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We report results of numerical relativity simulations of binary neutron star mergers. We perform
simulations for new 26 non-spinning binary models with 6 grid resolutions using an adaptive mesh
refinement numerical relativity code SACRA-MPI. The finest grid spacing is ≈ 64 m. First, we derive
long-term high-precision inspiral gravitational waveforms for calibrating the SACRA gravitational
waveform template. We find that the accumulated gravitational-wave phase error due to the finite
grid resolution is less than 0.5 radian during more than 200 radian phase evolution irrespective
of the models. We also find that the gravitational-wave phase error for a model with a tabulated
equation of state is comparable to that for a piece-wise polytropic equation of state. Then we
calibrate the proposed universal relations between the post-merger gravitational wave signal and
tidal deformability/neutron star radius in the literature. We find that they suffer from systematics
and many relations proposed as universal are not very universal. We also propose improved fitting
formulae. Finally, we validate the SACRA gravitational waveform template which will be used
to extract tidal deformability from gravitational wave observation and find that accuracy of our
waveform modeling is . 0.1 radian in the gravitational-wave phase and . 20% in the gravitational-
wave amplitude up to the gravitational-wave frequency 1000 Hz.

PACS numbers: 04.25.D-, 04.30.-w, 04.40.Dg

I. INTRODUCTION

On August 17, 2017, advanced LIGO and advanced
Virgo detected gravitational waves from a binary neu-
tron star (BNS) merger, GW170817, for the first time [1].
In this event, not only gravitational waves but also
the electromagnetic signals in the gamma-ray [2–4],
ultraviolet-optical-infrared [5–20], X-ray [21–23], and ra-
dio bands [24–29] were detected. This monumental event
GW170817, GRB170817A, and AT2017gfo heralded the
opening of the multi-messenger astrophysics. Further-
more, advanced LIGO and advanced Virgo have started
a new observation run, O3, from April 2019 and three
candidates of a BNS merger as of July 1, 2019, have been
detected [30].

One noteworthy finding in GW170817 is that tidal de-
formability of the neutron star (NS) was constrained for
the first time. Due to a tidal field generated by a com-
panion, NSs in a binary system could be deformed sig-
nificantly in the late inspiral stage [31]. The response
to the tidal field, the tidal deformability, is imprinted
as a phase shift in gravitational waves and its measure-
ment gives a constraint on the equation of state (EOS)
of NSs because the tidal deformability depends on EOSs.
GW170817 constrained the binary tidal deformability in
the range of 100 . Λ̃ . 800 with the binary total mass of

2.73+0.04
−0.01M� [1, 32–34] where the precise value depends

on the analysis methods.

To extract information of the tidal deformability from
observed gravitational wave data, a high precision grav-
itational waveform template plays an essential role.
In particular, numerical relativity simulations are the
unique tool to derive high-precision gravitational wave-
forms in the late inspiral stage. During this stage, the
gravitational-wave phase shift due to the tidal defor-
mation becomes prominent and any analytic techniques
break down. Dietrich and his collaborators constructed a
gravitational wave template for the inspiral stage based
on the numerical relativity simulations in a series of pa-
pers [35–40] and their template was used in gravitational
wave data analysis by LIGO Scientific Collaborations to
infer the tidal deformability of GW170817 [32]. However,
the residual phase error caused mainly by the finite grid
resolution in their simulations is ≈ 0.5–2.3 radian [40]
and the grid resolution in their simulations is lower than
that in our previous simulations [41, 42]. The phase error
of O(1) radian could be an obstacle to construct a high-
quality inspiral gravitational waveform template (see also
Refs. [43, 44]).

In Ref. [41], we tackled this problem by using our nu-
merical relativity code SACRA-MPI and performed long-
term simulations with the highest grid resolution to date
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(see also Refs. [45–48] for our effort in the early stage of
this project). In our numerical results, the gravitational-
wave phase error caused by the finite grid resolution is
less than 0.5 radian for 31–32 inspiral gravitational wave
cycles. On the basis of these high-precision gravitational
waveforms, Ref. [42] presented a waveform template, the
SACRA gravitational waveform template, of BNS merg-
ers. Specifically, we multiply the 2.5 Post-Newtonian
(PN) order tidal-part phase derived in Ref. [49] by a cor-
rection term composed of the PN parameter and the bi-
nary tidal deformability. Then, we calibrated it so as to
reproduce the high-precision gravitational waveforms de-
rived in Ref. [41]. We also calibrated a correction term
in the 1 PN order formula for the tidal-part amplitude
derived in Refs. [49, 50].

In Refs. [41, 42], we performed simulations of a limited
class of BNS models, i.e., two equal-mass models and two
unequal-mass models. Thus, the applicable range of the
SACRA gravitational waveform template has not quan-
tified precisely yet. In this paper, we derive a number of
gravitational waveforms from BNS mergers by perform-
ing numerical-relativity simulations in a wider parame-
ter space for EOSs, binary total mass, and mass ratio
than that in the previous papers [41, 42]. In each binary
parameter, we perform an in-depth resolution study to
assess the accuracy of our waveforms. On the basis of
new derived high-precision gravitational waveforms, we
validate the SACRA gravitational waveform template.

In addition, we analyze post-merger gravitational wave
signals derived in the BNS merger simulations. The
post-merger signal in GW170817 has not been detected
yet [51], but a post-merger signal could be detected in
the near future for the nearby events or with the third
generation detectors such as Einstein Telescope or Cos-
mic Explorer [52, 53]. The signal could bring us com-
plementary information of the EOS to that imprinted in
the late inspiral signal. To extract such information, we
should explore a heuristic relation between post-merger
signals and the tidal deformability/NS radius in numer-
ical relativity simulations. In the previous papers, such
an attempt has been made [54–60]. However, system-
atics contained in these relations are unclear because of
the lack of resolution study, approximate treatment of
relativistic gravity, and the narrow range of the BNS pa-
rameter space. In this paper, we assess to what extent
the proposed universal relations between the post-merger
gravitational wave signal and tidal deformability/NS ra-
dius [54–60] hold.

To stimulate an independent attempt by other re-
searchers for constructing a gravitational waveform tem-
plate based on the numerical relativity simulations
and/or to stimulate a comparison to numerical relativity
simulations done by other groups, we release our simula-
tion data on the web. Our numerical-relativity simula-
tion data is available at SACRA Gravitational Waveform
Data Bank.

This paper is organized as follows. Section II describes
our method, grid setup, and initial condition of the sim-

ulations. Section III is devoted to describing SACRA
Gravitational Waveform Data Bank, the estimation of
the phase error in gravitational waves, and the assess-
ment of the universal relations of the post-merger sig-
nals. Section IV presents validation of the SACRA grav-
itational waveform template. We summarize this paper
in Sec. V.

II. METHOD, GRID SETUP, AND INITIAL
MODELS

A. Method and grid setup

We use our numerical relativity code, SACRA-MPI [41,
61], to simulate a long-term inspiral stage of BNS up to
merger. SACRA-MPI implements the Baumgarte-Shapiro-
Shibata-Nakamura-puncture formulation [62–65], locally
incorporating a Z4c-type constraint propagation pre-
scription [66], to solve Einstein’s equation. We discretize
Einstein’s equation with the 4th-order accuracy in both
the space and time. We also apply the lop-sided finite
difference scheme for the advection term [67].

In SACRA-MPI, the general relativistic hydrodynamics
is formulated in a conservative form and we implement
a high-resolution shock capturing scheme proposed by
Kurganov and Tadmor [68] together with the 3rd-order
accurate cell reconstruction [69].
SACRA-MPI implements the Berger-Oliger type adap-

tive mesh refinement (AMR) algorithm [70] to enlarge a
simulation domain to a local wave zone of gravitational
waves while guaranteeing a high spatial grid resolution
around NSs. A simulation domain consists of two sets
of the 4 Cartesian AMR domains which follow orbital
motion of each NS and the 6 Cartesian AMR domains
whose center is fixed to the coordinate origin throughout
all the simulations. SACRA-MPI assumes that the grid
spacing of a coarser refinement level is twice as large as
that of its finer refinement level. Thus, the grid spac-
ing of a refinement level l is given by ∆xl = L/(2lN)
with l = 0, 1, · · · 9. L and N denote the distance and
the number of grid points from the coordinate origin to
the outer boundary along each coordinates axis, respec-
tively. Thus, each AMR domain possesses the grid point
(2N+1, 2N+1, N+1) in the x, y, and z directions where
we assumed the orbital plane symmetry.

In this work, we performed simulations with N =
182, 150, 130, 110, 102, and 90 for all the models to check
the convergence of gravitational waveforms with respect
to the grid resolution. The values of L and ∆x9 are sum-
marized in Table I.

B. model

Table I shows the list of the models as well as the grid
setup for the simulations.

https://www2.yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html
https://www2.yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html
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1. Equation of state

Following the previous papers [41, 42], we employ a
parameterized piece-wise polytropic EOS to describe the
NS matter [71]. Specifically, we assume that the pressure
and internal energy consist of two segments with respect
to the rest-mass density:

Pcold(ρ) = κiρ
Γi ,

εcold(ρ) =
κi

Γi − 1
ρΓi−1 + ∆εi (ρi ≤ ρ < ρi+1),

with i = 0, 1, ρ0 = 0 g cm−3, and ρ2 =∞. ρ1 is the rest-
mass density which divides the pressure and internal en-
ergy into the two segments. Given the adiabatic indices
Γ0,Γ1 and a polytropic constant κ0, another polytropic
constant κ1 is calculated from the continuity of the pres-
sure at ρ = ρ1 by κ0ρ

Γ0
1 = κ1ρ

Γ1
1 . ∆ε1 is also calculated

from the continuity of the internal energy at ρ = ρ1 by
κ0ρ

Γ0−1
1 /(Γ0 − 1) = κ1ρ

Γ1−1
1 /(Γ1 − 1) + ∆ε1. Note that

∆ε0 = 0. Following Ref. [71], we fix Γ0 = 1.3562395,
Γ1 = 3, and κ0 = 3.594 × 1013 in cgs units. By varying
the remaining parameter ρ1 for a wide range as shown
in Table II, we can derive plausible NS models with a
variety of the radius and tidal deformability for a given
mass (see Table III).

In addition to the piece-wise polytropic EOS, we em-
ploy one tabulated EOS, SFHo [72], with the assumption
of the neutrinoless low-temperature β-equilibrium condi-
tion. Then, the original tabulated EOS is reduced to
a one dimensional SFHo (tabulated) EOS, i.e., Pcold(ρ)
and εcold(ρ) (see also Table III for the NS radius and tidal
deformability).

During simulations, we employ a hybrid EOS to cap-
ture the shock heating effect. Specifically, the pressure
consists of the cold and thermal parts:

P = Pcold(ρ) + (Γth − 1)ρ(ε− εcold(ρ)), (2.1)

where we assumed that the thermal part could be de-
scribed by the Γ-law EOS with the index Γth. Following
Refs. [41, 42], we fix Γth = 1.8.

2. Model

In this paper, we consider 6 irrotational binary models
assuming that NSs have no spin before merger. We fix
the chirp mass, Mc, and symmetric mass ratio, η, to be
(Mc, η) = (1.1752M�, 0.2500), (1.1752M�, 0.2485),
(1.1752M�, 0.2455), (1.1752M�, 0.2450),
(1.0882M�, 0.2470), and (1.0882M�, 0.2440). With
this setting, gravitational masses of a less massive and
massive component for the infinite orbital separation is
(m1,m2) = (1.35M�, 1.35M�), (1.25M�, 1.46M�),
(1.18M�, 1.55M�), (1.17M�, 1.56M�),
(1.12M�, 1.40M�), and (1.07M�, 1.46M�) (see Ta-
ble I). For the SFHo (tabulated) EOS, we only consider

the equal-mass binary model with m1 = 1.35M� and
m2 = 1.35M�.

Table I also shows the binary tidal deformability for
all the binary models:

Λ̃ =
8

13

[
(1 + 7η − 31η2)(Λ1 + Λ2)

−
√

1− 4η(1 + 9η − 11η2)(Λ1 − Λ2)
]
, (2.2)

where Λ1(Λ2) is the tidal deformability of the less massive
(massive) component. The value of the tidal deformabil-
ity in this paper covers a wide range of ≈ 300–1800.

Figure 1 plots the BNS models simulated by our group.
For the SFHo (tabulated) EOS case, an interpolation of
the thermodynamic variables is necessary in the simula-
tions. This could be an error budget for generating high-
precision gravitational waveforms. This model is used to
assess the error budget.

We name each model according to the EOS, the mass
of the less massive component, and that of the massive
component. For example, 15H125-146 means the model
with 15H EOS, m1 = 1.25M�, and m2 = 1.46M�. We
set the initial orbital angular velocity to be Gm0Ω0/c

3 =
0.015–0.0155. With this, the BNSs experience about 15–
16 orbits before the onset of merger for all the models.

To generate a high-precision inspiral waveform from a
BNS merger by a numerical relativity simulation, initial
data with low orbital eccentricity is necessary because
the orbital motion of a BNS just before merger is circu-
larized due to the gravitational-wave emission. We nu-
merically obtain quasi equilibrium sequences of the BNSs
by a spectral-method library, LORENE [73, 74]. Then,
we perform an orbital eccentricity reduction by using the
prescription in Ref. [75]. With this method, we confirm
that the initial orbital eccentricity is typically reduced to
≈ 10−3 which is low enough to generate a high-precision
inspiral waveform (see also Appendix in Refs. [41, 42]).

C. Gravitational wave extraction

We calculate a complex Weyl scalar Ψ4 from simula-
tion data to derive gravitational waveforms [61]. Given
an extraction radius r0, the Weyl scalar Ψ4 is decom-
posed into (l,m) mode with the spin-weighted spherical
harmonics by

Ψ4(tret, r0, θ, φ) =
∑
l,m

Ψl,m
4 (tret, r0)−2Ylm(θ, φ), (2.3)

where tret is a retarded time. It is defined by

tret ≡ t−
[
D + 2m0 ln

(
D

2m0
− 1

)]
, (2.4)

where D =
√
A/4π and A is a proper area of the extrac-

tion sphere. We apply Nakano’s method [76] to extrapo-
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late Ψl,m
4 to infinity by

DΨl,m,∞
4 (tret)|D→∞ = C(r0)

[
DΨl,m

4 (tret, r0)

− (l − 1)(l + 2)

2

∫ tret

Ψl,m
4 (t′, r0)dt′

]
,

(2.5)

where C(r0) is a function of r0. Following Ref. [41], we
choose D = r0[1 + m0/(2r0)]2 and C(r0) = 1 − 2m0/D
because our coordinate is similar to isotropic coordinates
of non-rotating black holes.

Gravitational waves of each mode is calculated by in-

tegrating Ψl,m,∞
4 twice in time:

hl,m,∞(tret) = hl,m,∞+ (tret)− ihl,m,∞× (tret)

= −
∫ tret

dt′
∫ t′

Ψl,m,∞
4 (t′′)dt′′. (2.6)

For the time integration, we employ the fixed frequency
method [77] by

hl,m,∞(tret) =

∫
df ′

Ψ̃l,m,∞
4 (f ′)

(2πmax[f ′, fcut])2
exp(2πif ′tret),

(2.7)

where Ψ̃l,m,∞
4 (f) is the Fourier component of Ψl,m,∞

4 (t)
and fcut is set to be 0.8mΩ0/(2π).

To check the convergence with respect to the extraction
radius r0, we repeat this analysis for r0 = 244m0, 199m0,
and 155m0 for Mc = 1.1752M� and r0 = 262m0,
213m0, and 156m0 for Mc = 1.0882M� (see Table I).

In general, gravitational waves are decomposed into
the amplitude and phase by

hl,m,∞(tret) = Al,m,∞(tret)e
−iΦ(tret), (2.8)

and instantaneous gravitational-wave frequency, fGW, is
defined by dΦ/dt. With Eq. (2.8), the frequency of the
(l,m) = (2, 2) mode is calculated by

fGW =
1

2π
Im

(
h∗2,2,∞ḣ2,2,∞

|h2,2,∞|2

)
(2.9)

where h∗2,2,∞ is the complex conjugate of h2,2,∞.
We also calculate the energy and angular momentum

fluxes due to gravitational-wave emission by [78]

dEl,mGW

dt
= lim
r→∞

r2

16π

∣∣∣∣∫ t

Ψl,m,∞
4 (t′)dt′

∣∣∣∣2 ,
dJ l,mGW

dt
= − lim

r→∞

r2

16π
Im
[
m

(∫ t

Ψl,m,∞
4 (t′)dt′

)∗
×
∫ t

dt′
∫ t′

dt′′Ψl,m,∞
4 (t′′)

]
. (2.10)
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Λ

FIG. 1. Symmetric mass ratio, η, and binary tidal deforma-
bility, Λ̃, simulated by our group. The circle and triangle
symbols denote BNS models with Mc = 1.1752M� and with
Mc = 1.0882M�, respectively. The open symbols denote
the models reported in Refs. [41, 42]. The filled symbols are
the models newly employed in this study. The purple, green,
cyan, orange, and red colors are for the models with EOS 15H,
125H, H, HB, and B, respectively. The blue cross symbol is
for SFHo135-135.

Thus, the energy and angular momentum carried by
gravitational waves are calculated by

El,mGW =

∫
dEl,mGW

dt
dt,

J l,mGW =

∫
dJ l,mGW

dt
dt. (2.11)

III. RESULTS

A. Gravitational waveform data bank

We have simulated 46 binary models with 6 grid
resolutions. Our waveform data is publicly available on
the web:

SACRA Gravitational Waveform Data Bank [79].

On the website, we tabulate the waveform data ac-
cording to the model name, dimensionless initial or-
bital angular velocity, and grid resolution. For exam-
ple, 15H 135 135 00155 182 indicates that the employed
EOS is 15H, m1 = 1.35M�, m2 = 1.35M�, Gm0Ω0/c

3 =
0.0155, and N = 182 (see also Table I). A user can down-

load the data for Ψ2,2
4 (tret, r0) extracted at several values

of r0 and h2,2,∞
+,× (tret) from the link on the model name.

https://www2.yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html
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TABLE I. List of the models. Model name is given in the 1st column. The 2nd and 3rd columns show gravitational mass
of less massive NS, m1, and massive NS, m2, respectively. The 4th column shows EOS. Dimensionless initial orbital angular
velocity, Ω0, with the total gravitational mass of the binaries, m0 = m1 + m2, is given in the 5th column. The 6th, 7th,
and 8th columns show chirp mass, Mc = (m1m2)3/5(m1 + m2)−1/5, symmetric mass ratio, η = m1m2(m1 + m2)−2, and

binary tidal deformability, Λ̃, respectively. Location of outer boundary in a computational domain, L, and grid spacing of
a finest adaptive mesh refinement level, ∆x9, are given in the 9th and 10th columns, respectively. The grid spacing with
N = 182, 150, 130, 110, 102, and 90 is shown in the parenthesis in the 10th column. The final column shows the extraction radii
of gravitational waves.

Model m1 [M�] m2 [M�] EOS Gm0Ω0/c
3 Mc η Λ̃ L [km] ∆x9 [m] r0/m0

15H125-146 1.25 1.46 15H 0.0155 1.1752 0.2485 1200 7823 (84,102,117,138,149,169) (244,199,155)

125H125-146 1.25 1.46 125H 0.0155 1.1752 0.2485 858 7323 (78,95,110,129,140,158) (244,199,155)

H125-146 1.25 1.46 H 0.0155 1.1752 0.2485 605 6824 (73,89,102,121,130,147) (244,199,155)

HB125-146 1.25 1.46 HB 0.0155 1.1752 0.2485 423 6491 (69,84,97,115,124,140) (244,199,155)

B125-146 1.25 1.46 B 0.0155 1.1752 0.2485 290 5992 (64,78,90,106,114,129) (244,199,155)

15H118-155 1.18 1.55 15H 0.0155 1.1752 0.2455 1194 7889 (84,102,118,139,150,170) (242,198,154)

125H118-155 1.18 1.55 125H 0.0155 1.1752 0.2455 855 7390 (79,96,111,131,141,159) (242,198,154)

H118-155 1.18 1.55 H 0.0155 1.1752 0.2455 606 6990 (75,91,105,124,133,151) (242,198,154)

HB118-155 1.18 1.55 HB 0.0155 1.1752 0.2455 423 6491 (69,84,97,115,124,140) (242,198,154)

B118-155 1.18 1.55 B 0.0155 1.1752 0.2455 292 5992 (64,78,90,106,114,129) (242,198,154)

15H117-156 1.17 1.56 15H 0.0155 1.1752 0.2450 1170 7889 (84,102,118,139,150,170) (242,198,154)

125H117-156 1.17 1.56 125H 0.0155 1.1752 0.2450 837 7323 (78,95,110,129,140,158) (242,198,154)

H117-156 1.17 1.56 H 0.0155 1.1752 0.2450 592 6990 (75,91,105,124,133,151) (242,198,154)

HB117-156 1.17 1.56 HB 0.0155 1.1752 0.2450 414 6491 (69,84,97,115,124,141) (242,198,154)

B117-156 1.17 1.56 B 0.0155 1.1752 0.2450 285 6058 (65,79,91,107,115,131) (242,198,154)

15H112-140 1.12 1.40 15H 0.0150 1.0882 0.2470 1842 7989 (85,104,120,141,152,172) (262,214,167)

125H112-140 1.12 1.40 125H 0.0150 1.0882 0.2470 1332 7490 (80,97,112,132,143,162) (262,214,167)

H112-140 1.12 1.40 H 0.0150 1.0882 0.2470 955 6990 (75,91,105,124,133,151) (262,214,167)

HB112-140 1.12 1.40 HB 0.0150 1.0882 0.2470 677 6491 (69,84,97,115,124,140) (262,214,167)

B112-140 1.12 1.40 B 0.0150 1.0882 0.2470 475 6092 (65,79,91,108,116,131) (262,214,167)

15H107-146 1.07 1.46 15H 0.0150 1.0882 0.2440 1845 7989 (85,104,120,141,152,172) (261,213,166)

125H107-146 1.07 1.46 125H 0.0150 1.0882 0.2440 1335 7490 (80,97,112,132,143,162) (261,213,166)

H107-146 1.07 1.46 H 0.0150 1.0882 0.2440 957 6990 (75,91,105,124,133,151) (261,213,166)

HB107-146 1.07 1.46 HB 0.0150 1.0882 0.2440 684 6591 (71,86,99,117,126,142) (261,213,166)

B107-146 1.07 1.46 B 0.0150 1.0882 0.2440 481 6091 (65,79,91,108,116,131) (261,213,166)

SFHo135-135 1.35 1.35 SFHo 0.0155 1.1752 0.2500 460 6491 (69,84,97,115,124,140) (244,200,156)

TABLE II. List of ρ1 in two piece-wise polytropic EOSs.

EOS ρ1[g cm−3]

15H 9.3108× 1013

125H 1.0711× 1014

H 1.2323× 1014

HB 1.4177× 1014

B 1.6309× 1014

The top panel of Fig. 2 shows the dependence of the
gravitational waveforms on the EOSs for the binaries
with m1 = 1.12M�, m2 = 1.40M� and N = 182. It

shows that the models with the larger values of Λ̃ merge
earlier than those with the smaller values of Λ̃ because
the tidal force is the attractive force and the tidal defor-
mation accelerates the orbital shrink. The bottom panel

of Fig. 2 shows the dependence of the gravitational wave-
forms on the symmetric mass ratio for the binaries with
15H125-125, 15H112-140, and 15H107-146 with N = 182.
It shows that the models with the larger values of η merge
earlier than those with the smaller values of η.

The top panel of Fig. 3 shows the dependence of
the gravitational waveforms on the grid resolutions for
15H112-140 with N = 182, 110, and N = 90. Errors in
the amplitude and phase caused by the finite grid reso-
lution become prominent for the late inspiral and post-
merger stages. This indicates that the gravitational-wave
phase shift is also caused by the finite grid resolution.
The bottom panel of Fig. 3 plots the phase shift between
the models with m1 = 1.12M�, m2 = 1.40M�, and N =
182. The phase shift is defined by ∆Φ = Φ(EOS)−Φ(B)
with EOS = 15H, 125H, H, and HB. The shaded region
shows the numerically induced phase shift, i.e., phase er-
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TABLE III. Equations of state employed, the radius, RM , and the dimensionless tidal deformability, ΛM , for spherical NSs
with gravitational mass M = 1.07, 1.12, 1.17, 1.18, 1.25, 1.35, 1.40, 1.46, 1.55 and 1.56M�. RM is listed in units of km. For
SFHo (tabulated) EOS, the quantities for the spherical star with M = 1.35M� are listed. The last column in the upper table
is the maximum mass of the spherical NS in units of M�.

EOS R1.07 R1.12 R1.17 R1.18 R1.25 R1.35 R1.40 R1.46 R1.55 R1.56 Mmax

15H 13.54 13.58 13.61 13.62 13.65 13.69 13.71 13.72 13.74 13.74 2.53

125H 12.86 12.89 12.91 12.92 12.94 12.97 12.98 12.99 12.98 12.98 2.38

H 12.22 12.23 12.24 12.24 12.26 12.27 12.28 12.18 12.26 12.25 2.25

HB 11.60 11.59 11.60 11.60 11.61 11.61 11.60 11.59 11.55 11.55 2.12

B 10.97 10.97 10.98 10.98 10.98 10.96 10.95 10.92 10.87 10.86 2.00

SFHo – – – – – 11.91 – – – – 2.06

EOS Λ1.07 Λ1.12 Λ1.17 Λ1.18 Λ1.25 Λ1.35 Λ1.40 Λ1.46 Λ1.55 Λ1.56

15H 4361 3411 2692 2575 1871 1211 975 760 530 509

125H 3196 2490 1963 1875 1351 863 693 535 366 350

H 2329 1812 1415 1354 966 607 484 369 249 238

HB 1695 1304 1013 966 684 422 333 252 165 157

B 1216 933 719 681 477 289 225 168 107 101

SFHo – – – – – 460 – – – –

ror, between N = 182 and N = 150 (red) and between
N = 182 and N = 90 (blue), respectively, for 15H112-
140. The phase error is defined by ∆Φ = Φ(N)−Φ(182)
with N = 150 and 90. The vertical dashed line denotes
the peak time at which the gravitational-wave amplitude
becomes maximal for 15H112-140 with N = 182. Just
after the peak time, gravitational waves become a short-
term burst-type waves as shown in the upper panel of
Fig. 3, i.e., for 58 ms . tret . 59 ms. These waves
cause very rapid increase in the phase during this time
interval and consequently the phase shift between the bi-
naries with the different EOSs shows very rapid increase.
This feature can be also seen in the phase error and the
very rapid increase appears later in the phase shift be-
tween N = 182 and 150 than that between N = 182
and N = 90 because the peak time becomes later with
improving the grid resolution.

The phase shift up to the peak time among the different
EOSs and that among the different grid resolutions are
comparable, in particular, for the case with the coarser
grid resolution. Therefore unless a thorough convergence
study is carried out a capability of numerical relativity
inspiral waveforms to measure the tidal deformability is
unclear. This is also the case for the the post-merger
stage. In particular, the phase shift loosens the conver-
gence as can be seen in the bottom panel of Fig. 3, i.e.,
the phase error between N = 182 and 150 (red shaded
region) is higher than that between N = 182 and N = 90
(blue shaded region). Therefore, the time-domain post-
merger gravitational waves are not very reliable. Instead,
we will discuss the post-merger signal in terms of the
energy and angular momentum carried by gravitational
waves and the power spectrum density of gravitational
waves. These quantities are calculated by a time integra-
tion of the gravitational waveforms and the loss of the
convergence in the phase could be irrelevant as discussed

in Sec. III D.

B. Estimation of the phase error in gravitational
waves

Following Refs. [41, 42], we estimate the gravitational-
wave phase error due to the finite grid resolution. The left
panel of Fig. 4 plots evolution of the gravitational-wave
phase error with different grid resolutions for B107-146.
The phase error is defined by δΦ = Φ(N)− Φ(182) with
N = 150, 130, 110, 102, and 90 in this figure. The vertical
dashed line denotes the peak time. Although the phase
error is accumulated with time, its value at the peak time
becomes small as improving the grid resolution. Thus,
the gravitational-wave phase error due to the finite grid
resolution is reduced as improving the grid resolution.

We estimate a residual phase error by assuming that
the gravitational-wave phase at the peak time obeys a
following functional form;

Φpeak(N) = Φ∞peak(Nmax)−∆Φ(Nmax)

(
Nmax

N

)p
,

(3.1)

where Φpeak(N) is the gravitational-wave phase at the
peak time derived from a simulation with the grid num-
ber N . Nmax denotes a reference grid value of N to
estimate unknown quantities Φ∞peak(Nmax), ∆Φ(Nmax),
and p. For example, with Nmax = 182, these un-
knowns are obtained by fitting the simulation results of
N = 150, 130, 110, 102, and 90 with Eq. (3.1). ∆Φ(Nmax)
should be recognized as the residual phase error for the
simulation with N = Nmax because N →∞means a con-
tinuum limit with respect to the grid resolution. Also, p
denotes an order of the convergence of the gravitational-
wave phase at the peak time.
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FIG. 2. (Top) h+ for the (l,m) = (2, 2) mode of the gravitational waveforms for the binaries with m1 = 1.12M� and
m2 = 1.40M�. (Bottom) The same as the top panel, but for 15H125-125, 15H112-140, and 15H107-146. In both the panels,
the grid resolution is N = 182.

The right panel of Fig. 4 plots the gravitational-wave
phase error at the peak time as a function of 1/Np with
a reference grid number Nmax;

Φpeak(Nmax)− Φpeak(N) = ∆Φ(Nmax)

[(
Nmax

N

)p
− 1

]
.

(3.2)

The values of ∆Φ(Nmax) and p are shown in the legend
of this figure. It is clear that the order of the convergence
p is improved and the residual gravitational-wave phase
error is reduced as increasing Nmax. This illustrates that
well resolved simulations with at least the grid spacing of
≈ 100 m are necessary to derive gravitational waveforms
with sub-radian accuracy.

Table IV summarizes the residual phase error and the
order of the convergence of the gravitational-wave phase
at the peak time for all the models. We estimate the
residual phase error with respect to three reference values

of Nmax as 182, 150, and 130. In some models, the resid-
ual phase error and the order of the convergence show an
irregular behavior. That is the residual phase error (the
order of the convergence) for Nmax = 130 happens to be
smaller (higher) than that for Nmax = 150. Nonetheless,
the residual phase error (the order of the convergence) for
Nmax = 182 is smaller (higher) than that for Nmax = 150
except for 125H125-146. Thus, we adopt the values for
Nmax = 182 as the residual phase error in our waveforms
and it is in the range of ≈ 0.1–0.5 radian.

For the SFHo (tabulated) EOS case, we find that
the residual phase error still remains within sub-
radian. Because SFHo135-135 and HB135-135 have
a similar value of Λ̃, they are used to estimate
the phase error due to the tabulated EOS. For
HB135-135, the residual phase error and the order
of the convergence are (∆Φpeak(182), p) = (0.17, 3.6),
(∆Φpeak(150), p) = (0.48, 3.2), and (∆Φpeak(130), p) =
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N = 182 and N = 150 (red) and between N = 182 and N = 90 (blue) for 15H112-140. The overlapping region has purple
color. The vertical dashed line denotes the peak time of the gravitational-wave amplitude for 15H112-140 with N = 182.

(2.0, 1.7), respectively. For SFHo135-135, the resid-
ual phase error and the order of the convergence
are (∆Φpeak(182), p) = (0.43, 2.3), (∆Φpeak(150), p) =
(0.76, 2.2), and (∆Φpeak(130), p) = (0.33, 4.2), respec-
tively. Thus, the SFHo (tabulated) EOS model has
slightly larger residual phase error than the piece-wise
polytropic EOS model. This indicates that the interpo-
lation of the thermodynamic quantities could produce a
phase error of ≈ 0.2–0.3 radian. Nonetheless, it is encour-
aging that our waveforms have sub-radian accuracy even
for the SFHo (tabulated) EOS case. For more detailed
estimate of the error budget due to tabulated EOSs, we
need to perform more BNS simulations with tabulated
EOSs.

C. Assessment of universality relation

Instantaneous gravitational-wave frequency defined by
Eq. (2.9) at some characteristic time in the late inspi-
ral or post-merger stage is reported to be correlated
with the tidal deformability or the tidal coupling con-
stant [54, 55, 57, 58]. Characteristic peak frequencies
imprinted in the power spectrum density of gravitational
waves are reported to be correlated with the tidal cou-

pling constant or NS radius [45, 55, 60, 80]. We assess
these proposed universal relations using our waveform
data in which a systematic study has been done in a
wide range of the binary parameter with a large range
of the grid resolution of the simulations. We also explic-
itly express the relations as a function of the binary tidal
deformability.

1. Peak frequency and binary tidal deformability relation

Reference [54] reported that the instantaneous
gravitational-wave frequency at the peak time fpeak has

a tight correlation with the binary tidal deformability Λ̃
(see also Refs. [55, 57, 58] for the relation with the tidal
coupling constant. In Ref. [55], they referred to it as
fmax). Figure 5 plots the dependence of fpeak on the
grid resolution where fpeak,ave is an average of fpeak over
the results with different grid resolutions. fpeak does not
converge perfectly with respect to the grid resolution.
Nonetheless, the fluctuation around the averaged value
is less than 2% for a wide range of the grid resolution.
This is also the case for all the binary models. Thus,
we estimate a relative error due to the finite grid resolu-
tion in fpeak to be 2% and tabulate the values of fpeak in
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Table V.

The right panel of Fig. 5 plots fpeak as a function of

Λ̃1/5. The error bar shows the systematics in fpeak. We
also plot the universal relations reported in Refs. [54]
(black dashed line) and [55] (black dotted line). We
find that the universal relation in Ref. [55] holds only
for the symmetric binaries with Mc = 1.1752M� and
Mc = 1.0882M� (see also Table V). Given an EOS and
a chirp mass, fpeak shifts to a lower value as the sym-
metric mass ratio decreases. This is attributed to follow-
ing three facts. First, given the total mass m0 and fGW,
dfGW/dt decreases as the symmetric mass ratio decreases
because the gravitational-wave luminosity is proportional
to η2 [81]. Second, the time at which the two stars come
into contact becomes earlier as the symmetric mass ra-
tio decreases because the less massive companion is more
subject to the tidal elongation and the resultant mass
accretion on the massive component starts earlier than
for the symmetric binary. Third, the time difference be-
tween the peak time and the contact time becomes small
as the symmetric mass ratio decreases because the peak
time corresponds to the moment when a dumbbell-like
density structure with two density peaks formed after
the contact disappears as discussed in Ref. [41] and the
dumbbell-like density structure becomes less prominent
in the asymmetric binaries. Due to these effects, fpeak

becomes lower as the symmetric mass ratio decreases.

In a short summary, the fpeak–Λ̃1/5 relation depends
strongly on the symmetric mass ratio and the universal
relations reported in Refs. [54] and [55] suffer from this
systematics (see also Ref. [41]). This finding is consistent
with what was discussed in Ref. [55]. They mentioned
the mass asymmetry could break the universality in the

fpeak–Λ̃1/5 relation for a possibly unrealistic mass ratio.
We find that the realistic value of the mass ratio breaks
the universality as the symmetric mass ratio adopted in
this paper is consistent with that in GW170817 [1]. The
scatter from the proposed universal relation in Ref. [55]
is as large as ≈ 18–19% at the maximum for 0.244 ≤ η ≤
0.250.

We propose an improved fitting formula:

log10

[(
fpeak

Hz

)(
m0

M�

)]
= a0(η) + a1(η)Λ̃1/5,

a0(η) = 4.53582− 1.22968η,

a1(η) = −0.929178 + 3.1186η. (3.3)

With η = 0.25, a0(η) and a1(η) approximately reduce to
be a0 and a1 [82] reported in Ref. [55]. Figure 6 plots
the improved relation with the simulation data and we
confirm that the relative error between the data and the
fitting formula (3.3) is within 3%.

We should keep in mind that this relation may still
suffer from systematics because we only explore the
non-magnetized non-spinning binaries. Note that posi-
tively or negatively aligned NS spin to the orbital an-
gular momentum could change fpeak compared to the
non-spinning case because of the spin-orbit coupling.
NS magnetic fields also could produce systematics in
Eq. (3.3) because at the contact of the two NSs, which
occurs before the peak time, the magnetic field could be
exponentially amplified by the Kelvein-Helmholtz insta-
bility within a very short timescale [83, 84]. Because the
magnetic pressure could reach near the equipartition of
the pressure locally, its effect could be reflected in fpeak.
This point should be explored in a future work.
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TABLE IV. Residual phase error and order of the convergence of the gravitational-wave phase at the peak time calculated by
Eq. (3.1) for Nmax = 182, 150, and 130.

Model (∆Φpeak(182), p) (∆Φpeak(150), p) (∆Φpeak(130), p)

15H125-146 (0.11,4.1) (0.58,2.7) (5.44,0.7)

125H125-146 (0.31,2.6) (0.15,4.5) (0.45,3.6)

H125-146 (0.17,3.4) (0.78,2.2) (0.73,2.8)

HB125-146 (0.13,3.7) (1.10,1.7) (1.00,2.2)

B125-146 (0.12,3.8) (0.28,3.7) (0.45,3.8)

15H118-155 (0.22,3.1) (0.75,2.2) (0.47,3.5)

125H118-155 (0.26,2.9) (0.83,2.1) (1.44,1.7)

H118-155 (0.23,3.1) (0.48,3.0) (0.56,3.4)

HB118-155 (0.44,2.3) (1.21,1.6) (0.79,2.5)

B118-155 (0.29,2.7) (0.69,2.2) (0.47,3.3)

15H117-156 (0.26,2.9) (0.36,3.2) (0.39,4.0)

125H117-156 (0.28,2.8) (0.38,2.8) (0.92,2.4)

H117-156 (0.24,3.0) (0.31,3.5) (0.74,2.9)

HB117-156 (0.22,3.0) (0.84,2.0) (1.42,1.7)

B117-156 (0.42,2.3) (0.43,2.8) (0.23,4.8)

15H112-140 (0.19,3.4) (0.70,2.5) (0.66,3.2)

125H112-140 (0.21,3.4) (0.53,3.0) (0.66,3.3)

H112-140 (0.17,3.5) (0.92,2.1) (1.00,2.4)

HB112-140 (0.42,2.5) (0.48,3.0) (0.21,5.5)

B112-140 (0.19,3.6) (0.34,3.7) (39.59,0.13)

15H107-146 (0.38,2.6) (0.86,2.2) (0.43,3.9)

125H107-146 (0.54,2.2) (2.93,1.0) (0.61,3.2)

H107-146 (0.41,2.4) (0.60,2.5) (1.03,2.3)

HB107-146 (0.35,2.8) (0.44,3.3) (0.43,4.2)

B107-146 (0.25,3.1) (0.73,2.4) (1.05,2.4)

SFHo135-135 (0.43,2.3) (0.76,2.2) (0.33,4.2)

2. Peak amplitude and binary tidal deformability relation

References [41, 54] reported that the gravitational-
wave amplitude at the peak time, hpeak, correlates with

fpeak, i.e., with Λ̃1/5. Because we do not find perfectly
convergent result for hpeak with respect to the grid res-
olution, first, we assess a relative error of hpeak to an
averaged value of hpeak (see for the left panel of Fig. 7
for the binaries with m1 = 1.07M� and m2 = 1.46M�).
It is found that fluctuation around the averaged value is
≈ 1–2%. This is also the case for all the binary mod-
els. Thus, we adopt 2% as the systematics in hpeak and
summarize hpeak in Table V.

The right panel of Fig. 7 plots hpeak as a function of

Λ̃1/5. The error bar shows the systematics in hpeak. This
figure shows that the relation depends strongly on the
symmetric mass ratio. That is, the relation proposed in
Refs. [41, 54] is not satisfied in general.

We propose a fitting formula for hpeak:

Dhpeak

m0
= b0(η) + b1(η)Λ̃1/5,

b0(η) = −0.0583284 + 1.89648η,

b1(η) = −0.160164 + 0.453901η. (3.4)

Figure 8 plots the improved relation with the simulation
data. We find that the relative error between the data
and the fitting formula (3.4) is within 4%. Again note
that this relation is calibrated in a limited class of the
binaries, i.e., non-magnetized non-spinning binaries. We
should keep in mind this point in using this relation to
infer the tidal deformability from observational data.

3. f1, f2 and binary tidal deformability relation

Reference [55] reported that several gravitational-wave
frequencies associated with the main peaks in the power
spectrum density correlate with the tidal coupling con-
stant. Figures 9–11 show the power spectrum densities
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of gravitational waves for all the models defined by

heff(f) = f

√
h̃2

+(f) + h̃2
×(f)

2
,

h̃+,×(f) =

∫ tf

ti

h2,2,∞
+,× (t)e−2πiftdt, (3.5)

where ti and tf are the initial and final time of the wave-
form data, respectively. In these figures, the vertical
dashed lines indicate so-called f1 frequency for the fit-
ting formula in Ref. [55]. Here, Ref. [55] speculated that
f1 frequency is determined by identifying one of the main
peaks in the power spectrum density of gravitational
waves and in the spectrogram of gravitational waves. For
the symmetric binary models, f1 peak could be identified
in our numerical results. However, the structure of the

power spectrum density around f = f1 depends highly on
the grid resolution (see 125H135-135 and H135-135 mod-
els for example). For a sequence with the fixed EOS and
chirp mass, e.g., 15H135-135, 15H125-146, 15H121-151,
15H118-155, 15H117-156, and 15H116-158, it becomes
difficult to identify f1 peak as the symmetric mass ratio
decreases. This was also pointed out in Ref. [85]. How-
ever, their grid resolution is much lower than those in
our present study and the resolution study on the power
spectrum density of gravitational waves has not been per-
formed (see their Fig. 13). Thus, it was not conclusive
whether f1 peak is less prominent for the asymmetric bi-
naries or not. As demonstrated in Figs. 9 and 10, f1 peak
cannot be clearly identified for the asymmetric binaries.

For the less massive symmetric binaries, there is a dis-
cussion how to identify f1 frequency in the power spec-
trum density and/or in the spectrogram of gravitational
waves [55, 86, 87]. Figures 9–11 demonstrate that the
identification of f1 frequency is a subtle issue because
a fine structure of the power spectrum density around
f = f1 depends strongly on the grid resolution and the
EOSs even for the symmetric binaries.

We also analyze the spectrogram of gravitational waves
and confirm that there is no prominent peak around
fGW = f1. Therefore, we conclude that the universal re-
lation for f1 could be only applicable to nearly symmetric
binaries: essentially no universal relation is present.

In Ref. [55], the peak frequency, f2, in the power spec-
trum density is reported to have a correlation with the
tidal coupling constant. This peak frequency approxi-
mately corresponds to the f–mode oscillation of the rem-
nant massive NS (see also Refs. [45, 60, 80, 88]). The
left panel of Fig. 12 plots fluctuation around an aver-
aged value of f2 for the binaries with m1 = 1.12M� and
m2 = 1.40M�. The fluctuation is within ≈ 4–5% and we
find that this is also the case for all the binary models.
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Thus, we adopt 5% as a relative error in f2 (see also Ta-
ble V). The right panel of Fig. 12 shows f2 as a function

of Λ̃1/5. We exclude the models which collapse to a black
hole within a few ms after merger because the peak as-
sociated with f2 is not prominent or absent in the power
spectrum density. We also overplot the fitting formula
proposed in Ref. [55]. With it, the scatter is ≈ 14% at
the maximum. We propose an improved fitting formula
for f2;

log10

[(
f2

Hz

)(
m0

M�

)]
= c0(η) + c1(η)Λ̃1/5,

c0(η) = 11.3634− 27.4181η,

c1(η) = −2.15771 + 7.94086η (3.6)

Even with this formula, the relative error is within 9%
(see also Fig. 13).

4. f2 and NS radius with 1.6M� relation

References [59, 60] reported that f2 frequency [89] has
a tight correlation with the NS radius of 1.6M� (see
Eq. (3) in Ref. [59]). In Ref. [80], we assessed their rela-
tion by using our numerical-relativity results and found
that the scatter in the relation is larger than that re-
ported in Ref. [59]. This could stem from the different
treatment of the relativistic gravity, i.e., the conformal
flat approximation in Ref. [59] and the full general rela-
tivity in Ref. [80], and/or the different method for the rel-
ativistic hydrodynamics, i.e., the smoothed particle hy-
drodynamics in Ref. [59] and the high resolution shock
capturing scheme in Ref. [80]. We revisit this assessment
because the initial orbital eccentricity reduction was not
implemented in Ref. [80]. In addition, the grid resolution
in Ref. [80] is much lower than that in this paper. Up-
dates of these ingredients could modify the post-merger
dynamics and the resulting gravitational waveforms.

Because the relation in Ref. [59] holds only for
m0 = 2.7M� binaries, we assess this relation by employ-
ing (m1,m2) = (1.35M�, 1.35M�), (1.25M�.1.46M�),
(1.21M�, 1.51M�), (1.18M�, 1.55M�),
(1.17M�, 1.56M�), and (1.16M�, 1.58M�) binaries.
We found the scatter from their fitting formula is
≈ 10%. Therefore, the scatter larger than that in
Ref. [59] exits. Our numerical results suggest that even
if the value of f2 is determined precisely, we cannot
constrain the radius of the 1.6M� NS within the 1 km
accuracy.
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FIG. 9. Power spectrum densities of gravitational waves for the binaries with Mc = 1.1752M�. The number attached in
the right-hand side vertical axis is the symmetric mass ratio η. We also show f1 frequency proposed in Ref. [55] with vertical
dashed lines. For completeness, we also show the models reported in Refs. [41, 42].

D. Energy and angular momentum dissipation due
to gravitational wave emission

Using Eqs. (2.10) and (2.11), we calculate the energy
and angular momentum carried by gravitational waves.
We define Etot

GW,i and EGW,p (JGW,p) as the energy (an-

gular momentum) emitted in the inspiral stage and in
the post-merger stage, respectively. The peak time in-
troduced in Sec. III A defines the boundary between the
inspiral and post-merger stages. In the following we sum-
marize the energy and angular momentum emitted in

each stage for all the models in Table V.

1. inspiral stage

Table V and Fig. 14 show the energy, E2,2
GW,i, carried by

gravitational waves with the (l,m) = (2, 2) mode during
the simulations. A perfect convergence with respect to
the grid resolution in this quantity is not achieved. We
measure a relative error with respect to an averaged value
in the left panel of Fig. 14. It is encouraging that the
relative error to its averaged value of E2,2

GW,i never exceeds
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FIG. 10. The same as Fig. 9, but for the binaries with Mc = 1.0882M�.
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FIG. 11. The same as Fig. 9, but for the SFHo (tabulated)
EOS case.

2% for a wide range of the grid resolution. This is also
the case for all the binary models. Thus, we adopt this
fluctuation as an error in E2,2

GW,i.

The right panel of Fig. 14 plots Etot
GW,i as a function

of Λ̃1/5. Note that the contributions in Etot
GW,i from the

other modes such as the (l,m) = (2, 1) and (3, 3) are
. 0.1% and . 0.5%, respectively, of E2.2

GW,i. We include
the contribution due to the gravitational-wave emission
during evolution from infinite separation to the initial
orbital separation of the simulation, m0 −MADM in Ta-
ble V, by Etot

GW,i ≈ E2,2
GW,i + E2,−2

GW,i + m0 − MADM =

2E2,2
GW,i + m0 − MADM. As proposed in Ref. [56], this

quantity correlates with the tidal coupling constant. We

explicitly derive a fitting formula with the binary tidal
deformability;

log10

[
Etot

GW,i

c2m0η

]
= −0.8688062− 0.11099Λ̃1/5. (3.7)

The dependence of Etot
GW,i on Λ̃ is satisfied because the

binaries with larger values of Λ̃ merge earlier than those
with smaller values of Λ̃. This fitting formula reproduces
the simulation data of Etot

GW,i within an error of ≈ 4%.

2. Post-merger stage

We estimate the angular momentum of the remnant,
Jrem, by performing a surface integral on the sphere of
r = r0 at the peak time of the gravitational-wave ampli-
tude in the retarded time (2.4);

Jrem =
1

8π
εzjk

∮
r=r0

xj(K
l
k −Kδlk)dSl, (3.8)

where j and k denote x or y. Kij , K, and δij are the
extrinsic curvature, its trace part, and the Kronecker
delta, respectively. We typically integrate it on the
sphere of r0 = 200m0 and 214m0 for the binaries with
Mc = 1.1752M� and 1.0882M�, respectively. Table V
and Fig. 15 show the angular momentum of the remnant.
In the left panel of Fig. 15, we estimate the residual er-
ror in Jrem for HB118–155. We again assume that the
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numerical result obeys a following form;

Jrem(N) = J∞rem(Nmax)−∆Jrem(Nmax)

(
Nmax

N

)p
.

(3.9)

We estimate three unknowns, J∞rem(Nmax), ∆Jrem(Nmax),
and p by fitting the numerical data withN = 90, 102, · · · ,
and Nmax with Eq. (3.9). By comparing Nmax = 150 and
182 cases, we confirm that adding a result of the higher
resolution simulation reduces the residual error (see the
legend of Fig. 15 for p and ∆Jrem(Nmax)). We find that
∆Jrem(Nmax) is . 1% of the continuum limit J∞rem(Nmax)
for Nmax = 182. This is also the case for all the binary
models. We adopt this value 1% as a systematics in Jrem.

Because Jrem is likely to correlate with Λ̃1/5, we pro-

pose a fitting formula of Jrem:

log10

[
GJrem

cm2
0η

]
= d0(η) + d1(η)Λ̃1/5,

d0(η) = 1.5521− 4.27546η,

d1(η) = −0.14137 + 0.64231η. (3.10)

The right panel of Fig. 15 plots Jrem as a function of
Λ̃1/5 and we confirm that this fitting formula is accurate
within 3% error.

Figures 16 and 17 plot E2,2
GW,p and J2,2

GW,p emitted in
the post-merger stage. The left panels in these figures
show that it is hard to achieve a perfect convergence and
the scatter is rather large compared to E2,2

GW,i. Nonethe-

less, the scatter never exceeds 50% in E2,2
GW,p and J2,2

GW,p.
This is also the case for all the binary models. The
right panels in Figs. 16 and 17 show E2,2

GW,p and J2,2
GW,p

as a function of Λ̃1/5. As discussed in Ref. [58], the en-
ergy and angular momentum radiated in the post-merger
stage peak around Λ̃ ≈ 400 because the binaries with
Λ̃ . 350 collapse to a black hole within a few ms af-

ter the peak time. However, Λ̃ at the peak in E2,2
GW,p

and J2,2
GW,p could decrease for general EOSs because as

discussed in Ref. [92] the remnant would survive longer
than 20 ms after the peak time even for the binaries with
Λ̃ . 300. For Λ̃ & 400, correlation between E2,2

GW,p and
the binary tidal deformability is not as tight as that in
Etot

GW,i–Λ̃1/5. For J2,2
GW,p, the correlation with the binary

tidal deformability is also not so tight. Note that E2,2
GW,p

and J2,2
GW,p could increase from the values listed in Ta-

ble V because we artificially terminated the simulations
at 10–15 ms after the peak time. At that moment, the
gravitational-wave amplitude is still comparable to that
in the late inspiral stage except for the models which col-
lapse to a black hole within a few ms after the peak time.
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We should also keep in mind that we could miss relevant
physics such as effective turbulent viscosity generated
by the magneto-hydrodynamical instabilities during the
merger [41, 83, 84] and/or the neutrino cooling [86, 93]
for modeling the post-merger signal. Reference [94] sug-
gests that the post-merger signal could be significantly
suppressed in the presence of efficient angular momen-
tum transport by the viscous effect inside the remnant
NS. It is worth noting that energy and angular momen-
tum radiated by gravitational waves in the (l,m) = (2, 1)

and (3, 3) modes are . 2.5% of E2,2
GW,p and . 2.4% of

J2,2
GW,p, respectively, even for highly asymmetric binaries,

e.g., 15H107-146.

Post-merger gravitational wave signal is dominated by
the f–mode oscillation with (l,m) = (2, 2) of the remnant
massive NS [60, 80]. Thus, it is natural to expect that a
relation holds between the energy emission rate and an-
gular momentum emission rate (2.10) with instantaneous
gravitational-wave frequency (2.9);

dEGW,p

dt
≈ πfGW

dJGW,p

dt
, (3.11)

where dEGW,p/dt =
∑
l,m dE

l,m
GW,p/dt and dJGW,p/dt =∑

l,m dJ
l,m
GW,p/dt. To investigate to what extent this re-

lation is satisfied, we generate Figs. 18–20. In these fig-
ures, the solid curve is the left hand side of Eq. (3.11)
and the dashed curve is the right hand side of Eq. (3.11).
We find that they agree with each other with a rela-
tive error . 8%. Because the emissivity reduces quickly
to zero at tret − tpeak ≈ 0.5 ms as shown in Figs. 18–
20, we estimate the error for tret − tpeak & 1 ms. We
also find that the time integrated values of Eq. (3.11)
agree with each other with a relative error . 1%. This
is also the case for the relation of EGW,p ≈ πf2JGW,p.
In the top panel of Fig. 21, we plot the energy flux for
the (l,m) = (2, 2), (2, 1), and (3, 3) modes for 15H107-
146. For the entire post-merger stage in the simulations,
the energy flux with the (l,m) = (2, 1) and (3, 3) modes
are . 4% of that with the (l,m) = (2, 2) mode even for
highly asymmetric binaries. We find that this is also the
case for the angular momentum flux. We also confirm
that a contribution from the one-arm spiral instability in
the post-merger stage [95, 96] is very small because the
energy flux for (l,m) = (2, 1) mode is . 0.5% of that
for the (l,m) = (2, 2) mode for symmetric binaries as
shown in the bottom panel of Fig. 21. Thus, we conclude
that Eq. (3.11) is nicely satisfied and confirm that the
main gravitational-wave emission mechanism during the
post-merger stage is the f–mode oscillation of the rem-
nant massive NS, i.e, fGW ≈ f2 (see also Figs. 9–11).
These findings encourage us to build a model for the
post-merger gravitational-wave emission (see Ref. [91]).

In Table VI, we summarize to what extent the so-called
universal relations hold.

IV. GRAVITATIONAL WAVEFORM
MODELING

A. SACRA gravitational waveform template

In the previous paper [42], we developed a frequency-
domain gravitational waveform model for inspiralling
BNSs based on high-precision numerical-relativity data.
In this section, we extend the examination of the wave-
form model to a wider parameter space than the previ-
ous papers [41, 42] by employing new numerical-relativity
waveforms obtained in this paper.

Before moving on to the comparison, we briefly re-
view our waveform model. We decompose h̃ (f) ≡√
h̃2

+(f) + h̃2
×(f) in Eq. (3.5) into the frequency-domain

amplitude, A (f), and phase, Φ (f), (with an ambiguity
in the origin of the phase) by

h̃ (f) = A (f) e−iΦ(f), (4.1)

and we define the corrections due to the NS tidal defor-
mation to gravitational-wave amplitude and phase by

Atidal (f) = A (f)−ABBH (f) (4.2)

and

Φtidal (f) = Φ (f)− ΦBBH (f) , (4.3)

respectively. Here, ABBH (f) and ΦBBH (f) are the
gravitational-wave amplitude and phase of a binary black
hole with the same mass as the BNS, respectively (here-
after referred to as the point-particle parts and see
Ref. [42] for details).

Our numerical-relativity waveforms only contain the
waveforms for the frequency larger than ≈ 400 Hz. Thus,
we employ the effective-one-body waveforms of Refs. [97–
99] (SEOBNRv2T) to model the low-frequency part
waveforms, in which the effect of dynamical tides is taken
into account, and construct hybrid waveforms combining
them with the numerical-relativity waveforms. The hy-
bridization of the waveforms is performed in the time-
domain by the procedure described in Refs. [42, 48] and
we set the matching region to be from tret ≈ 7.38 ms
to 14.78 ms. After the hybridization, the waveforms
are transformed into the frequency domain employing
Eq. (3.5), and the tidal-part amplitude and phase are
extracted by Eqs. (4.2) and (4.3).

For modeling the tidal-part phase and amplitude, we
employ the following functional forms motivated by the
2.5 PN order formula [49]:

Φtidal
model =

3

128η

[
−39

2
Λ̃
(

1 + a Λ̃2/3xp
)]
x5/2

×
(

1 +
3115

1248
x− πx3/2 +

28024205

3302208
x2 − 4283

1092
πx5/2

)
(4.4)
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for the phase correction and

Atidal
model =

√
5πη

24

m2
0

Deff
Λ̃x−7/4

×
(
−27

16
x5 − 449

64
x6 − b xq

)
(4.5)

for the amplitude correction. a, p, b, and q are the free
parameters of the models. To focus on the inspiral-phase
waveform and to avoid the contamination from the post-
merger waveforms, which would have large uncertainties,
we restrict the gravitational-wave frequency range in 10–
1000 Hz. The fitting parameters were determined by em-
ploying the hybrid waveforms of 15H125-125, which has
the largest value of binary tidal deformability in the mod-
els studied in the previous study [42]. By performing the
least square fit with respect to the phase shift and rela-

tive difference of the amplitude, we obtained a = 12.55,
p = 4.240, b = 4251, and q = 7.890.

In Ref. [42], the validity of the waveform model was
examined employing hybrid waveforms which were not
used for the parameter determination. We should stress
again that the parameters a, p, b, and q in Eqs. (4.4)–
(4.5) were determined by the particular model 15H125-
125. We found that the tidal-part waveform model al-
ways reproduced the tidal-part phase and amplitude of
the hybrid waveforms within ∼ 0.1 radian and 15%, re-
spectively, for the equal-mass and unequal-mass cases
withMchirp = 1.1752M� and the equal-mass cases with
Mchirp = 1.0882M�, covering the parameter space of

0.244 ≤ η ≤ 0.250 and 300 . Λ̃ . 1800.
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B. Calibration of SACRA gravitational waveform
template

While the validity of our waveform was already ex-
amined in the most interesting part of the parameter
space of BNSs [42], there still remain some important
cases which are not examined in the previous study [42].
First, the dependence of the error of the tidal correction
on the mass ratio has to be checked for less massive BNSs.
While unequal-mass cases with total mass of ≈ 2.7M�
were checked in the previous study [42], it is important to
check whether our waveform models are also applicable to
unequal-mass cases with smaller total mass, for which the
tidal effect is enhanced due to increase of tidal deforma-
bility. Second, the systematics due to simplification on
the high-density part of the EOS should be checked. For
the inspiral waveforms, we expect that the high-density

part of the EOS has only a minor effect, and accordingly,
we employ simplified two piece-wise polytropic EOS mod-
els. However, we should confirm that this assumption is
indeed valid.

To check the points listed above, we compare our
waveform model with hybrid waveforms employing the
numerical-relativity waveforms obtained in this paper.
Hybrid waveforms are constructed in the same manner
as in the previous study [42] employing the SEOBNRv2T
waveforms as the low-frequency part waveforms. In par-
ticular, we focus on the validity of the tidal correction
model to the waveform, comparing the tidal-part phase
and amplitude of the hybrid waveforms computed based
on Eqs. (4.2) and (4.3) using the SEOBNRv2 waveforms
without tides as the point-particle parts.

Figures 22 and 23 show the difference of the tidal-part
phase and amplitude between our waveform model (4.4)
and (4.5) and the hybrid waveforms for the models
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FIG. 18. Energy (solid) and angular momentum (dashed) emission rate by gravitational waves (3.11) for the binaries with
Mc = 1.1752M�. The time axis is set to be zero at the peak time of the gravitational-wave amplitude. For completeness, we
also show the models reported in Refs. [41, 42].

with Mc = 1.1752M� and Mc = 1.0882M�, respec-
tively. Here, the difference between the tidal-part phase
of hybrid waveforms, Φtidal

Hybrid, and that of our waveform

model, Φtidal
model, is computed by

∆Φ(f) = Φtidal
Hybrid(f)− Φtidal

model(f)− 2πft0 + φ0, (4.6)

where t0 and φ0 are the free parameters which corre-
spond to the degrees of freedom in choosing the origins of
time and phase, respectively, and are determined by min-
imizing

∫
|∆Φ(f)|2df integrated in the range of f = 10–

1000 Hz. For the comparison of the tidal-part amplitude,

relative difference of the amplitude,

∆A(f)/A(f) = (Atidal
Hybrid(f)−Atidal

model(f))/Amodel(f),

(4.7)

is computed, where Atidal
Hybrid and Amodel = Atidal

model +ABBH

are the tidal-part amplitude of hybrid waveforms and the
amplitude of the model waveforms including the point-
particle part, respectively.

NS masses for the models 125-146, 118-155, and 117-
156 are within the parameter space which we studied in
the previous study [42], and thus, we expect that these
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FIG. 19. The same as Fig. 18, but for Mc = 1.0882M�.
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FIG. 20. The same as Fig. 18, but for the SFHo (tabulated)
EOS case.

waveforms are well reproduced by our waveform model.
Indeed Fig. 22 shows that differences in both phase and
amplitude are within the error which we observed in the
previous study [42]. Figure 22 also shows that tidal-part
phase and amplitude for model SFHo135-135 are well re-
produced by our waveform model. This confirms that,
at least for the frequency range we focus on, employing
an EOS whose high-density part is simplified has only
a minor effect on the systematics of the model. Fig-
ure 23 shows the results in the unequal-mass cases with
Mc = 1.0882M�. The difference in the tidal-part phase
is relatively larger than the cases withMc = 1.1752M�.
This is reasonable because we found that the error of

tidal-part model becomes relatively large for a small mass
ratio or a large value of tidal deformability in the previ-
ous study [42]. Nevertheless, the phase error is always
smaller than ≈ 0.1 radian. The deviation for the ampli-
tude model is also the same level as for the models with
Mc = 1.1752M�.

To evaluate the deviation for the waveform model from
the new sets of hybrid waveforms more quantitatively,
we calculate the mismatch between those waveforms, F̄ ,
defined by

F̄ = 1−max
φ0,t0

(
h̃1

∣∣∣h̃2e2πift0+iφ0

)
||h̃1|| ||h̃2||

, (4.8)

where (·|·) and || · || are defined by

(
h̃1

∣∣∣h̃2

)
= 4Re

[∫ fmax

fmin

h̃1 (f) h̃∗2 (f)

Sn (f)
df

]
, (4.9)

and

||h̃|| =
√(

h̃
∣∣∣h̃). (4.10)

Here Sn denotes the one-sided noise spectrum density of
the detector, and we employ the noise spectrum den-
sity of the ZERO DETUNED HIGH POWER configuration of
advanced LIGO [100] for it.

We summarize the values of mismatch between our
waveform model and hybrid waveforms in Table VII.
For all the cases, the value of mismatch is smaller than
≈ 2× 10−5. According to our previous results [42], these
values indicate that the the signal to noise ratio of the



21

10-11

10-10

10-9

10-8

10-7

10-6

10-5

-2  0  2  4  6  8  10
dE

G
W

l,m
 / 

dt

tret - tpeak [ms]

(l,m) = (2,2)
(l,m) = (2,1)
(l,m) = (3,3)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

-2  0  2  4  6  8  10

dE
G

W
l,m

 / 
dt

tret - tpeak [ms]

(l,m) = (2,2)
(l,m) = (2,1)

FIG. 21. (Top) Gravitational-wave energy flux (2.10) for (l,m) = (2, 2), (2, 1), and (3, 3) modes for 15H107-146 with N = 182.
(Bottom) The same as the top panel, but for (l,m) = (2, 2) and (2, 1) modes for 125H125-125 with N = 182.

difference between our waveform model and hybrid wave-
forms becomes as large as 1 only when the total signal to
noise ratio is as large as 200.

V. SUMMARY

We performed long-term inspiral simulations for new
26 models of the non-spinning BNSs in numerical rela-
tivity. To derive high-precision gravitational waveforms
in a large parameter space, we systematically vary the
EOSs of NS, the chirp mass, and the mass ratio. To
assess gravitational-wave phase error stemming from a
finite grid resolution, we change the grid spacing by a
factor of two in each binary model.

First, we found that the residual gravitational-wave
phase error at the peak time of gravitational waves is
. 0.5 radian irrespective of the binary models. By com-
paring the results for the piece-wise polytropic EOS and

SFHo (tabulated) EOS models, we also found that the in-
terpolation of the thermodynamic quantities during the
simulations generates the phase error of ≈ 0.2–0.3 ra-
dian. However the gravitational-wave phase error for the
SFHo (tabulated) EOS model still remains within the
sub-radian level.

Second, we assessed the universal relations between the
gravitational wave related quantities and the binary tidal
deformability/NS radius proposed in the literature [54–
60]. We found that the gravitational-wave frequency at
the peak time fpeak, the gravitational-wave amplitude at
the peak time hpeak, and the peak frequency f2 associ-
ated with the f–mode oscillation of the remnant massive
NS in the power spectrum density of gravitational waves
depend strongly on the symmetric mass ratio and/or the
grid resolution. This clearly illustrates that the universal
relations proposed in the literature [54–60] are not very
universal.

We proposed improved fitting formulae (3.3), (3.4),
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FIG. 23. The same as in Fig. 22 but for the models with Mc = 1.0882M�.

and (3.6). Note that these fitting formulae may still suffer
from systematics as well because NS spin, NS magnetic
fields, or the neutrino radiation is not taken into account
in our simulations. We also found that f1 frequency in
the power spectrum density could be visible only for the
nearly symmetric binaries. Unless we can determine the
symmetric mass ratio accurately by gravitational wave
data analysis, the universal relation for f1 could derive a
misleading result.

Third, we assessed the energy, EGW, and angular mo-
mentum, JGW, carried by gravitational waves in the in-
spiral and post-merger stages. As proposed in Ref. [56],
the correlation between Etot

GW,i and the binary tidal de-
formability is tight and does not depend significantly on
the symmetric mass ratio. We found that the relation
EGW ≈ πf2JGW is nicely satisfied in the post-merger
gravitational wave signal irrespective of the binary mod-

els because the signal from the remnant NSs is approxi-
mately monochromatically emitted by the f–mode oscil-
lation. The angular momentum of the remnant massive
NS, Jrem, correlates with the binary tidal deformability.
This quantity is relevant to build a model of post-merger
evolution of merger remnants [91].

Finally, we validated our SACRA gravitational wave-
form template [42] with the high-precision gravitational
waveforms derived in this paper. We found that for a
variety of BNS models the systematics associated with
the waveform modeling is less than 0.1 radian in the
gravitational-wave phase and less than 20% in the ampli-
tude up to fGW = 1000 Hz. This SACRA gravitational
waveform template can be used for a new gravitational
wave data analysis for extracting tidal deformability from
GW170817 and for a future event of BNS merger. Our
waveform data are publicly available on the web page.
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TABLE V. Binary tidal deformability Λ̃, fpeak, hpeak, f2, E2,2
GW,i, E

2,2
GW,p, J2,2

GW,p, Jrem, and m0 −MADM,0. MADM,0 is the
Arnowitt-Deser-Misner mass of the initial condition of the simulations. We adopt 2% relative error for fpeak and hpeak and 5%
relative error for f2, respectively, as a typical value. For f2, we exclude models which collapse to a black hole within a few ms
after the merger. For E2,2

GW,i and Jrem, we adopt 2% and 1% relative error, respectively. EGW and m0 −MADM,0 are given in

the unit of M�c
2. JGW and Jrem are in the unit of GM2

�/c.

Model Λ̃1/5 fpeak [Hz] Dhpeak/m0 f2[Hz] E2,2
GW,i E2,2

GW,p J2,2
GW,p Jrem m0 −MADM,0

15H135-135 4.14 1503±30 0.226±0.005 2321±116 (7.90±0.16)× 10−3 1.35×10−2 0.40 6.64±0.07 1.65× 10−2

125H135-135 3.87 1652±33 0.236±0.005 2517±126 (9.04±0.18)× 10−3 1.76×10−2 0.48 6.54±0.07 1.64× 10−2

H135-135 3.60 1820±36 0.249±0.005 2790±139 (1.03±0.02)× 10−2 2.32×10−2 0.56 6.46±0.06 1.63× 10−2

HB135-135 3.35 1986±40 0.261±0.005 3243±162 (1.17±0.02)× 10−2 2.89×10−2 0.59 6.39±0.06 1.64× 10−2

B135-135 3.11 2133±43 0.274±0.005 – (1.30±0.03)× 10−2 7.39×10−3 0.13 6.33±0.06 1.65× 10−2

15H121-151 4.13 1356±27 0.212±0.004 2261±163 (7.47±0.15)× 10−3 5.47×10−3 0.17 6.66±0.07 1.66× 10−2

125H121-151 3.86 1490±30 0.224±0.004 2379±119 (8.53±0.17)× 10−3 8.24×10−3 0.23 6.57±0.07 1.66× 10−2

H121-151 3.60 1637±33 0.236±0.005 2749±137 (9.70±0.19)× 10−3 1.05×10−2 0.26 6.49±0.06 1.66× 10−2

HB121-151 3.35 1809±36 0.249±0.005 3268±161 (1.10±0.02)× 10−2 2.26×10−2 0.48 6.41±0.06 1.66× 10−2

B121-151 3.11 1994±40 0.263±0.005 – (1.23±0.02)× 10−2 6.85×10−3 0.13 6.35±0.06 1.66× 10−2

15H125-125 4.51 1450±29 0.211±0.004 2159±108 (6.26±0.13)× 10−3 7.98×10−3 0.25 5.95±0.06 1.53× 10−2

125H125-125 4.23 1568±31 0.222±0.004 2350±118 (7.19±0.14)× 10−3 9.29×10−3 0.27 5.87±0.06 1.53× 10−2

H125-125 3.95 1710±34 0.234±0.005 2749±137 (8.15±0.16)× 10−3 1.67×10−2 0.42 5.80±0.06 1.52× 10−2

HB125-125 3.69 1900±38 0.245±0.005 2873±144 (9.35±0.19)× 10−3 1.66×10−2 0.39 5.74±0.06 1.53× 10−2

B125-125 3.43 2099±42 0.257±0.005 3353±168 (1.06±0.02))× 10−2 2.19×10−2 0.44 5.69±0.06 1.53× 10−2

15H116-158 4.12 1273±26 0.205±0.004 2148±107 (7.19±0.14)× 10−3 4.63×10−3 0.15 6.84±0.07 1.65× 10−2

125H116-158 3.85 1406±28 0.214±0.004 2276±124 (8.20±0.16)× 10−3 1.01×10−2 0.28 6.76±0.07 1.65× 10−2

H116-158 3.60 1540±31 0.227±0.005 2767±138 (9.30±0.19)× 10−3 1.23×10−2 0.31 6.69±0.07 1.66× 10−2

HB116-158 3.35 1709±34 0.240±0.005 3242±162 (1.05±0.02)× 10−2 1.40×10−2 0.30 6.63±0.06 1.65× 10−2

B116-158 3.11 1885±37 0.254±0.005 – (1.18±0.02)× 10−2 4.64×10−3 0.10 6.58±0.07 1.65× 10−2

15H125-146 4.13 1401±28 0.214±0.004 2336±117 (7.62±0.02)× 10−3 1.01×10−2 0.30 6.81±0.07 1.66× 10−2

125H125-146 3.86 1560±31 0.226±0.005 2576±129 (8.77±0.18)× 10−3 1.26×10−2 0.34 6.73±0.07 1.66× 10−2

H125-146 3.60 1691±34 0.238±0.003 2827±141 (9.91±0.20)× 10−3 1.89×10−2 0.45 6.66±0.07 1.66× 10−2

HB125-146 3.35 1856±37 0.252±0.005 3251±163 (1.12±0.20)× 10−2 2.50×10−2 0.52 6.60±0.07 1.66× 10−2

B125-146 3.11 2039±41 0.265±0.005 – (1.26±0.25)× 10−2 7.99×10−3 0.14 6.56±0.06 1.66× 10−2

15H118-155 4.12 1308±26 0.206±0.004 2161±108 (7.31±0.15)× 10−3 5.72×10−3 0.18 6.83±0.07 1.66× 10−2

125H118-155 3.86 1441±29 0.218±0.004 2358±118 (8.35±0.17)× 10−3 7.12×10−3 0.21 6.75±0.07 1.67× 10−2

H118-155 3.60 1590±32 0.230±0.005 2782±139 (9.49±0.19)× 10−3 1.59×10−2 0.39 6.68±0.07 1.66× 10−2

HB118-155 3.35 1759±35 0.243±0.005 3259±163 (1.08±0.02)× 10−2 2.03×10−2 0.43 6.62±0.07 1.66× 10−2

B118-155 3.11 1942±39 0.257±0.005 – (1.20±0.02)× 10−2 5.54×10−3 0.11 6.66±0.07 1.66× 10−2

15H117-156 4.11 1293±26 0.204±0.004 2161±108 (7.26±0.15)× 10−3 5.09×10−3 0.17 6.83±0.07 1.66× 10−2

125H117-156 3.84 1425±29 0.216±0.004 2416±121 (8.30±0.17)× 10−3 8.09×10−3 0.23 6.76±0.07 1.66× 10−2

H117-156 3.58 1574±32 0.229±0.005 2775±139 (9.43±0.19)× 10−3 1.39×10−2 0.34 6.69±0.07 1.66× 10−2

HB117-156 3.34 1724±35 0.242±0.005 3201±160 (1.06±0.02)× 10−2 1.61×10−2 0.35 6.62±0.07 1.66× 10−2

B117-156 3.10 1933±38 0.256±0.005 – (1.20±0.02)× 10−2 5.26×10−3 0.11 6.58±0.06 1.64× 10−2

15H112-140 4.50 1281±26 0.197±0.004 2188±109 (5.91±0.12)× 10−3 5.37×10−3 0.17 5.97±0.06 1.49× 10−2

125H112-140 4.21 1412±28 0.208±0.004 2269±113 (6.80±0.14)× 10−3 4.80×10−3 0.15 5.89±0.06 1.49× 10−2

H112-140 3.94 1558±31 0.220±0.004 2470±123 (7.78±0.16)× 10−3 6.18×10−3 0.17 5.82±0.06 1.50× 10−2

HB112-140 3.68 1717±34 0.231±0.005 2791±140 (8.84±0.18)× 10−3 9.52×10−3 0.23 5.76±0.06 1.50× 10−2

B112-140 3.43 1890±38 0.244±0.005 3271±164 (9.98±0.20)× 10−3 1.59×10−2 0.33 5.71±0.06 1.52× 10−2

15H107-146 4.50 1203±24 0.189±0.004 2054±103 (5.70±0.11)× 10−3 3.63×10−3 0.13 5.99±0.06 1.51× 10−2

125H107-146 4.22 1328±27 0.200±0.004 2291±115 (6.57±0.13)× 10−3 4.56×10−3 0.14 5.91±0.06 1.50× 10−2

H107-146 3.94 1475±30 0.212±0.004 2546±127 (7.49±0.15)× 10−3 7.82×10−3 0.21 5.84±0.06 1.49× 10−2

HB107-146 3.69 1620±32 0.224±0.004 2870±143 (8.51±0.17)× 10−3 1.02×10−2 0.25 5.78±0.06 1.50× 10−2

B107-146 3.44 1786±36 0.237±0.005 3298±165 (9.60±0.19)× 10−3 1.29×10−2 0.27 5.73±0.06 1.51× 10−2

SFHo135-135 3.41 1987±40 0.261±0.005 3250±163 (1.17±0.02)× 10−2 2.91×10−3 0.61 6.60±0.07 1.68× 10−2
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TABLE VI. Summary of the assessment of the universal relations for the non-spinning and non-magnetized binaries. Neutrino
radiation is not taken into account. We show the maximum relative errors produced by the original relation (upper row) and
by the improved relation in this paper (lower row). For f1, the error is unable to be estimated because of the absence of f1 peak

in the asymmetric binaries. Therefore, we conclude there is no universal relation between f1 and Λ̃. For E2,2
GW,p and J2,2

GW,p,

the error is unable to be estimated because uncertainties of the life time of the merger remnant NSs are large. For R1.6–Λ̃1/5

relation, we do not propose an improved relation.

fpeak–Λ̃1/5 hpeak–Λ̃1/5 f1–Λ̃1/5 f2–Λ̃1/5 f2–R1.6 E
2,2
GW,i–Λ̃1/5 E2,2

GW,p–Λ̃1/5 J2,2
GW,p–Λ̃1/5 Jrem–Λ̃1/5

≈ 17% N/A – ≈ 14% ≈ 10% N/A N/A N/A N/A

≈ 3% ≈ 4% – ≈ 9% – ≈ 4% – – ≈ 3%

TABLE VII. Mismatch between the waveform model and hybrid waveforms.

Model F̄ (×10−5)

15H125-146 0.83

125H125-146 0.36

H125-146 0.29

HB125-146 0.28

B125-146 0.22

15H118-155 0.82

125H118-155 0.26

H118-155 0.30

HB118-155 0.32

B118-155 0.31

15H117-156 0.97

125H117-156 0.31

H117-156 0.25

HB117-156 0.30

B117-156 0.17

15H112-140 0.88

125H112-140 0.24

H112-140 0.37

HB112-140 0.71

B112-140 0.91

15H107-146 1.82

125H107-146 0.45

H107-146 0.30

HB107-146 0.79

B107-146 1.12

SFHo135-135 0.45
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