.
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Figure 1. Simulation results. We plot the ratio of the energy density ρ to the averaged one ρ̄ in the
simulation box at a = 30. Left and right figures show the case of p = 2.5 and 4 respectively. From
these figures, We can find that a lot of oscillons are produced by self-resonance.

3.2 Simulation results

The simulation results are shown in Fig. 1 for p = 2.5 (left) and p = 4 (right).

In both cases, the high energy local objects are produced. However, we have confirmed
by simulations that the oscillon formation does not occur when p . 2. There are two
main reasons for this. The first is that smaller p leads to the weaker resonance as shown
in Eq. (2.13). The twice larger µ after few oscillations makes fluctuations e10 ∼ 104 times
larger. The second is that the effective mass at the beginning of the oscillation m2

eff = V ′′(φi)
becomes smaller in larger p. This causes the later onset of the oscillation, which leads to the
increase of the number of oscillations in each Hubble time and instability enhancement.

We also comment on the initial field value. In this simulation, we set 〈φ̄i〉 = 2π/3 as
the benchmark of the O(1) initial field value. However, if we assume the highly fine-tuned
initial condition as 〈φ̄i〉 = O(10−1) or so, fluctuations may not be grown enough because of
the opposite reasons to the above two. On the other hand, if we assume the larger initial
value, even smaller p may cause the oscillon formation.

Although we focused only on the potential Eq. (2.1) in this paper, other ULAP potentials
satisfying the condition Eq. (2.9) also have the possibility of the oscillon formation.

4 Oscillon Lifetime

In this section, we briefly estimate the oscillon lifetime based on Ref. [36] and discuss the
effect of the resultant oscillon.

In Ref. [36], we derive the method to calculate the classical decay rate of oscillon by
solving the equation of motion of fluctuations around the theoretical oscillon profile. Let us
decompose a scalar field φ(x) into the oscillon profile and fluctuations as

φ(x) = ψ(r) cosωt+ ξ(x). (4.1)
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Figure 2. The decay rate of oscillon. The left and right figures show the case of p = 2.5, 4
respectively. For ω & 0.98 the oscillon does not satisfy the stability condition ∂ω

∂I > 0 [52]. Larger ω
means the smaller oscillon by definition, so the minimum lifetime is O(107)m. In addition, if larger
osillons (e.g., ω . 0.96) are formed, the lifetime may be much longer because the decay rate becomes
much smaller there.

where ψ(r) obeys the oscillon profile equation Eq. (2.8) 3. With the use of the equation of
motion of φ and Eq. (2.8), the equation of motion of ξ is solved and the energy loss rate of
oscillon

dE

dt
= 4πr2T 0r, (4.2)

where T0r = ∂0ξ∂rξ denotes the Poynting vector can be calculated.

The derived decay rate Γ = |Ė|/E is shown in Fig. 2. Since the larger ω corresponds
to the smaller oscillon (see Sec. 2.1 for the definition of ω), the decay rate of a large oscillon
evolves following the curve in Fig. 2 from left to right. From Fig. 2 it is found that the pro-
duced oscillon is stable at least for O(107)m. For the typical ULAP mass m ∼ 10−22 eV, the
minimum lifetime is about 108 years. Thus, they may affect the cosmic evolution, particularly
structure formation.

In addition, the lifetime of oscillon may become longer because its lifetime depends on
its size. As shown in the figures, the decay rate has a lot of poles where the decay rate is
extremely small. At these points, oscillon hardly evolves to the smaller one, which results in
a longer lifetime (& 1010 years). Therefore, if the large oscillons are formed, ULAP oscillons
may still live in the present universe.

5 Conclusions

In this paper, we have examined the oscillon formation in a ULAP potential, Eq. (2.1).
We have shown that oscillons are really produced when the potential index is p > 2 with
〈φi〉/F = 2π/3. Their lifetime is at least O(107)m, which equals to 108 years with m ∼
10−22 eV. Because such long lifetime objects survive until the structure formation, they may
affect dynamical history of the universe.

Moreover, the lifetime could be much longer if large oscillons are formed because the
decay rate of the oscillon extremely decreases in the specific profiles. In either case, a deep
understanding of the evolution of ULAP oscillons is indispensable to consider effects on
cosmology. Detailed study should be discussed in the future work.

3 We impose the spherical symmetry on the system because we focus only on the lowest energy state.
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