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Abstract

The domain wall problem and the isocurvature problem restrict possible combinations of axion

models and inflation models. In this paper, we considered a new mechanism which solves those

problems by dynamics of multiple scalar fields during/after inflation. The mechanism makes axion

models with a non-trivial domain wall number compatible with inflation models with a large

Hubble parameter, HI � 107–8 GeV. The mechanism also avoids the isocurvature problem. This

mechanism increases the freedom of choice of combinations of axion models and inflation models.
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I. INTRODUCTION

The Peccei-Quinn (PQ) mechanism is the most plausible solution to the Strong CP

problem [1, 2]. In this mechanism, the effective θ-angle of QCD is canceled by the vacuum

expectation value (VEV) of the pseudo-Nambu-Goldstone boson, axion a, which is associated

with the spontaneous breaking of the global U(1) symmetry (PQ symmetry) [3, 4]. The

mechanism is particularly attractive as the invisible axion [5–8] is a good candidate for cold

dark matter [9–11].

The domain wall problem and the isocurvature problem, however, restrict possible com-

binations of axion models and inflation models. For example, when spontaneous symmetry

breaking of the PQ symmetry takes place after the end of inflation, it triggers the formation

of the cosmic (global) strings [12]. Around the cosmic string, the axion goes round its do-

main in a/fa = [0, 2πNDM). Here, fa is the axion decay constant, and the integer NDM ≥ 1

is the so-called domain wall number (see, e.g. [13, 14]). As the universe cools down below

the QCD scale, the axion obtains a periodic scalar potential due to non-perturbative QCD

effects, which leads to the formation of the axion domain wall around the cosmic string.

The formed string-wall network is stable unless NDM = 1, which dominates over the energy

density of the universe soon after its formation.1

Until today, there are a few solutions to the domain wall problem. For example, the trivial

domain wall number, NDW = 1, is possible in the KSVZ model [5, 6]. In this case, only

one domain wall attaches to each of the cosmic string, and hence, the string-wall network

collapses immediately after the QCD phase transition [16]. As a notable feature of this

scenario, the abundance of the axion dark matter is dominated by the contribution from

the decay of the string-wall network, and the observed dark matter density is explained for

fa ∼ 1010 GeV [17]. The required decay constant is much smaller than fa ∼ 1012 GeV which

is appropriate for the so-called misalignment mechanism for the axion dark matter. These

scenarios can be distinguished by the axion search experiments (see, e.g. [18]).

Another possibility to evade the domain wall problem is to assume the PQ symmetry

breaking before inflation. In this case, the axion takes a single field value in our universe

with a tiny quantum fluctuation, and hence, no domain wall is formed below the QCD

1 If the PQ symmetry is explicitly broken, the string-wall network is not exactly stable even for NDW > 1.

However, the explicit breaking which is required to make the string-wall network collapses fast enough

encounters the strong CP problem again [15].
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scale. The quantum fluctuation of the axion, on the other hand, induces the isocurvature

perturbations of cold dark matter. To avoid too large isocurvature perturbations, the Hubble

parameter during inflation, HI , must be smaller than about 107–8 GeV [19] (see also [13, 20]).

This constraint significantly restricts the variety of inflation models.

In this paper, we discuss a new mechanism which solves those problems by dynamics of

multiple scalar fields during/after inflation. The mechanism makes the axion models with a

non-trivial domain wall number compatible with the inflation models with a large Hubble

parameter, HI � 107–8 GeV. The mechanism also avoids the isocurvature problem. This

mechanism increases the freedom of choice of combination of axion models and inflation

models. In particular, this mechanism makes the axion model with fa ∼ 1012 GeV compat-

ible with the models of inflation with HI ∼ 1013 GeV. Such a large axion decay constant

and the large Hubble parameter during inflation can be tested by the axion search experi-

ments (see, e.g. [18]) and the searches for the primordial B-mode polarization in the cosmic

microwave background (CMB) (see, e.g. [21]), respectively.

In the new mechanism, we may consider any type of the axion model. We call the

PQ charged field which spontaneously breaks the PQ symmetry, the PQ field. Then, we

introduce an additional PQ charged scalar field which obtains a vanishing VEV. We call

this additional field the spectator PQ field. We assume that the spectator PQ field obtains

a large field value during/after inflation. The large field value of the spectator PQ field

provides a non-trivial scalar potential of the axion when the PQ field obtains its VEV after

inflation. The non-trivial axion potential prohibits the formation of the cosmic string, and

hence, prohibits the string-wall network below the QCD scale. The isocurvature perturbation

which stems from the quantum fluctuation of the spectator PQ field is suppressed by its

large field value during inflation [22]. In this way, the new mechanism solves the domain

wall problem without causing the isocurvature problem. This mechanism may be regarded

as a multi-field version of the mechanism discussed in [23].2

The organization of the paper is as follows. In section II, we summarize the setup of

our model. In section III, we discuss how the spectator PQ field evolves. In section IV, we

discuss how the axion behaves in the presence of the spectator PQ field. We also discuss

2 See also [24–27] for other realization of dynamics which solves the domain wall and the isocurvature

problems. The solutions in the context of the axion predicted in the string theory [28–30] have also been

discussed, where the axion dark matter abundance is suppressed dynamically [31, 32].
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viable parameter region of the new mechanism. In section V, we discuss supersymmetric

extension of the model. The final section is devoted to our conclusions.

II. PECCEI-QUINN MECHANISM WITH A SPECTATOR PQ FIELD

A. General Recipe of the Dynamical Solution

Before discussing the details of the mechanism, we summarize the general recipe for the

dynamical solution of the domain wall and the isocurvature problems.

1. Bring an axion model where the PQ symmetry is spontaneously broken by the VEV

of the PQ field, P .

2. Add a spectator PQ field, S, which obtains a vanishing VEV but has a large field

value in the early universe until P obtains the VEV (section III).

3. Introduce a mixing term between P and S so that P feels a strong PQ symmetry

breaking effects when it obtains the VEV (section IV).

4. Make the effects of the mixing term inefficient before S starts coherent oscillation

around its origin (section IV).

With the large field value of S, P feels a strong PQ symmetry breaking, and no cosmic strings

are formed when P obtains the VEV. The fourth condition is important not to randomize

the axion field value even after S starts the coherent oscillation (subsection IV C). Without

cosmic strings and with the uniform axion field value, the domain walls are not formed

after the QCD phase transition. The quantum fluctuation of the phase component of S is

imprinted in the axion through the mixing term. The isocurvature problem can be avoided

by requiring that the field value of S is of O(MPl) during inflation (subsection IV D). In

any successful implementation of this mechanism, the domain wall and the isocurvature

problems are solved dynamically.
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B. KSVZ Axion Model

As a concrete example of the axion model, we consider the KSVZ axion model [5, 6] in

which the PQ field, P , obtains the VEV via the scalar potential,

V (P ) = λp

(
|P |2 −

v2PQ
2

)2

. (1)

Here, λp is a coupling constant of O(1) and vPQ is a parameter with mass dimension. The

VEV of the PQ field is given by, 〈P 〉 = vPQ/
√

2. The axion field, a, corresponds to the

phase component of P ,

P =
1√
2
vPQ e

ia/vPQ , (2)

where we omit the radial component of P for brevity.

The PQ field couples to the Nf vector-like quarks in the fundamental representation of

the SU(3) gauge group of QCD, (QL, Q̄R) via

L = yKSVZPQLQ̄R + h.c. , (3)

with yKSVZ being the coupling constant. Below the mass scale of the KSVZ quarks, yKSVZvPQ,

the QCD anomaly induces the axion couplings to QCD,

L =
g2s

32π2

Nf

vPQ
aGG̃ , (4)

Here, gs denotes the QCD gauge coupling constant and G and G̃ are the QCD field strength

and its hodge dual, respectively. The Lorentz and color indices are understood. We define

the origin of the axion field space at which the effective θ-angle of QCD is vanishing.

Below the QCD scale, the above interaction term in Eq. (4) leads to the scalar potential

of the axion,

V (a) ∼ m2
af

2
a

[
1− cos

a

fa

]
. (5)
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Here, fa = vPQ/Nf is the effective decay constant of the axion, and ma denotes the mass of

the axion which is estimated to be,

ma ' 6µeV

(
1012 GeV

fa

)
, (6)

(see e.g. [33, 34]). It should be noted that the domain of the axion field is given by

a/fa = [0, 2πNf ), and hence, Nf corresponds to the domain wall number, NDW = Nf .

As we will see below, the axion field value settles to a non-zero value ai of O(fa) after a

complex dynamics of the new mechanism. Below the QCD scale, the axion starts coherent

oscillation from the non-zero field value around its origin which behaves as cold dark matter

as in the conventional misalignment mechanism [9–11]. The axion dark matter density is

given by [35],

Ωah
2 ' 0.2×

(
ai
fa

)2(
fa

1012 GeV

)1.19

. (7)

Based on this estimate, we focus on the case with fa = O(1012) GeV in the following discus-

sion.

C. Spectator PQ Field

Now let us introduce another PQ charged scalar field, the spectator PQ field, S. We

assume that S has a PQ charge which is −1/m of that of the PQ field (m ∈ N). With this

assumption, S couples to P via,

V (P, S) =λp

(
|P |2 −

v2PQ
2

)2

+m2
S|S|

2 +
1

(n!)2
λ2s

M2n−4
Pl

|S|2n +
λ

m!Mm−3
Pl

SmP + h.c. (8)

Here, mS is the mass parameter of S, λs and λ are dimensionless coupling constants, and

MPl ' 2.4 × 1018 GeV the reduced Planck scale. Due to the positive mass squared, S does

not obtain a non-vanishing VEV. As we will see in the following two sections, n is required

to be larger than 5 for a successful mechanism. The absence of the lower dimensional scalar

potential terms of S than |S|2n will be justified in the supersymmetric extension discussed

in section V.
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In this mechanism, a large field value of S during/after inflation plays a crucial role to

solve the domain wall problem and the isocurvature problem. For that purpose, we introduce

interactions between the (spectator) PQ fields with the inflaton field φ,

V (P, S, φ) =V (φ) + V (P, S) +
cp
3

V (φ)

M2
Pl

|P |2 − cs
3

V (φ)

M2
Pl

|S|2 , (9)

where cp and cs are positive valued coupling constant. V (φ) denotes the inflaton potential

with which the Hubble parameter during inflation is given by,

H2
I =

V (φ)

3M2
Pl

. (10)

Through the interactions with the inflaton, P and S obtain the positive and the negative

Hubble-induced mass terms during inflation,

m̃2
P = cpH

2
I (> 0) , m̃2

S = −csH2
I (< 0) , (11)

respectively. Generally, scalar fields obtain Hubble-induced mass terms. We also discuss

how the interactions with the inflaton in Eq. (9) can be obtained in the supersymmetric

extension.

In the following scenario, we assume that S is never in the thermal equilibrium. Such

a situation can be easily realized when the inflaton field mainly decays into the Standard

Model particles. Late time interactions of S with thermal bath particles are negligible as it

only couples to other fields through the Planck suppressed operators.

III. DYNAMICS OF THE SPECTATOR PQ FIELD

A. Inflation Era

During inflation, S obtains a negative Hubble-induced mass term in Eq. (11), which is

much larger than m2
S in size. Thus, the potential of S can be approximated by

V (S) =
λ2s

(n!)2M2n−4
Pl

|S|2n − csH2
I |S|

2 . (12)
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Due to the Hubble-induced mass term, S obtains a large expectation value,

〈SI〉 '
(√

cs
n

n!

λs

) 1
n−1
(
HI

MPl

) 1
n−1

MPl . (13)

Hereafter, the expectation value, 〈S〉, denotes its absolute value if not otherwise specified.

In the following analysis, we assume

λs & n!

√
cs
n

(
HI

MPl

)
, (14)

so that 〈SI〉 not to exceed O(MPl). For example, 〈SI〉 ∼ MPl, for n = 6, HI = 1012 GeV,

cs = 1 and λs = 10−4.

B. Inflaton Oscillation Era

After inflation, the inflaton starts coherent oscillation around its minimum. As the in-

flaton oscillation time scale becomes much shorter than the Hubble time, the dynamics of

S can be analyzed by taking the time average of the inflaton oscillation. Thus, the inflaton

potential in Eq. (9) can be approximated by

V (φ) =
3

2
H2M2

Pl , (15)

where the bar denotes the time average and H is the Hubble parameter at that time.3

Now, let us focus on the dynamics of the radial component of S,

S =
χ√
2
, (χ ∈ R) . (16)

Due to the PQ symmetry, the potential of S does not induce the torque in the complex

plane of S. Thus, the motion of S is confined on a straight line passing through S = 0 (see

e.g. Fig. 2). We will discuss how the phase component of S behaves in the next section. In

3 At the beginning of the inflaton oscillation, in the case of chaotic inflation, the time scale of the inflaton

oscillation is comparable to the Hubble time. However, this does not change the dynamics of S significantly.

8



the above approximation, the equation of motion (EOM) of the zero-mode of χ is given by,

χ̈+ 3Hχ̇+
nλ2s

2n−1(n!)2M2n−4
Pl

χ2n−1 − cs
2
H2χ = 0 , (17)

where the dot denotes the time derivative. We neglect m2
s by assuming that it is still much

smaller than H2 in this period.

Following [23], we introduce the e-folding number, N ≡ lnR, as a time variable, where

R is the scale factor of the universe. We define R such that R = 1 when the inflaton starts

to oscillate. With the e-folding number, the EOM is rewritten by,

d2

dN2
χ+

3

2

d

dN
χ+

nλ2s
2n−1(n!)2M2n−4

Pl H2
χ2n−1 − cs

2
χ = 0 . (18)

Next, we set χ in the form of

χ = σ
√

2MPl

(
cs(n!)2H2

i

2nλ2sM
2
Pl

) 1
2(n−1)

exp

[
− 3N

2(n− 1)

]
. (19)

Here, Hi denotes the Hubble parameter at the on-set of the inflaton oscillation. This leads

to the EOM of σ

d2

dN2
σ +

3(n− 3)

2(n− 1)

d

dN
σ +

cs
2
σ2n−1 −

(
9(n− 2)

4(n− 1)2
+
cs
2

)
σ = 0 . (20)

The EOM of σ represents a motion of a particle in a potential,

V (σ) = −1

2

(
9(n− 2)

4(n− 1)2
+
cs
2

)
σ2 +

cs
4n
σ2n , (21)

which has a minimum at,

σ0 =

(
1 +

9(n− 2)

2(n− 1)2cs

) 1
2(n−1)

. (22)

The second term of the EOM is a velocity dependent force. The initial position of σ is given
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by Eq. (13),

σi ∼ 2
1

2(n−1) , (23)

which is close to σ0 for cs = O(1).

The velocity dependent force in Eq. (20) plays the role of friction for n ≥ 4 (see also [23]).

Thus, for n ≥ 4, σ which starts oscillation from σ0 immediately settles down to σ0 and stays

there during the inflaton oscillation era. In this case, the field value of S is roughly given by

〈S〉 '
(√

cs
n

n!

λs

) 1
n−1
(
H

MPl

) 1
n−1

MPl , (24)

which has the same dependency on the Hubble parameter in Eq. (13). This behavior of the

scalar field is called as the scaling solution [36].

For n = 3, σ keeps oscillating around σ0 but does not go over σ = 0 [23]. Thus, in this

case, S again keeps a large field value during the inflaton oscillation era.4 As pointed out

in [37], however, the scalar field shows a peculiar behaviour for n = 3, the pseudo-scaling

solution, in which the field value gradually decreases in a zigzag manner.

For n < 3, the velocity dependent force accelerates the motion of σ, and eventually, the

oscillation of S goes over S = 0, which results in 〈S〉 = 0. For a successful solution to the

domain wall problem, we require that S has a large field value when P obtains the VEV in

the radiation dominated (RD) era. Thus, we at least require n ≥ 3 so that S keeps a large

field value during the inflaton oscillating period. As we will immediately see, however, we

eventually require n ≥ 5 for S to have a large field value in the RD era (see also [36]).

C. Radiation Dominated Era

In the RD era, the time dependence of the Hubble parameter changes from that in the

inflaton oscillation era. Besides, the PQ fields no longer obtain the Hubble-induced mass

terms through the interactions with the inflaton.

In this mechanism, we assume that ms is much smaller than H at the beginning of the

4 The parametric resonance due to the oscillation of S is not effective [23].
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RD era. Then, the EOM of S can be written as

χ̈+ 3Hχ̇+
nλ2s

2n−1(n!)2M2n−4
Pl

χ2n−1 = 0 . (25)

As in the inflaton oscillation era, we introduce the e-folding number N ≡ lnR which is

vanishing at the beginning of the RD era. By using the e-folding number, the EOM is

rewritten by,

d2

dN2
σ +

n− 5

n− 1

d

dN
σ + σ2n−1 − 2(n− 3)

(n− 1)2
σ = 0 . (26)

Here, we set

χ = σ
√

2MPl

(
(n!)2H2

r,i

nλ2sM
2
Pl

) 1
2(n−1)

exp

[
− 2N

n− 1

]
, (27)

with Hr,i being the Hubble parameter at the beginning of the RD era.

As in the case of the inflaton oscillation era, the EOM corresponds to a participle motion

in a potential

V (σ) = − (n− 3)

(n− 1)2
σ2 +

1

2n
σ2n , (28)

which has the minimum at,

σr,0 =

[
2(n− 3)

(n− 1)2

] 1
2(n−1)

. (29)

The initial position of σ is roughly given by,

σr,i ∼ c
1

2(n−1)
s . (30)

Similarly to the case of inflaton oscillation era, the friction term has a wrong sign for

n ≤ 4. For n > 5, on the other hand, S again behaves as the scaling solution [36],

〈S〉 '
[

2(n− 3)(n!)2

n(n− 1)2λ2s

] 1
2(n−1)

(
H

MPl

) 1
n−1

MPl '
(
n!

λs

) 1
n−1
(
H

MPl

) 1
n−1

MPl . (31)
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For n = 5, S behaves as the pseudo-solution [37]. In summary, S keeps a large field value

during the RD era for n ≥ 5. In the following analysis, we take n = 6 as the minimal model,

since the zigzag behavior in the pseudo scaling solution makes the analysis complicated.

While H & mS, S obeys the scaling solution.5

When the Hubble parameter decreases further and becomes smaller than ms, S finally

starts to oscillate around its origin. For n = 6, λs = 10−4 and mS . 10−15 GeV, the

contribution of the coherent oscillation of S to the DM abundance is negligibly small.6 For

a larger mS, we assume that S decays into massless fermions ψs through

LS-decay = −ysSψ̄sψs + h.c. (32)

With this assumption, the energy density of S does not cause any cosmological problem.

The number density of the massless fermions is also negligibly small and does not contribute

to the dark radiation (see the Appendix A).

As we will see below, the behavior of S discussed in this section successfully solves the

domain wall problem and the isocurvature problem.

IV. DYNAMICS OF AXION AND CONSTRAINTS

Now, let us consider the dynamics of the PQ field and the axion. A notable feature of

this mechanism is that the large field value of S provides a non-vanishing effective linear

term of P through the P -S mixing term (see Eq. (9)).

A. Before PQ Breaking

During inflation, the minimum of the scalar potential of P is shifted due to the effective

linear term, and P also obtains a non-zero field value which is determined by ballancing

5 When S obeys the scaling solution, S does not lose its potential energy through particle emission.
6 For mS = O

(
10−15

)
GeV, the coherent oscillation of S can be the dominant component of DM. Inter-

estingly, this case provides an ultra-light DM model whose initial condition of the coherent oscillation is

dynamically determined.
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between the quartic term λp|P |4 and the effective linear term λ〈S〉mP , which is given by

〈PI〉 ∼MPl

(
λ

m!λp

)1/3(〈SI〉
MPl

)m/3
'MPl

[
λ

m!λp

(
n!

λs

) m
n−1

]1/3(
HI

MPl

) m
3(n−1)

. (33)

As we will see in the following, the minimal model which successfully solves the domain wall

problem is the one with n = 6, m = 11. In this case, 〈PI〉 is rather large during inflation,

〈PI〉 ∼ 1014 GeV , (34)

where the parameters are set to λp = 1, λs = 10−4, λ = 10−6 and HI = 1012 GeV as a

benchmark point (see section IV E). Accordingly, the KSVZ quarks obtain heavy masses

through the Yukawa coupling in Eq. 3,

MKSV Z ' yKSVZ〈PI〉 , (35)

during inflation.

In the inflaton oscillation era, on the other hand, S decreases as the scaling solution, and

hence, the minimum of the potential of P also decreases. By the time of the completion of

reheating process, the minimum position of P becomes much smaller than the temperature

of the universe, T .7 Therefore, the KSVZ quarks and P are thermalized by the completion of

the reheating process. Once the KSVZ quarks and P are thermalized, P obtains a thermal

potential.8

Due to the thermal mass of P of O(T 2),9 P is settled to

〈P 〉 ∼ λ

m!T 2Mm−3
Pl

〈S〉m

' λ

m!

(
n!

λs

) m
n−1
(

T

MPl

) 2m
n−1
−2

MPl . (36)

7 Here, P does not necessarily follow the minimum of the potential, although such a behavior does not

affect the following argument.
8 S and P mix through SmP term, however the mixing is not large enough for S to be thermalized.
9 We assume λp and yKSVZ are of O(1).
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Figure 1. A schematic picture of the axion evolution when P obtains the VEV. The tilted Mexican

hat corresponds the scalar potential of the PQ field on a complex plane of P . In each Hubble

patch, the axion rolls down from the hilltop of the potential in a random direction. The axion

settles to a unique field value due to the bias term made by the large field value of S.

This expectation value is much smaller than vPQ = O(1012) GeV. Thus, we can consider

that P is stabilized at the origin by the thermal mass term at the beginning of the RD era.

B. After PQ Breaking

When P obtains the VEV, 〈P 〉 = vPQ/
√

2, the axion rolls down from the hilltop of

the potential. The direction of the axion is random in each Hubble patch (see Fig. 1),

which results in the formation of the cosmic strings. However, the axion settles down to its

minimum of the cosine potential induced by the P -S mixing term, which forms the domain

walls around the strings. This situation is analogous to the string-wall network formation

below the QCD scale in the NDW = 1 scenario. In NDW = 1 scenario, the string-wall network

collapses by itself when the energy of a domain wall exceeds that of a string [16].

The condition for the collapse of the string-wall network is given by

σwd
2
H

TsdH
> 1 , (37)

where σw is the surface tension of the domain wall, Ts the tension of the string, and dH ∼ 1/H

the Hubble length. The energy density inside the domain wall is of O
(
m2
av

2
PQ

)
. The typical

thickness of the domain wall is given by ma(T )−1 [38, 39] , where

ma(T )2 '
√

2λ

m!

M3
Pl

vPQ

[
2(n− 3)(n!)2

n(n− 1)2λ2s

] m
2(n−1)

(
H

MPl

) m
n−1

(38)
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is induced by the P -S mixing. The typical radius of the cosmic string is given by v−1PQ

for λp = O(1) [40], with the energy density inside the cosmic string of v4PQ. From these

quantities, we obtain,

σw ' 8ma(T )v2PQ ,

Ts ' 2πv2PQ ln(vPQ/H(T )) . (39)

By plugging Eq. (39) into Eq. (37), the condition Eq. (37) is reduced to

ma(T ) >
π

4
H(T ) ln

(
vPQ
H(T )

)
. (40)

The string-wall network immediately shrinks and collapses when this condition is satisfied

for some temperature after P obtains the VEV.

It should be noted that the phase component of S also participates in the scalar poten-

tial induced by the P -S mixing. Unlike the axion, however, it does not move during the

above process. Thus, we can neglect the motion of the phase component of S in the above

argument. To see this behavior, let us decompose S field by

S =
χ√
2

exp

(
i
b

χ

)
, (41)

where b is the phase component of S. The field value of the radial component χ slowly

decreases according to the scaling solution (see Eqs.(24) and (31)). The scalar potential of

a and b induced by the P -S mixing term is given by,10

V (a, b) = 2
λ

m!Mm−3
Pl

(
χ√
2

)m
vPQ√

2

[
1− cos

(
a

vPQ
+m

b

χ

)]
. (42)

This scalar potential implies that the axion oscillates much faster than b since χ � vPQ at

T ∼ vPQ. Thus, a oscillates around −mbvPQ/χ (mod 2π), while b does not feel the force

from the potential since it is averaged out by the oscillation of a.11

In Fig. 2, we show the behaviors of a and b during the RD era at a benchmark point,

n = 6, m = 11, λp = cs = cp = 1, λs = 10−4, λ = 10−6 and vPQ = 1012 GeV (see subsection

10 Here, we redefine the origin of b so that the minimum of the potential is at a = b = 0.
11 More precisely, b settles to bi −maivPQ/χ+O

(
bim

2v2PQ/χ
2
)
.

15



a/vPQ (initial value : π /2)

b/χ (initial value : π /5)

-m × π /5 (mod 2π )

� �� ��� ���� ��� ���
-�

-�

-�

�

�

�

�

�/���

a/vPQ (initial value : -2π /3)

b/χ (initial value : π /5)

-m × π /5 (mod 2π )

� �� ��� ���� ��� ���
-�

-�

-�

�

�

�

�

�/���

Figure 2. The behaviors of a and b during the RD era at a benchmark point, n = 6, m = 11,

λp = cs = cp = 1, λs = 10−4, λ = 10−6 and vPQ = 1012 GeV. The initial conditions of the phase

components are a/vPQ = π/2 (left) and a/vPQ = −3π/2 while b/χ = π/5 in the both panels. In

both cases, a/vPQ settles around −mπ/5 (mod 2π) = −π/5, while b/χ is a constant in time.

IV E). We start analysis just after P obtains the VEV at T ∼ 1012 GeV. χ is assumed to

follow the scaling solution in Eq. (31). As the initial conditions of the phase components,

we take a/vPQ = π/2 (left) and a/vPQ = −2π/3 (right), while b/χ = π/5, respectively. The

initial velocities are taken to be zero. The figure shows that a/vPQ settles around −mvPQb/χ

(mod 2π). The figure also shows that b/χ is an almost constant in time as expected. The

oscillation period of a/vPQ becomes longer at the later time, as χ decreases according to the

scaling solution. In this way, the random field value of a in each Hubble patch settles in the

vicinity of the uniform field value, −mbvPQ/χ (mod 2π).

C. The Axion Dynamics After the Onset of S Oscillation

As we have mentioned earlier, S starts to oscillate around its origin when Hubble param-

eter becomes smaller than ms. In this subsection, we consider the dynamics of the axion

after the onset of the S oscillation.

Because the axion potential is induced by the mixing term, the sign of the axion potential

also flips when S oscillates (see Fig. 3). If the axion mass exceeds the Hubble parameter at

that time, the axion falls from the top of the flipped potential. If this happens, the axion

field value in each Hubble patch is again randomized and can no longer be uniform in our

universe. Such a behaviour brings back the domain wall problem.

To avoid this situation, we require that the Hubble friction on the axion is effective when

16



S oscillation

Figure 3. A schematic picture of the behavior of the scalar potential of the PQ field. As the

spectator PQ field oscillates, the sign of the axion potential flips.

S starts to oscillate. This condition can be expressed in the form

ma(T ) < 3H = ms , (43)

where we estimate the onset of the S oscillation by 3H = ms.
12

As we have seen in Eq. (40), the axion mass should exceed the Hubble parameter when P

obtains the VEV. On the other hand, the axion mass needs to be smaller than the Hubble

friction when 3H = ms. These two requirements lead to the condition that the axion mass

in Eq. (38), ma ∝ H
m

2(n−1) , must decrease faster than Hubble parameter. Thus, the above

condition is satisfied for

m ≥ 2n− 1 . (44)

To this point, we have ignored the back reaction to S from P . As we have seen, 〈SI〉 �

〈PI〉 during inflation. Thus, the back reaction from P through the mixing term is negligible

during inflation. As the field value of P decreases much faster than that of S, the back

reaction is also negligible in the inflaton oscillation era and the RD era until P obtains the

VEV.

After P obtains the VEV, 〈P 〉 ' vPQ, the back reaction could modify the behavior of S

12 Below the temperature of ma(T ) ' 3H, the field value of a is frozen to a different field value in each

Hubble patch. The difference of the frozen filed value, however, does not cause the domain wall problem

as long as all the difference is smaller than 2πfa.

17



in Eq. (31) if 13

λ2s
(n!)2M2n−4

Pl

|S|2n ∼ λ

(2n− 1)!M2n−4
Pl

|S|2n−1vPQ

∴ S ∼ (n!)2λ

(2n− 1)!λ2s
vPQ. (45)

However, such a situation can be avoided if the mass of S is larger so that S starts oscillation

before Eq. (45) is satisfied. Thus, so long as

λvPQMPl

(
(n!)2λ

m!λ2s

vPQ
MPl

)2n−3

< m2
s , (46)

we can safely neglect the back reaction of P to the dynamics of S.

D. Isocurvature Perturbations of the Axion

Because P obtains the VEV during the RD era, it seems that the axion does not suffer

from the isocurvature problem. However, the phase component b of S has a flat potential

when S takes a large field value, and it obtains quantum fluctuation during inflation. In the

presence of the mixing term, the fluctuation of the phase component of S is imprinted in

the axion, which leads to the isocurvature perturbations of the axion dark matter.

During inflation, the fluctuation of b is given by [41–45],

δbI '
HI

2π
, (47)

where 〈χI〉 =
√

2〈SI〉.14 After inflation, S follows the scaling solution which is along the

straight line passing through S = 0 in the complex plane of S. Thus, the fluctuation of δb

decreases as

δb ' χ

〈χI〉
× δbI '

HI

2π

χ

〈χI〉
, (48)

Once P obtains the VEV, the P -S mixing term leads to the potential of a and b in

13 Here, we use the lower limit on m in Eq. (44) since the back reaction is weaker for a larger m.
14 Since P also takes a large field value, a also fluctuates during inflation. However, the axion eventually

settles around −mvPQ/χb regardless of its initial value as we have seen in subsection IV B. Thus, the

fluctuation of a does not affect the following arguments.
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Eq. (42). Then, as we discussed in subsection IV B, a/vPQ settles around −m × b/χ (mod

2π) while b/χ does not move. As a result, the fluctuation of b is imprinted in a as15

δa

fa
' m

vPQ
χ

δb

fa
' mNDWHI

2π〈χI〉
. (49)

Below the QCD scale, the axion starts coherent oscillation and the axion fluctuation re-

sults in the uncorrelated isocurvature perturbations. The power spectrum of the isocurvature

perturbations is given by

PI ' 8

(
δa

fa

)2(
fa

1012 GeV

)1.19(
Ωah

2

0.1

)
, (50)

where we assume that the observed dark matter density is dominated by the axion. From

the CMB observations, the uncorrelated isocurvature perturbations of cold dark matter are

constrained by [19],

βiso =
PI

Pζ + PI
≤ 0.038 , (51)

where Pζ ' 2 × 10−9 denotes the power spectrum of the curvature perturbations. By

combining Eqs. (13), (49) and (50), we find the upper limit on HI is given by,

HI .MPl ×

(
8× 10−10

1

m2N2
DW

(
1012 GeV

fa

)1.19(
0.1

Ωah2

)) n−1
2(n−2) (√

cs
n

n!

λs

) 1
n−2

(52)

E. Viable Parameter Region

Let us summarize the constraints on the model parameters. In Fig. 4, we show the

constraints on the (ms, λ) plane, for NDM = 1 (the minimal KSVZ axion model) and for

NDM = 6 (DFSZ axion model [7, 8]).16 We take n = 6, m = 11, λp = 1, cs = 1 and cp = 1

as a benchmark point. The blue shaded region is excluded where the condition in Eq. (40)

is not satisfied after P obtains the VEV, and hence, the randomness of the axion direction

is not resolved. The orange shaded region is excluded where the condition in Eq. (43) is not

15 Only the fluctuation modes longer than the Hubble length at the QCD temperature are relevant for the

isocurvature perturbations of the axion dark matter, which are superhorizon mode when a settles around

−mvPQ/χb.
16 Here, we assume that the two Higgs doublets in the DFSZ model couple to the PQ field via P 2H1H2.
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Figure 4. Various constraints on the model parameters. The blue, orange and green shaded areas

are excluded by the conditions in Eqs. (40), (43), (46). The red one is excluded by a conservative

condition ma(T ∼ vPQ) & 3H(T ∼ vPQ). As a benchmark, we set n = 6, m = 11, and λp = cp =

cs = 1 and λs = 10−4. Left) NDW = 1, Right) NDW = 6.

satisfied at 3H ' ms, and hence, the axion is randomized as S oscillates. The green shaded

region is excluded where the condition in Eq. (46) is not satisfied, where the back reaction

from P to S becomes sizable. The red shaded region shows a more conservative constraint,

ma(T ∼ vPQ) & 3H(T ∼ vPQ), which is weaker than that in Eq. (40). This weaker constraint

is good enough if no cosmic strings are formed when P obtains the VEV at T ∼ vPQ. The

figure shows that all the conditions are satisfied for a wide range of ms. For the minimal

KSVZ model, i.e. NDW = 1, ms . 1 GeV, and for the DFSZ model, ms . 102 GeV.

For the benchmark scenario, n = 6, m = 11, the constraint on the isocurvature pertur-

bations leads to

HI . 1012 GeV × 1

N
5/4
DW

(√
cs
λs

)1/4

. (53)

Thus, we find that the present mechanism allows HI ∼ 1013 GeV for λs ∼ 10−6.17

As a result, we find that the present mechanism makes the axion model with NDM 6= 1

compatible with the inflation model in which a large Hubble parameter is rather large,

i.e., HI � 107–8 GeV. Therefore, this mechanism increases the freedom of choice of the

combinations of the axion models and inflation models.

17 For λs ∼ 10−6, the expectation value of S during inflation slightly exceeds MPl, which requires a small cs

to avoid too much potential energy of S during inflation.
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Table I. Charge assignments of the supersymmetric model. In addition to the PQ symmetry, we

show the R-symmetry.

X Y Z S P P̄ QLQ̄R ψsψ̄s
U(1)PQ 0 −6 −9 1 7 −7 −7 −1
R 2 2 2 0 0 0 2 2

V. SUPERSYMMETRIC REALIZATION

As we have seen in the previous section, the model requires the higher dimensional inter-

action terms with specific exponents. Such scalar potentials are not easily justified in non-

supersymmetric theories. In this section, we briefly discuss a supersymmetric realization of

the mechanism to make the scenario more viable. A detailed analysis of the supersymmetric

extension will be given elsewhere.

For example, a model with n = 6 and m = 11 can be easily realized by assuming a

superpotential,

W = X(PP̄ − v2PQ) +
1

M4
Pl

Y S6 + Z

(
S2P +

1

M6
Pl

S9

)
+

1

M6
Pl

XP̄S7 . (54)

Here, P and S are the chiral superfields corresponding to the (spectator) PQ fields, while X,

Y and Z are chiral superfields whose F -components lead to the scalar potential in Eq. (8).18

We omit the coupling constants for brevity. The PQ charge assignment is given in Table I.

This model justifies why the potential term with a lower dimension than |S|2n are absent.

The mass term of the scalar component of S is generated by the supersymmetry breaking

effects. It should be noted that the unwanted superpotential terms such as Y P iSj with

i > 1 (i+ j = 6) are suppressed by PQ and R-symmetry.

The last term of Eq. (54) induces

V =
1

M6
Pl

(PP̄ − v2PQ)P̄ ∗S7 + h.c. (55)

When T & vPQ, P and P̄ are settled to the origin due to thermal mass terms, thus this term

does not affect the dynamics of S and P . In addition, after 〈PP̄ 〉 settles to v2PQ, this term

18 In this realization, the P -S mixing term in the scalar potential is given by |S|4S7P ∗ + h.c. Accordingly,

the cosine potential of the phase components in Eq. (42) is modified to cos(a/vPQ + 7b/χ).
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vanishes. Therefore, this term does not have an influence on the dynamics all through the

epoch of interest.

We briefly comment on the effects of higher dimensional terms in the Kähler potential.

For example, a higher dimensional operator,

K =
1

M2
Pl

|X|2|S|2 , (56)

induces a scalar potential,

V =
|PP̄ − v2PQ|2

1 + |S|2/M2
Pl

. (57)

This term leads to an additional effective mass of S for a given 〈PP̄ 〉. During inflation,

this term is smaller than the Hubble induced mass term (see Eqs. (33) and (34)). After

inflation, 〈PP̄ 〉 immediately vanishes, and the mass term in Eq. (57) leads to a mass of

O
(
v2PQ/MPl

)
, which is smaller than the Hubble constant until T ∼ vPQ. After 〈PP̄ 〉 settles

to v2PQ, the induced mass vanishes.19 Therefore, we find that the induced mass does not

affect the dynamics of the scalar fields.

In addition to the higher dimensional term in Eq. (56), there are terms

K =
1

M2
Pl

(|Y |2|S|2 + |Z|2|S|2 + |S|4) + · · · . (58)

These terms just induce additional terms with higher dimension than those in Eq. (8), and

hence, they do not affect the scaling behavior of S.20 In the case of |S|4, we redefine S

so that it has a canonical kinetic term. With the redefinition, the effects appear as the

additional terms with higher dimension than those in Eq. (8). The same is true for the

higher dimensional Kähler term of |S|2k (k > 1).

Supersymmetric extension is also advantageous to explain the interactions between the

19 In the presence of the supersymmetry breaking effects, the VEV of PP̄ is slightly shifted from v2PQ, and

hence, the effective mass in Eq. (57) does not vanish completely. However, we can set this mass term small

enough not to affect the dynamics.
20 We assume that X,Y, Z obtain the positive Hubble mass terms, hence they settle at the origin.
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PQ fields and the inflaton in Eq. (9). In fact, a Kähler potential,

K =
cp

3M2
Pl

|I|2|P |2 − cs
3M2

Pl

|I|2|S|2 , (59)

explains the interactions between the PQ fields and the inflaton. Here, I denotes the chiral

superfield of the inflaton φ whose F -component provides the inflaton potential, i.e., V (φ) =

|FI |2.

In addition to Eq. (59), we can write higher order Kähler terms such as

K = |I|2
(
|S|4

M4
Pl

+
|S|6

M6
Pl

+ · · ·

)
. (60)

In the case of 〈SI〉 ∼ MPl, these terms slightly modify the expectation value of S during

inflation. However, after inflation, 〈S〉 starts to decrease, then the higher order contributions

become negligible, therefore they do not affect the dynamics.

VI. CONCLUSIONS

The domain wall problem and the isocurvature problem restrict possible combinations of

axion models and inflation models. In this paper, we considered a new mechanism which

solves those problems by introducing the spectator PQ field which obtains a large field

value before the PQ field obtains the VEV. The mechanism makes the axion model with

a non-trivial domain wall number compatible with the inflation model with a large Hubble

parameter, HI � 107–8 GeV. The mechanism is also free from the isocurvature problem. It

should be emphasized that this mechanism can be added to any conventional axion models.

Thus, this mechanism increases the freedom of choice of combinations of axion models and

inflation models.

We also find that the present mechanism can be consistent with a large Hubble parameter

during inflation, of HI ∼ 1013 GeV. Thus, the scenario can be tested by combining future

axion search experiments and the searches for the primordial B-mode polarization in the

CMB.

The model also predicts the existence of the spectator PQ field. As we have discussed in
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III C, the coherent oscillation of the spectator PQ field can play a role of the dark matter

when it is very light.21 As the initial amplitude of the coherent oscillation is dynamically

determined, this model realizes a very light scalar dark matter without fine-tuning of the

initial condition in an alternative way to the axion-like ultra-light dark matter in [46, 47].

Such a very light dark matter can be tested via astronomical ephemeris [48].
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Appendix A: Energy Density of the Spectator PQ Field

In this appendix, we discuss the energy density of the spectator PQ field, S. When S

follows the scaling solution in Eqs. (13), (24) and (31), the potential energy density of S

is of O(H2|S|2). Thus, it is sub-dominant compared with the dominant energy density of

O(H2M2
Pl) as long as 〈S〉 �MPl.

Once S starts coherent oscillation around its origin, S behaves as a massive matter with

an energy density

ρS = m2
s|S|2 . (A1)

The radiation density at that time is m2
sM

2
Pl/3 where we have used H ' ms/3. Thus,

again, the energy density of S is sub-dominant since S � MPl at the onset of the coherent

oscillation.

21 In this case, we do not need to introduce the light fermions in Eq. (32).
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As we considered in II, S immediately decays into the massless fermions which behave as

radiation. Thus, the energy density of S does not causes any cosmological problems. As the

energy density of S is sub-dominant, the energy density of the massless fermions are also

sub-dominant. Furthermore, the relative entropy of the massless fermions is diluted when

all the entropy in the thermal bath goes into the particles in the standard cosmology (i.e.

the photons and the neutrinos). Thus, the contributions of the massless fermions to the

dark radiation is also negligible.
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