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Abstract

The Split-Family supersymmetry is a model in which the sfermion masses of the first two genera-

tions are in O(100–1000) GeV while that of the third one is in O(10) TeV. With such a hierarchical

spectrum, the deviation of the muon g − 2 and the observed Higgs boson mass are explained si-

multaneously. In this paper, we revisit the Split-Family SUSY model in light of the updated LHC

constraints. We also study the flavor changing neutral current problems in the model. As we will

show, the problems do not lead to stringent constraints when the Cabibbo-Kobayashi-Maskawa

matrix is the only source of the flavor mixing. We also study how large flavor mixing in the

supersymmetry breaking parameters is allowed.
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I. INTRODUCTION

The standard model (SM) of particle physics is now complete by the discovery of the Higgs

boson with a mass around 125 GeV [1–5]. In the minimal supersymmetric SM (MSSM) (see

[6] and references therein), the measured Higgs boson mass can be explained when the

masses of the superpartners of the top quark (the stop) are in O(10–100) TeV [7–11]. No

evidence of the super particles at the LHC experiments also suggests that their masses are

in a multi-TeV range.

On the other hand, the measured value of the muon anomalous magnetic moment aexpµ [12,

13] deviates from the SM prediction aSMµ [14, 15] at about 3.7σ,1

∆aµ ≡ aexpµ − aSMµ = (27.06± 7.26)× 10−10. (1)

This discrepancy can be explained in the MSSM when such as the smuons and the elec-

troweakinos are in O(100) GeV [20–22].

In [23], the Split-Family supersymmetry (SUSY) model has been proposed to explain the

observed Higgs boson and the muon g− 2 deviation simultaneously. There, the sfermions of

the first two generations are inO(100–1000) GeV while that of the third one is inO(10) TeV.2

Such a hierarchical SUSY spectrum is motivated by the Yukawa hierarchy.

In this paper, we revisit the Split-Family SUSY model in light of the updated LHC

constraints.3 As we will see, almost the entire region which explains the muon g − 2 within

2σ is excluded for the universal gaugino mass. We also show that the collider constraints

can be evaded for the non-universal gauino masses while explaining the muon g − 2.

We also study the FCNC problems in the Split-Family SUSY model. As we will ex-

plain, the precise construction of the model requires careful treatment of the family basis,

which generically leads to sizable SUSY contributions to the flavor changing neutral cur-

rents (FCNC). To see such effects, we first discuss the case where the Cabibbo-Kobayashi-

Maskawa (CKM) matrix is the only source of the flavor mixing. As we will see, the FCNC

constraints are not so stringent in that case. We also discuss how large flavor mixing in the

supersymmetry breaking parameters are allowed.

1 Davier et.al. have reported a deviation of 3.6 σ level [16]. The deviation has increased [17] by the recent

more precise measurement of the fine-structure constant from atomic interferometry with Cesium133 [18].

See [19] for the future prospect of the muon g − 2 measurement.
2 For other simple possibilities and models in the MSSM, see Ref. e.g. [24–45].
3 For model independent study, See [46, 47].
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The organization of this paper is as follows. In Sec. II, we review the Split-Family SUSY

model. In Sec. III, we update the constraints from the collider experiments. In Sec. IV, we

discuss the FCNC constraints on the model. In Sec. V, we discuss the successful bottom-tau

unification as a bonus feature of the model. The final section is devoted to our conclusion.

II. SPLIT-FAMILY SUSY MODEL

The basic idea of the Split-Family model is to assume the hierarchical soft masses,

m2
soft =


m2

0 0 0

0 m2
0 0

0 0 m2
3

 , (2)

where the masses of the first two generation sfermions, m2
0, are in m0 = O(100− 1000) GeV

and that of the third generation sfermions, m2
3, is in m3 = O(10) TeV. This structure may

be related to the hierarchy of the Yukawa couplings. For example, an extra-dimensional

setup can lead to the aligned hierarchy between the soft masses and the Yukawa couplings,

where only the third generation resides on the brane close to those of the Higgs brane and

the SUSY breaking brane (See e.g. [48]). It is also possible to achieve the aligned hierarchy

if the first two generations are pseudo-Nambu-Goldstone multiplets of some broken global

symmetry (See e.g. [32, 49, 50]).

The precise construction of the Split-Family model requires careful treatment of the

family basis. If the soft masses are universal, for example, the general Yukawa couplings in

the superpotential do not lead to the SUSY FCNC contributions, since the soft breaking

parameters are proportional to the unit matrix in any family basis. On the other hand, for

the non-universal soft masses, the general Yukawa couplings result in the non-zero SUSY

contributions to the flavor mixing. Since we have assumed the rather light sfermions, those

mixing leads to unacceptably large FCNC processes.

In this paper, we put a phenomenological requirement that the soft masses in Eq. (2) are

realized in the family basis where the Yukawa couplings in the superpotential are almost

diagonal.4 These assumptions are implicitly made, for example, in the models [23, 48–50]

to avoid too large FCNC. It should be noted, however, that there are unavoidable SUSY

4 We also assume that the hierarchy of the soft masses and the Yukawa couplings are aligned.
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FCNC contributions even under these assumptions due to the effects of the CKM matrix.

To demonstrate those effects, we study the following two scenarios.

• The CKM matrix is the only source for the flavor mixing (the minimal mixing scenario)

• Small flavor mixing comes from the supersymmetry breaking parameters (the small

mixing scenario)

In the following, we call the first scenario the minimal mixing scenario and the second one

the small mixing scenario. The minimal mixing scenario gives us a demonstration of how

large SUSY FCNC contributions are expected by the effect of the non-universality of the

soft masses in Eq. (2).

Minimal Mixing Scenario

Let us start from the minimal mixing scenario. The superpotential with general Yukawa

matrices is given by,

WLEPTON = f ijELiĒjHd, (3)

WQUARK = f ijU QiŪjHu + f ijDQiD̄jHd. (4)

Here, L, Ē, Q, Ū , D̄ are chiral superfields of the left-handed leptons, the left-handed anti-

electrons, the left-handed quarks, the left-handed up-type anti-quarks, and the left-handed

down type anti-quarks, respectively. The coefficients fE, fU , fD are the 3 × 3 complex

matrices. The subscripts i, j run from one to three and each one is contracted.

As we assume that the soft masses in Eq. (2) are defined in the family basis where the

Yukawa couplings are diagonal, the lepton Yukawa matrix is given by the diagonal form,

WLEPTON = f̂ iiEL
[e]
i Ē

[e]
i Hd, (5)

where the subscript [e] shows the chiral superfields in the diagonalized basis, f̂E is a diagonal

and real-positive matrix.5 Note that the subscript i in Eq. (5) runs from one to three, which

corresponds to the charged lepton generation.

5 Even if we include the PMNS effect, the lepton flavor mixing is not so large for the model with the

degenerate right-handed masses MR . 1010 GeV (See the appendix C for more details). Thus, we ignore

the finite neutrino masses in the superpotential.

4



On the other hand, the up- and down-type quark Yukawa matrices are not diagonalized

at the same time due to the CKM matrix. To demonstrate the minimal mixing scenario, we

take a simple family basis, for example,

W = f̂ iiUQ
[d]
i Ū

[u]
i Hu + (V ∗CKMf̂D)ijQ

[d]
i D̄

[d]
j Hd. (6)

Here, f̂U and f̂D are diagonal and real-positive matrices, VCKM is the CKM matrix, the

superscript ∗ is a complex conjugate of a matrix, and the superscript T denotes the transpose

of a matrix. The subscripts i, j in Eq. (6), run from one to three, which corresponds to

the quark generation. In this basis, the down-type Yukawa couplings are not diagonal due

to the CKM matrix. We may consider another simple family basis where the CKM matrix

appears in the up-type Yukawa couplings6 (See Sec. IV for more details).

Small Mixing Scenario

The small mixing scenario is defined in the following way. We first take the family basis

specified in Eq. (5) and Eq. (6). Then, we introduce the small flavor mixing matrix Vmix so

that the mass matrices are given by

m2
soft = V †mix


m2

0 0 0

0 m2
0 0

0 0 m2
3

Vmix. (8)

In the small mixing scenario, we assume that Vmix is close to the unit matrix with the mixing

angles of the order of the CKM angles. See Sec. IV for more details.

III. PHENOMENOLOGY OF SPLIT-FAMILY SUSY MODEL

In this section, we update the favored region for the muon g − 2 and the Higgs boson

mass in Ref. [23] in light of the current LHC data. The SUSY contributions to the FCNC

are discussed in the next section.

6 That is, we may take the basis,

W = (V T
CKMf̂U )ijQiŪjHu + (f̂D)iiQiD̄iHd, (7)

while the soft masses are given by Eq. (2).
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A. Parameter Choice At Input Scale

The free parameters in our analysis are,

m0, m3, m
2
Hu
, m2

Hd
, tanβ, M1, M2, M3. (9)

Here, m2
Hu

(m2
Hd

) is the squared mass of the up-type (down-type) Higgs doublet, tanβ is

defined by the ratio of the vacuum expectation value of Hu to that of Hd, and M1, M2, and

M3 are the gaugino mass parameters of the bino, the wino, and the gluino, respectively. We

assume the same m2
0 and m2

3 for the squarks and the sleptons for simplicity.7

We take the above free parameters at the GUT scale MGUT = 1016 GeV. By solving

the renormalization group equations, we obtain the physical parameters. Notice that the

Higgsino mass parameter µ is chosen to achieve electroweak symmetry breaking consistently

(See Eq. (11)). It should be also noted that the following arguments are not sensitive to the

choice of m2
Hu

and m2
Hd

as long as the electroweak symmetry breaking is successful.8 For

simplicity, we take

m2
Hu

= m2
Hd

= m2
0, (10)

in the following analysis.

For m2
Hu

= m2
Hd

= O(m2
0), radiative corrections from the stop mass squared leads to a

relatively large |m2
Hu
| at the weak scale and it requires a large |µ|. That is, the value of |µ|

is determined by the minimization condition of Higgs potential,

|µ|2 = −m2
Hu

+
1

tanβ2
(m2

Hd
−m2

Hu
)− 1

2
m2
Z +O

(
1

tanβ4

)
' −m2

Hu
, (11)

for tanβ � 1. Here, mZ is the mass of the Z boson, mZ ' 91 GeV. From the numerical

analysis, |m2
Hu
| at the electroweak scale isO(10)2 TeV2 in the parameter space of our interest,

and thus |µ| = O(10) TeV.

To explain the muon g − 2, we require that the masses of the electroweakinos are also in

O(100−1000) GeV. We consider two cases, the universal gaugino mass and the non-universal

7 These assumptions are motivated by the SU(5) GUT.
8 When the required value of µ is as small as m0, the Higgsino also contributes to the muon g − 2 [23].
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gaugino masses. In the case of the universal gaugino mass, we take

M1/2 = M1 = M2 = M3 = O(100− 1000) GeV. (12)

For the non-universal gaugino masses, we take

M1 'M2 = O(100− 1000) GeV, M3 & −O(1) TeV. (13)

The reason of the choice of the sign of M3 will be explained in Sec. V.

The SUSY contributions to the muon g − 2 are proportional to tanβ and we focus on

tanβ & 40. (14)

The large tanβ is also advantageous to explain the observed Higgs boson mass with m3 =

O(10) TeV. As we will also discuss, the large tanβ is important to achieve the bottom-tau

unification (See Sec. V).

Throughout this paper, we assume that the SUSY breaking parameters do not have CP

violating phases and the only source of the CP violation in the following analysis comes

from the CP phase in the CKM matrix. Under these assumptions, we take the convention

of µ > 0 without loss of generality (See the following section for more details).

B. SUSY Contributions To Muon g − 2

Here, we show the parameter space to explain the muon g−2. In the MSSM, the relevant

one loop contributions to the muon g−2 come from the diagrams with the smuon/neutralino

or the muon-type sneutrino/chargino loops [51]. In our scenario, the one-loop bino-smuon

diagram dominates the SUSY contributions to the muon g − 2, the SUSY contribution

is proportional to the µ parameter. The Higgsino contributions are, on the other hand,

suppressed due to their heaviness.

In our analysis, we use the package SPheno-4.0.39 to calculate the low energy spectrum

from the input parameter at the GUT scale. In the code, the renormalization group equations

are solved including the flavor mixing parameters, which are relevant for analyses in the next

9 We slightly modify SPheno-4.0.3 to calculate the SUSY spectrum on the basis in Eq. (6).

7



FIG. 1. The plots for the muon g−2 on the (m0–M1/2) plane for given m3, tanβ, and m2
H = m2

Hu,d
.

We take tanβ = 50 and m3 = 12 TeV or 10 TeV. In the orange (yellow) region, ∆aµ is explained

within 1σ (2σ). The gray shaded region is excluded by the negative slepton masses. The Higgs

boson mass is consistent with the observed Higgs boson mass in the favored regions for ∆aµ.

section. We also use the package FeynHiggs2.14.3 [52–56] to compute the muon g− 2 and

the Higgs mass from the low energy spectrum obtained by SPheno.10

1. Universal Gaugino Mass at the GUT Scale

For the universal gaugino mass, we search for the region to explain the observed muon

g − 2 on the m0–M1/2 plane for m3 = 12 TeV or 10 TeV. In Fig. 1, the observed muon

g − 2 is explained in the orange (yellow) regions within 1σ (2σ). The gray shaded regions

are excluded by the tachyonic masses of the sleptons in the first two generations due to the

large two-loop renormalization group effects from the third generation masses. In most of the

favored parameter space, the SM Higgs mass is in 124−126 GeV for the central value of the

measured top quark mass mtop = 173.1± 0.9 GeV [58]. That is consistent with the observed

Higgs boson mass mH = 125.18± 0.16 GeV [58] within the theoretical uncertainty.11 In the

left figure, the measured muon g − 2 is explained for slightly larger M1/2 and m0 compared

with the right one. This is because the µ parameter is larger for the larger m3, with which

10 We added the two loop corrections for the large tanβ given in [57] for the SUSY contributions to the muon

g−2. Although we use FeynHiggs to calculate the muon g−2, the following results are not changed even

if we use SPheno.
11 The theoretical uncertainty of the Higgs mass is about 2 − 3 GeV [59]. We have also checked that the

Higgs boson mass is consistent with the observed value within the theoretical error in Fig. 2, 3, 4, and

Fig. 6.
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the SUSY contribution to the muon g − 2 is slightly enhanced.

FIG. 2. The plots for the muon g − 2 on the (m0 −M2) plane with the non-universal gaugino

masses M1 ' 1.7M2 at the GUT scale. We take M1 = 1.725 ×M2 (M1 = 1.74 ×M2) and the

gluino mass parameter M3 = −2.6 TeV (−2.5 TeV) at the GUT scale for m3 = 11 TeV (10 TeV).

The color codes are the same as Fig. 1. The Higgs boson mass is consistent with the observed one

in the favored regions.

2. Non-Universal Gaugino Masses at the GUT Scale

For the non-universal gaugino masses, we also study the parameter space explaining the

muon g − 2 on the m0–M2 plane. In Fig. 2, we plot the orange (yellow) shaded regions

predicting the observed muon g − 2 within 1σ (2σ). The gray shaded regions are excluded

by the tachyonic masses of the sleptons. Here, the ratio of the gaugino masses are fixed to

be M1 = 1.725 ×M2 (M1 = 1.74 ×M2) and M3 = −2.6 TeV (−2.5 TeV) for m3 = 11 TeV

(10 TeV) at the GUT scale, respectively. The motivations of these choices will be explained

in Sec. III C 2. Again, the SM Higgs boson mass is consistent with the observed Higgs boson

mass in the favored parameter space. As in the case of the universal gaugino mass, the

muon g − 2 is explained by slightly larger m0 and M2 for the larger m3 when we compare

both the figures.
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C. Collider Constraints

Now, let us discuss the collider constraints. We will discuss cosmology in the next sub-

section.

FIG. 3. Summary plots for the collider constraints. The same with Fig. 1 for the parameter space

and the color codes. On the right (left) side of the black dashed line, the bino (the charged slepton)

is the LSP. The blue shaded regions correspond to the 95% CL exclusion limit in [60] (See the text

for the difference between the blue and lighter blue regions). The red hatched regions are excluded

by εK (90% CL) (See Sec. IV).

1. Universal Gaugino Mass at the GUT Scale

The bino is the lightest SUSY particle (LSP) on the right sides of the black dashed lines

in Fig. 3. In this case, the parameter space with the gluino and the squarks lighter than

about 2.6 TeV is excluded by the search for multi-jets plus missing transverse momentum

at ATLAS 13 TeV using 36 fb−1 [60]. We show the excluded regions as the blue shaded ones

in Fig. 3, which correspond to the 95% CL limits.

A charged slepton is the LSP on the left side of the black dashed line in Fig. 3. Here,

we assume that the LSP has a short lifetime by R-parity violation so that the scenario is

consistent with cosmology. However, the size of the R-parity violation is limited from above

not to wash out the baryon asymmetry made by baryogenesis (such as thermal leptogenesis).

As a result, the charged slepton LSP is expected to be stable inside the detectors (See

e.g. [61]). The heavy stable charged particles searches in [62] put upper limits on the

10



TABLE I. A sample point in the universal gaugino mass case. mgluino, mQ̃, mẽL (mµ̃L), mẽR (mµ̃R),

mχ̃1
0
, mχ̃2

0
, mχ̃±

1
denote the masses of the gluino, the lightest squark, the lightest almost left handed

selectron (smuon), the lightest almost right-handed selectron (smuon), the lightest neutralino, the

next to the lightest neutralino, the lightest chargino, respectively. It should be noted that R-parity

violation is required for the decay of the LSP before the Big-Bang Nucleosynthesis (BBN). Then,

we also need to introduce a dark matter candidate in the model. (See the next subsection.)

m0, m3 0 GeV, 12 TeV

M1/2 1650 GeV

tanβ 50

mHiggs 124.6 GeV

aµ 1.48× 10−9

LSP charged slepton

∆MK −3.0× 10−21 GeV

εK −2.6× 10−7

∆MD 1.5× 10−17 GeV

µ 9751 GeV

mgluino 3619 GeV

mQ̃ 2730 GeV

mẽL(mµ̃L) 486 GeV

mẽR(mµ̃R) 942 GeV

mχ1
0

766 GeV

mχ2
0

1360 GeV

mχ±
1

1360 GeV

production cross section of the SUSY particles, which is converted to the constraints on the

mass parameters by using the cross-section given in [63].

In Fig. 3, the blue shaded regions on the left of the black dashed lines are excluded by

the constraints on the heavy stable charged particle (95% CL).12 In the figure, almost entire

region favored by the muon g − 2 is excluded except for a tiny region near (m0, M1/2) =

(0 GeV, 1.7 TeV) for m3 = 12 TeV in the case of the universal gaugino mass.13 In Tab. I, we

show a sample spectrum which evades the constraints while explains the muon g− 2 within

2σ in the charged slepton LSP scenario.

In the analysis for the charged slepton LSP, the electroweakino productions are the dom-

inant SUSY production modes, where we use the production cross section given in [64, 65].

For comparison, we also show the constraints assuming the SUSY production cross section

12 There are two kinds of blue regions (the blue and the lighter blue regions). The blue plus light blue shaded

regions are excluded here. We will explain this difference soon.
13 The muon g − 2 can be explained for a larger M1/2 for a larger tanβ. In this case, however, the CP-odd

neutral Higgs scalar becomes tachyonic.
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FIG. 4. The summary plots for the collider constraints and the dark matter candidate. The same

with Fig. 2 for the parameter space and the color codes. On the right (left) side of the black

dashed line, the neutralino (the sneutrino) is the LSP. The blue shaded regions are excluded from

the collider searches at 95% CL. On the green line, the observed current dark matter abundance

Ωh2 ' 0.12 is achieved due to the bino-wino coannihilation.

for the degenerate squarks and gluino (the lighter blue shaded regions). In the actual spec-

trum, the gluino is heavier than the lightest squark in most of the favored parameter space,

and hence, the production cross section of the colored SUSY particles [63] is smaller than the

degenerated case. As the figure shows, the constraints via the colored SUSY particle pro-

duction are at most comparable or weaker than those from the electroweakino productions

for the heavy stable charged particle searches.14

2. Non-Universal Gaugino Masses at the GUT Scale

In the case of the non-universal gaugino masses, the constraints from the collider searches

can be weakened by several reasons. For the bino LSP cases, for example, the production

cross section of the colored SUSY particles which are relevant for multi-jets plus missing

transverse energy search is reduced if the gluino and squarks are heavy. The constraints

from the heavy stable charged particle searches can be also evaded since the sneutrino can

be lighter than the charged sleptons. In the following, we again take M3 = −2.6 TeV or

−2.5 TeV at the GUT scale, which suppresses the colored SUSY particle production cross

14 For the searches of multi-jets plus missing transverse energy which is relevant for the bino search, the

colored SUSY production plays the dominant roles.
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TABLE II. A sample parameter point in the case of the non-universal gaugino masses. The

neutralino is the LSP. Ωh2 and σSI denote the current thermal relic abundance of the bino and the

spin-independent bino-nucleon cross-section.

m0, m3 650 GeV, 11 TeV

M1, M2, M3 1.725× 480 GeV, 480 GeV, − 2.6 TeV

tanβ 40

mHiggs 124.6 GeV

aµ 2.69× 10−9

LSP bino

Ωh2 0.119

σSI 2.4× 10−14 pb

∆MK −2.0× 10−21 GeV

εK 1.2× 10−7

∆MD 1.5× 10−17 GeV

µ 9108 GeV

mgluino 5529 GeV

mQ̃ 4442 GeV

mẽL(mµ̃L) 481 GeV

mẽR(mµ̃R) 635 GeV

mχ1
0

404 GeV

mχ2
0

478 GeV

mχ±
1

478 GeV

section. The choice of the sign of M3 will be relevant in the discussion in Sec. V. We also

take M1 = 1.725 ×M2 or M1 = 1.74 ×M2 with which the sneurinos are lighter than the

charged sleptons in the favored parameter space.

On the right side of the black dashed line in Fig. 4, the neutralino is the LSP. As we

have mentioned, there is no stringent collider constraint because the squarks and the gluinos

become heavy by a rather large |M3|. It should be also noted that the constraints on the

missing transverse momentum from the electroweakino production are far less relevant due

to the rather degenerate electroweakino spectrum, (mχ±
1
−mχ1

0
)/mχ±

1
. 30% [66, 67].

Eventually, the searches for the missing transverse energy with the charged leptons put

the most stringent constraints on the neutralino LSP region. In the figure, the blue shaded

regions in Fig. 4 are excluded by the constraint in [68] (95% CL).15 In Tab. II, we show a

sample spectrum which evades the constraints while explains the muon g − 2 within 1σ in

15 The constraint from the latest result in [69] is not stringent, where it is assumed that the slepton decays

into a lepton and a neutralino with a 100% branching ratio. In our scenario, a slepton also decays into a

chargino and a neutrino. Furthermore, a charged lepton from a chargino decay becomes soft. Thus, the

constraint is weakened.
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the neutralino LSP scenario.

On the left side of the black dashed line in the favored parameter space in Fig. 4, the

sneturino is the LSP due to a relatively small M2 compared with M1. Because of the heavy

colored SUSY particles and the degenerate electroweakinos, this region is less constrained

by multi-jet plus missing energy searches [60, 66, 67]. The search for the missing transverse

energy with the charged leptons are also less sensitive to this region. In the sneutrino LSP

region, however, the constraints from the direct detection of dark matter are stringent if the

sneutrino LSP is stable (See the following section for more detail discussion).

D. Cosmology

As we have seen above, most parameter region favored by the muon g − 2 has been

excluded for the universal gaugino mass by the LHC searches. In this subsection, we discuss

cosmology focusing on the non-universal gaugino masses.

In most of the neutralino LSP region, the bino is the dominant component of the lightest

neutralino. In general, the bino LSP is disfavored from a too large thermal relic abundance

due to its small annihilation cross section.16 This problem can be evaded for our particular

choice of the gaugino mass parameters,

M1(MGUT) ' 1.7×M2(MGUT), (15)

which leads to the rather degenerate physical bino and wino masses. In this case, the co-

annihilation between the bino and the wino is efficient [70–73]17, which makes the bino

abundance consistent with the observed dark matter density.

In Fig. 4, we draw the green line on which the thermal relic abundance of the bino corre-

sponds to the observed dark matter density. To calculate the thermal relic abundance of dark

matter (and its cross-section with nucleons), we use the package MicrOMEGAs 5.0.4 [77].

For the choice of the gaugino mass relation in Eq. (15), we find that the bino mass around

400 GeV can explain the observed dark matter density. By tuning the ratio between M2

and M1 further, the dark matter density can be explained for the bino mass up to around

700 GeV within the parameter region favored by the muon g − 2.

16 In some of the neutralino LSP region, the wino is the LSP. There, we have confirmed that the constraints

from the direct detection are negligible due to the small thermal relic abundance of the wino.
17 See the other neutralino coannihilation with other light sparticles e.g a stop [74], stau [75], gluino [76].
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As the bino is the LSP, the direct detection cross is highly suppressed. In fact, we find,

σSI . 10−10
( mDM

100 GeV

)
pb (16)

where mDM denotes the dark matter mass. This cross section is much smaller than the

current constraint [78–80].

For the sneutrino LSP, on the other hand, the relic abundance is much smaller than the

observed dark matter density (Ωh2 = 10−2) due to its large annihilation cross section in

the parameter region favored by the muon g − 2. Even with such a small relic abundance,

however, the sneutrino LSP contribution to dark matter has been excluded by the direct

detection experiments since it has a large scattering cross section with the nucleons, σSI '

O(10−5) pb.

As a result, we find that tiny R-parity violation is required in the case of the sneutrino

LSP as in the case of the charged slepton LSP (See the previous discussion in Sec. III C 1).

In those cases, we need dark matter candidate other than the LSP.
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IV. FCNC CONSTRAINTS IN SPLIT-FAMILY SUSY MODEL

.

In the Split-Family model, there is a non-trivial enhancement of the FCNC by the non-

universality of the sfermion masses. In this section, we investigate the FCNC constraints

on the model for the minimal and small mixing scenarios defined in Sec. II. In the minimal

mixing scenario, the CKM matrix is the only source of the flavor mixing. We show that

the FCNC constraints on the minimal scenario are not stringent. For the small mixing

scenario, we demonstrate how large flavor mixing in the supersymmetry breaking parameters

is allowed.

A. Experimental FCNC limits

Let us first summarize the FCNC constraints relevant to the mixing parameters.

Meson mixing

The CP-violating parameter in the neutral kaon system εK gives the stringent constraint

on the squark flavor mixing. The measured value of εK [58] is

|εK |ex = 2.228(11)× 10−3(90%CL). (17)

For the theoretical prediction of SM, we adopt [81],

|εK |SM,in = 2.05(18)× 10−3, (18)

which is derived by using the QCD sum-rule.18

The mass difference between the long-lived Kaon and the short-lived Kaon, ∆MK =

mK0
L
−mK0

S
, also puts the constraints on the mixing parameters. The measured ∆MK [58]

is given by

∆M exp
K = 3.483(6)× 10−15 GeV. (19)

18 We do not use the theoretical prediction on εK from the lattice QCD [81].
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The SM prediction of ∆MK , however, has a large uncertainty due to the unknown long-

distance effects (see e.g. Ref [82]). Thus, in this paper, we will just compare ∆M exp
K with

the order of the magnitude of SUSY contributions. The neutral D-meson oscillation may

also put the constraints. The observed mass difference [58] is

|∆M ex
D | = 0.63+0.27

−0.29 × 10−14 GeV. (20)

The theoretical calculation of ∆MD has large uncertainties as in the case of ∆MK . Again,

we only evaluate the order of the magnitude of the SUSY contribution with the |∆M ex
D |.

Lepton Flavor Violation

For the slepton flavor mixings, the stringent constraint comes from the search for the

decay µ+ → e+γ at the MEG experiment [83]. The upper limit on the branching ratio of

this process is

B(µ+ → e+γ) < 4.2× 10−13 (90% CL). (21)

B. FCNC Constraints in the Minimal Mixing Scenario

Here, we investigate the FCNC constraints in the minimal mixing scenario. We search

for the parameter space which is the same as the previous section in Fig. 1 and Fig. 2. In

this scenario, the CKM matrix appearing in the Yukawa couplings in Eq. (6) leads to the

flavor mixing in the squark mass matrices at the weak scale due to the non-universality of

the split family structure at the GUT scale.

Such flavor mixing is constrained by εK , where the CP violation comes solely from the

CP phase of the CKM matrix. In Fig. 3, the red hatched regions are excluded. There, the

region with the small m0 and M1/2 is excluded due to the light gluino and squarks. Notice

that the SUSY FCNC contribution is larger for a larger m2
3/m

2
0, and thus the constraint is

severe for the left figure.19 In Fig. 4, on the other hand, no constraint appears from εK . This

is because the SUSY contributions are suppressed due to the heavy gluino and squarks for

|M3| ' 2.5− 2.6 TeV.

19 In our analysis, we fully diagonalize the squark masses without using the mass insertion technique (See

appendix A for more details).
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As a result, the Split-Family SUSY model is not stringently constrained by the flavor vio-

lation in the minimal mixing scenario. We have also confirmed that ∆MKSUSY
and ∆MDSUSY

become much smaller than the observed one (See e.g. Tab. I and Tab. II).20

Several comments are in order. As we have mentioned earlier, we may consider another

simple family basis in Eq. (7). Since the flavor mixing is dominated by the renormalization

group effects, we obtained similar constraint even in this case for the large tanβ.

One may also wonder how large SUSY FCNC contributions are expected if the first

and the second generation soft SUSY breaking masses are not degenerate. We discuss this

possibility in appendix B. There, the model is severely constrained by the FCNC even for

the minimal mixing scenario.

C. FCNC Constraints in Small Mixing Scenario

Now, let us discuss the FCNC problems in the small mixing scenario. As we will see, the

flavor mixing in the slepton sector leads to sizable FCNC contributions because their masses

are of O(100) GeV to explain the muon g − 2.

1. FCNC Constraints on Slepton Flavor Mixing

As we explained in Sec. II, we take the diagonal lepton Yukawa coupling while allowing

small flavor mixing in the SUSY breaking soft masses as in Eq. (8). We use the following

parametrization for the slepton mixing matrix Vmix,

Vmix =


1 0 0

0 cos θ23 sin θ23

0 −sin θ23 cos θ23




cos θ13 0 sin θ13

0 1 0

−sin θ13 0 cos θ13




cos θ12 sin θ12 0

−sin θ12 cos θ12 0

0 0 1

 . (22)

Here, we again assume that no CP violation appears in the mixing matrix.

As the split-family structure is motivated by the Yukawa hierarchy, we also assume that

the flavor mixing in the SUSY breaking sector has a structure similar to the CKM matrix.

20 In the minimal mixing scenario, we have also confirmed that the neutron electric dipole moment (EDM)

from the CKM phase does not lead to the stringent constraint. See also Ref. [84] for the EDM constraints.
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FIG. 5. The plot of B(µ+ → e+γ) (the curve line) for given ε. We used parameters in Tab. I and

Tab. II for the left side and the right side figures, respectively. The solid (dashed) horizontal lines

are the current (future expected) upper-bound.

That is, we assume that the mixing angles are controlled by a small parameter ε,

(sin θ12, sin θ13, sin θ23) = (O(ε),O(ε3),O(ε2)), (23)

where ε ' 0.2 roughly mimics the mixing angles in the CKM matrix. In the following, we

demonstrate how large flavor mixing is allowed in the slepton sector by using ε.

In our numerical analysis, we take the following mixing angles,

(s12, s13, s23) = (R1ε, R2ε
3, R3ε

2), (24)

where Ri shows the random numbers between (0.5, 1.5). The random numbers Ri for m2
L̃

and m2
Ẽ

are taken independently.

In Fig. 5, we show how large slepton mixing is tolerable from the current and future

constraints on B(µ+ → e+γ). There, we consider the input parameters in Tab. I and Tab. II

for examples. The blue curve line denotes the model predictions for B(µ+ → e+γ). The

horizontal (dashed) lines are the current (future expected [85, 86]) experimental bounds.

From the figures, the constraint from B(µ+ → e+γ) requires ε . 0.06.21

Before closing this section, let us comment on the effect of the PMNS matrix. As in

the case of the squark mixing, the PMNS matrix could lead to large flavor mixing in the

slepton mass matrix at the weak scale even if we assume a diagonal soft masses (See Eq. (2)).

However, the FCNC constraints due to the PMNS matrix are not stringent if the neutrino

21 We checked that the constraints are not significantly changed even if we put additional CP phases in Vmix

of the sleptons. Detail analysis will be done elsewhere.
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Yukawa matrix is small enough as long as the right-handed neutrino mass MR . 1010 GeV

(See appendix C for more details).

2. FCNC Constraints on Squark Flavor Mixing

In the small mixing scenario, we can also introduce Vmix to the squarks with the mixing

angles given by Eq. (23). In this case, however, the FCNC constraints on the mixing angle

ε are much weaker than the slepton case, and hence, we do not discuss them any further.

V. BOTTOM-TAU UNIFICATION

In the Split-Family SUSY model, the muon g − 2 can be explained by the small

|M1|, |M2|, m2
0, and the large tanβ. In addition, the stringent limits from the LHC

experiments require the rather large |M3|. Interestingly, these parameter sets are found to

be appropriate to realize the bottom-tau unification [87].

The bottom Yukawa coupling receives threshold corrections from the gluino loop dia-

grams [88–91],

∆yb
yb
∝ M3µ tanβ

m2
3

, (25)

where yb is the bottom Yukawa coupling in the MSSM, and ∆yb is the threshold correction.

The negative M3 µ tanβ gives the negative ∆yb, which makes the bottom Yukawa coupling

in the MSSM yb larger for a given bottom quark mass.22 For the tau Yukawa coupling, on

the other hand, the threshold corrections are small due to the small M1 and M2 as well as

the small gauge coupling constants. As a result, the large negative contribution in Eq. (25)

makes yb/yτ large at the weak scale, which is appropriate for the bottom-tau unification at

the GUT scale. This is the reason that we take negative M3 in the previous section.

In Fig. 6, we show the parameter space for the successful bottom-tau unification. There,

we assume the input parameters in Tab. II other than m0 and tanβ. The red lines are the

contours of |yb/yτ − 1| = 1.5%, 3%, 5%, where yb and yτ are the bottom and tau Yukawa

couplings at the GUT scale, respectively.23 The other color codes are the same as Fig. 4.

22 In our notation, yb is real positive (See Eq. (6)).
23 The threshold correction from the gluino is sensitive to the matching scale, which requires careful treat-

ments of the decoupling and the renormalization group effects [92].
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FIG. 6. The plot for the successful bottom-tau unification on the (m0 − tanβ) plane. The red line

shows the |yb/yτ − 1| = 0.015, 0.03, 0.05. The color code is the same as Fig. 4. In most of the

favored region in the figure, we have confirmed that the Higgs mass is in 124−126 GeV and the

dark matter abundance is Ωh2 ' 0.12 (the right side of the dotted line).

We have checked that the Higgs mass is in 124−126 GeV in most of the favored region. We

have also confirmed that the dark matter abundance is Ωh2 ' 0.12 on the right side of the

dotted line (bino LSP region) in the figure.24 Thus, we find the parameter space favored by

the muon g − 2 is also appropriate to achieve the bottom-tau unification.

24 On the left side of the dotted line, the sneutrino is the LSP as discussed in Sec. III.
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VI. CONCLUSION

In this paper, we have revisited the Split-Family SUSY model. In the model, the sfermion

masses of the first two generations are in the hundreds GeV range, while that of the third

generation is in the tens TeV range. With this spectrum, the deviation of the muon g − 2

and the observed Higgs boson mass are explained simultaneously.

In Sec. III, we have first shown the parameter space to explain the muon g − 2 and the

Higgs boson mass. In our analysis, we have searched for two cases of the universal gaugino

mass and the non-universal gaugino masses. For the universal gaugino mass, almost the

entire region to explain the muon g − 2 within 2σ is excluded by the collider searches as

shown in Fig. 3. This is due to the lightness of the squarks, the gluino, and the wino

masses. For the non-universal gaugino masses, the gluino can be heavier with which the

collider constraints can be easily evaded (See Fig. 4).25 We have also found the parameter

space where the bino LSP can explain the observed dark matter density thanks to the

coannihilation with the wino.

In Sec. IV, we have studied the FCNC problems in the Split-Family SUSY model. We

have searched for two scenarios, i.e. the minimal mixing scenario and the small mixing

scenario (See Sec. IV for details). In the minimal scenario, we have assumed that the CKM

matrix is the only source of the flavor mixing. There, we have shown that the SUSY FCNC

contributions are small enough to evade the problem.

For the small mixing scenario, we have assumed the CKM like mixing matrix to the soft

mass parameters (See Eq. (22) and around it). Then, we have demonstrated how large flavor

mixing is allowed in the slepton sector. There, the most stringent constraint comes from the

lepton flavor violation decay of µ+ → e+ + γ. We have shown that the mixing angles have

to be relatively small, ε . 0.06.

In Sec. V, we have discussed one bonus feature of the model, the bottom-tau unification.

For the successful bottom-tau unification, the large threshold correction is required. Inter-

estingly, such parameter space is compatible with the one favored by the muon g − 2. In

Fig. 6, we have shown that the bottom-tau unification is significantly improved for the large

tanβ.

Several comments are in order. First, it is possible to achieve a small µ term in the

25 See e.g. Ref. [93, 94] for the discussion about the future sensitivity at the LHC and the ILC.
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Split-Family SUSY model. In fact, for m2
Hu,d

= m2
3, the focus point mechanism [95, 96]

results in a small µ term. In such a case, the neutralino LSP can have a sizable Higgsino

contribution, so that the dark matter-nucleon cross section becomes large.

Throughout this paper, we have assumed that the SUSY breaking parameters do not have

any CP-violating phases. In fact, these are strong assumptions and it is highly non-trivial

to achieve such soft SUSY breaking parameters from high energy theory. The CP violating

phases in the SUSY breaking parameters are constrained by the measurements of the EDMs,

which will be discussed elsewhere.
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Appendix A: Validity of the Mass Insertion Approximation

In this appendix, we briefly discuss the validity of the mass insertion approximation for

the SUSY FCNC contributions. For simplicity, we consider the case of the universal gaugino

mass in the minimal mixing scenario.

In the mass insertion approximation, the gluino contribution to εK is estimated at the

next leading order [97],

εKSUSY
' − 3

20
√

2∆M exp
K

MKf
2
K

α2
s

216m2
0

(24xf6(x) + 66f̃6(x))Im[(∆ds
LL)2]. (A1)

Here, αs = 0.1184, mK = 0.498 GeV, the Kaon decay constant fK = 0.16 GeV. The mixing

parameter ∆ds
LL denotes an off-diagonal element for the left-handed down and strange squarks

soft SUSY breaking mass squared matrix normalized by 1/m2
0,

∆ds
LL ' V CKM

ts V ∗CKM
td

(
m2

3

m2
0

)
. (A2)
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FIG. 7. The plot of the gluino contribution to εK for a function of m3. The blue dotted line

shows the numerical result by the only susy flavor. The gray line denotes the result by the

mass insertion approximation in Eq. (A1). Note that all calculations include only so-called V LL

element [99] to compare with the mass insertion approximation.

From Eq. (A1), (A2), εKSUSY
is enhanced by a factor of m4

3.

The above approximation is, however, only valid when the sfermion mass splitting is

small, i.e. m2
0 ' m2

3. For m2
3 � m2

0, on the other hand, the approximation leads to the

overestimation. Thus, we need to calculate the FCNC processes in the exact mass diagonal-

ization. For this purpose, we use the package susy flavor 2 54 [98–100].

The numerical result of εKSUSY
as a function of m3 is shown in Fig. 7. The blue dotted

line corresponds to the result from the code, where we take the input parameter m0 =

1 TeV, M1/2 = 1.5 TeV, tanβ = 40, m2
Hu,d

= (100 GeV)2.26 The gray solid line is given by

the mass insertion approximation in Eq. (A1) for the same input parameters. Here, these

input parameters are set at the SUSY scale to make comparison easier. From the figure, we

confirm the overestimation of εK for m2
3 � m2

0 in the mass insertion approximation.

Appendix B: FCNC Constraints on First and Second Sfermion Soft Mass Splitting

In this appendix, we discuss how large mass splitting is allowed for the first and the

second generation squarks from the FCNC constraints. To parametrize the splitting, we use

26 Here, we only include the contribution from the V LL four-quark operator [99] to compare with the

approximation in Eq. (A1). We also switched off the resummation of chirally enhanced corrections [99] to

compare with the mass insertion approximation.
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FIG. 8. The FCNC constraints for the mass splitting between the first two generation squarks.

The gray shaded regions are excluded by εK (90% CL).

the following non-universal soft masses for the squarks,

m2
soft =


m2

0 0 0

0 m2
2 0

0 0 m2
3

 , (B1)

where m2 denotes the soft mass parameter of the second generation squarks.

In Fig. 8, we show the FCNC constraints for the case of the universal gaugino mass (the

figure in the left). The gray shaded region is excluded by εK (90% CL). There, we use the

input parameters in Tab. I, but take m0 and m2 as variables. The parameter space with the

ratio m2/m0 = O(10) is excluded for m0 & 60 GeV, where m2 becomes comparable to the

gluino mass contributions to the squark masses in the second generation.

In the right panel of Fig. 8, we also show the constraints for the non-universal gaugino

masses. There, we use the input parameters in Tab. II. The SUSY FCNC contributions

are large with the splitting, m2/m1 & 5, where m2 becomes comparable to the gluino mass

contributions to the squark masses in the second generation.
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Appendix C: Lepton Flavor Violation from MNS Matrix Effect

In this appendix, we briefly discuss the constraint from the decay µ+ → e+ + γ, where

the MNS matrix is taken into account as in the case of the minimal mixing scenario in the

squark sector.

In the presence of the right-handed neutrinos, the superpotential of the lepton sector is

given by,

W = f̂ ijEL
[e]
i Ē

[e]
j Hd + (U∗MNSf̂ν)

ijL
[e]
i NRjHu +

1

2
MRNRiNRi. (C1)

Here, NRi (i = 1−3) are the right-handed neutrinos with three flavors. As in the case of the

minimal mixing scenario in the squark sector, we assume the soft masses in Eq. (2) while

the Yukawa couplings are diagonal matrices (f̂ν) with the MNS matrix (UMNS).

In this setup, the flavor mixing parameter between the first and second generation of the

charged selectrons is given by,

(∆e
12)LL '

1

16π2

(√
MR

1015 GeV

)2(
m2

3

m2
0

)
(UMNS)13(U

∗
MNS)23ln(MR/1016 GeV), (C2)

where the parameter is defined by an off-diagonal element for the left-handed electron and

muon sleptons soft SUSY breaking mass squared matrix normalized by 1/m2
0.

Then, the branching ratio of the process µ+ → e+ + γ is given in the following [101–103],

B ' 48π3αem

G2
F

(
c1
α1

4π

µmbinotanβ

m4
slepton

(∆e
12)LL

)2

. (C3)

Here, GF = 1.166 × 10−5 GeV−2 is the Fermi coupling decay constant, αem ' 1/137 is the

fine-structure constant, α1 ' 1/60 is the weak coupling constant. We also take mslepton '

480 GeV, µ ' 9 × 103 GeV, and mbino ' 400 GeV as in Tab. II. The coefficient c1 is about

0.1 [101–103]. The branching ratio is consistent with the current upper-limit B . 10−13 for

MR . 1010 GeV. More detailed analysis remains for future work.
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[39] I. Gogoladze, Q. Shafi, and C. S. Ün, Phys. Rev. D92, 115014 (2015), arXiv:1509.07906

[hep-ph].

[40] K. Harigaya, T. T. Yanagida, and N. Yokozaki, Phys. Rev. D91, 075010 (2015),

arXiv:1501.07447 [hep-ph].

[41] K. Harigaya, T. T. Yanagida, and N. Yokozaki, Phys. Rev. D92, 035011 (2015),

28

http://dx.doi.org/10.1016/j.physletb.2011.10.031
http://arxiv.org/abs/1107.3006
http://arxiv.org/abs/1107.3006
http://dx.doi.org/ 10.1103/PhysRevD.85.095004
http://arxiv.org/abs/1201.2611
http://dx.doi.org/10.1007/JHEP03(2013)078
http://arxiv.org/abs/1210.3122
http://dx.doi.org/10.1016/j.physletb.2012.09.005
http://arxiv.org/abs/1208.2630
http://arxiv.org/abs/1208.2630
http://dx.doi.org/10.1103/PhysRevD.87.115022
http://arxiv.org/abs/1304.5526
http://dx.doi.org/10.1016/j.physletb.2013.07.040
http://dx.doi.org/10.1016/j.physletb.2013.07.040
http://arxiv.org/abs/1304.2508
http://dx.doi.org/10.1016/j.physletb.2013.12.064
http://dx.doi.org/10.1016/j.physletb.2013.12.064
http://arxiv.org/abs/1311.1906
http://dx.doi.org/10.1007/JHEP02(2014)074
http://arxiv.org/abs/1310.3620
http://dx.doi.org/ 10.1140/epjc/s10052-014-2775-9
http://arxiv.org/abs/1312.1984
http://dx.doi.org/10.1007/JHEP09(2013)027
http://arxiv.org/abs/1303.5830
http://dx.doi.org/ 10.1103/PhysRevD.90.116002
http://arxiv.org/abs/1406.6965
http://dx.doi.org/ 10.1103/PhysRevD.90.035008
http://arxiv.org/abs/1403.2337
http://dx.doi.org/10.1093/ptep/ptv084
http://arxiv.org/abs/1407.4226
http://arxiv.org/abs/1407.4226
http://dx.doi.org/10.1103/PhysRevD.91.095005
http://arxiv.org/abs/1501.04125
http://dx.doi.org/10.1007/JHEP08(2015)111
http://arxiv.org/abs/1505.05153
http://dx.doi.org/10.1103/PhysRevD.92.115014
http://arxiv.org/abs/1509.07906
http://arxiv.org/abs/1509.07906
http://dx.doi.org/10.1103/PhysRevD.91.075010
http://arxiv.org/abs/1501.07447
http://dx.doi.org/10.1103/PhysRevD.92.035011


arXiv:1505.01987 [hep-ph].

[42] I. Gogoladze and C. S. Un, Phys. Rev. D95, 035028 (2017), arXiv:1612.02376 [hep-ph].

[43] W. Yin and N. Yokozaki, Phys. Lett. B762, 72 (2016), arXiv:1607.05705 [hep-ph].

[44] T. T. Yanagida and N. Yokozaki, Phys. Lett. B772, 409 (2017), arXiv:1704.00711 [hep-ph].

[45] F. Wang, K. Wang, J. M. Yang, and J. Zhu, JHEP 12, 041 (2018), arXiv:1808.10851 [hep-ph].

[46] M. A. Ajaib, B. Dutta, T. Ghosh, I. Gogoladze, and Q. Shafi, Phys. Rev. D92, 075033

(2015), arXiv:1505.05896 [hep-ph].

[47] H. M. Tran and H. T. Nguyen, Phys. Rev. D99, 035040 (2019), arXiv:1812.11757 [hep-ph].

[48] M. Gabella, T. Gherghetta, and J. Giedt, Phys. Rev. D76, 055001 (2007), arXiv:0704.3571

[hep-ph].

[49] T. Kugo and T. Yanagida, Phys. Lett. 134B, 313 (1984).

[50] T. Yanagida and Y. Yasui, Nucl. Phys. B269, 575 (1986).

[51] G.-C. Cho, K. Hagiwara, Y. Matsumoto, and D. Nomura, JHEP 11, 068 (2011),

arXiv:1104.1769 [hep-ph].

[52] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, JHEP 02, 047

(2007), arXiv:hep-ph/0611326 [hep-ph].

[53] S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C9, 343 (1999), arXiv:hep-

ph/9812472 [hep-ph].

[54] S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun. 124, 76 (2000),

arXiv:hep-ph/9812320 [hep-ph].

[55] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, Comput. Phys. Commun.

180, 1426 (2009).

[56] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C28, 133

(2003), arXiv:hep-ph/0212020 [hep-ph].

[57] S. Marchetti, S. Mertens, U. Nierste, and D. Stockinger, Phys. Rev. D79, 013010 (2009),

arXiv:0808.1530 [hep-ph].

[58] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018).

[59] P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger, and A. Voigt, JHEP 01, 079 (2017),
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