<table>
<thead>
<tr>
<th>コンテンツ</th>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆研究内容について</td>
<td></td>
</tr>
<tr>
<td>よくある</td>
<td>2</td>
</tr>
<tr>
<td>何を研究する</td>
<td>4</td>
</tr>
<tr>
<td>宇宙とは？</td>
<td>4</td>
</tr>
<tr>
<td>What's Cosmic Ray?</td>
<td></td>
</tr>
<tr>
<td>宇宙ニュートリノ研究部門（スーパーカミオカンテルグループ）</td>
<td>8</td>
</tr>
<tr>
<td>Cosmic Neutrino Research Division (Super-Kamiokande Group)</td>
<td></td>
</tr>
<tr>
<td>宇宙ニュートリノ研究部門（T2K実験）</td>
<td>10</td>
</tr>
<tr>
<td>Cosmic Neutrino Research Division (T2K Experiment)</td>
<td></td>
</tr>
<tr>
<td>宇宙ニュートリノ研究部門（O嬷MASSグループ）</td>
<td>12</td>
</tr>
<tr>
<td>Cosmic Neutrino Research Division (O嬷MASS Group)</td>
<td></td>
</tr>
<tr>
<td>高エネルギー宇宙線研究部門（カシマグループ）</td>
<td>14</td>
</tr>
<tr>
<td>High Energy Cosmic Ray Division (Kanaya Group)</td>
<td></td>
</tr>
<tr>
<td>高エネルギー宇宙線研究部門（AGASA/TAグループ）</td>
<td>16</td>
</tr>
<tr>
<td>High Energy Cosmic Ray Division (AGASA/TA Group)</td>
<td></td>
</tr>
<tr>
<td>高エネルギー宇宙線研究部門（アリサグループ）</td>
<td>18</td>
</tr>
<tr>
<td>High Energy Cosmic Ray Division (Arsen Group)</td>
<td></td>
</tr>
<tr>
<td>宇宙近接物理研究部門（一次群グループ）</td>
<td>20</td>
</tr>
<tr>
<td>Fundamental Astrophysics Research Division (Primary Cosmic Ray Group)</td>
<td></td>
</tr>
<tr>
<td>宇宙近接物理研究部門（重力波グループ）</td>
<td>22</td>
</tr>
<tr>
<td>Fundamental Astrophysics Research Division (Gravitational Wave Group)</td>
<td></td>
</tr>
<tr>
<td>宇宙近接物理研究部門（BOSSグループ）</td>
<td>24</td>
</tr>
<tr>
<td>Fundamental Astrophysics Research Division (BOSS Group)</td>
<td></td>
</tr>
<tr>
<td>宇宙近接物理研究部門（理論グループ）</td>
<td>26</td>
</tr>
<tr>
<td>Fundamental Astrophysics Research Division (Theory Group)</td>
<td></td>
</tr>
<tr>
<td>◆施設と所在地について</td>
<td></td>
</tr>
<tr>
<td>宇宙ニュートリノ観測情報総合センター（RCCN）</td>
<td>28</td>
</tr>
<tr>
<td>Research Center for Cosmic Neutrinos</td>
<td></td>
</tr>
<tr>
<td>神崎宇宙観測所</td>
<td>29</td>
</tr>
<tr>
<td>Kamioka Observatory</td>
<td></td>
</tr>
<tr>
<td>横川観測所</td>
<td>30</td>
</tr>
<tr>
<td>Nokuruma Observatory</td>
<td></td>
</tr>
<tr>
<td>三宅観測所</td>
<td>31</td>
</tr>
<tr>
<td>Akino Observatory</td>
<td></td>
</tr>
<tr>
<td>チャカルタヤ宇宙物理学観測所</td>
<td>32</td>
</tr>
<tr>
<td>Chacaltaya Observatory of Cosmic Physics</td>
<td></td>
</tr>
<tr>
<td>◆研究所について</td>
<td></td>
</tr>
<tr>
<td>沿革</td>
<td>34</td>
</tr>
<tr>
<td>History</td>
<td></td>
</tr>
<tr>
<td>年表</td>
<td>36</td>
</tr>
<tr>
<td>Timeline</td>
<td></td>
</tr>
<tr>
<td>順位運営</td>
<td>38</td>
</tr>
<tr>
<td>Organization and Administration</td>
<td></td>
</tr>
<tr>
<td>教職員数</td>
<td>39</td>
</tr>
<tr>
<td>Number of Staffs and Directors so far</td>
<td></td>
</tr>
<tr>
<td>経費</td>
<td>40</td>
</tr>
<tr>
<td>Research Budget - Facilities</td>
<td></td>
</tr>
<tr>
<td>共用利用研究、教育、国際交流</td>
<td>41</td>
</tr>
<tr>
<td>Joint Use Research, Education, International Exchange</td>
<td></td>
</tr>
<tr>
<td>成果発表と見学会</td>
<td>42</td>
</tr>
<tr>
<td>Announcement of Achievements and Award History</td>
<td></td>
</tr>
<tr>
<td>紹介</td>
<td>45</td>
</tr>
<tr>
<td>Kashima Campus</td>
<td></td>
</tr>
</tbody>
</table>
宇宙線研究所と宇宙線の研究

宇宙線が発見されたのは19世紀中の1912年でした。Vicert F. Hessは当時研究していた雲中での放射線が、もしかしたら空気中を走っているものかもしれないため、気球を使った実験を行い、高空レジオニに存在する放射線が強まることが分かった。この観察は宇宙線が原子を崩壊させる「宇宙線の発見」となりました。これにより、宇宙線の研究が進み、現在の宇宙線物理学の発展が可能になりました。実際、この発見はすべての物理学の発展に大きく寄与したと言えるでしょう。

しかし、その目的はただ宇宙線が存在することを見つけるだけではなく、それを解明し、その特性を理解するための研究が進み、さらに我々が宇宙を理解する鍵となる研究が進みました。現在、宇宙線の研究は非常に重要な分野であり、私たちの理解を深め、宇宙の解明に貢献しています。

宇宙線研究所の目的

宇宙線研究所は、全国的に利用可能な研究所として、空間や星間空間の物理学や星間物理を研究しています。研究所の研究は、宇宙線の性質やその影響を解明するために行われています。宇宙線の研究は、我々が理解する宇宙の構造やエネルギーを理解するために重要です。

研究所においては、実験研究、教育研究、普及活動など、多岐にわたる活動が行われています。特に、宇宙線の特性を解明するための研究が進められています。これにより、宇宙線の規則性や影響が明確に理解され、宇宙を理解するための重要なステップが進んでいます。

研究所は、宇宙線の研究を通じて、我々が生きる地球の未来を守るために、宇宙の解明に貢献するための取り組みを行っています。そうした取り組みを通じて、宇宙線の研究は、我々が理解する宇宙の構造やエネルギーを理解するために重要です。
宇宙線とは？

What's Cosmic Ray?

宇宙線とは何か

宇宙線は空間を全く無視できぬ、非常に高いエネルギーを持ち、地球を通過する速度を持ち、地球を通過する速度を持つ粒子。これらは主に電子、陽子、中性子、さらに比較的エネルギーが高いものはX線やガンマ線を伴う。これらの粒子は、太陽の活動が原因のため、地球の電離層を通過して地球上に降り注ぐ。この現象は、宇宙線と呼ばれる。

宇宙線を調べると何が分かうのか

宇宙線を調べることは、それらの原因を知ることに繋がる。これについて、宇宙線を生成している星の周囲の現象を理解することも重要です。星の周りには磁場が存在し、その磁場を調査することは、磁場が生成されている星の現象を理解するためです。したがって、宇宙線を探ることは、宇宙の将来を理解するための重要な手段となります。

宇宙線を調べることは、それぞれの原因を知ることに繋がります。これは宇宙線を生成している星の周囲の現象を理解することに繋がります。星の周りには磁場が存在し、その磁場を調査することは、磁場が生成されている星の現象を理解するためです。したがって、宇宙線を探ることは、宇宙の将来を理解するための重要な手段となります。

宇宙線はどのようなエネルギーを持ち、地球を通過する速度を持ち、地球を通過する速度を持つ粒子。これらは主に電子、陽子、中性子、さらに比較的エネルギーが高いものはX線やガンマ線を伴う。これらの粒子は、太陽の活動が原因のため、地球の電離層を通過して地球上に降り注ぐ。この現象は、宇宙線と呼ばれる。

宇宙線を調べることは、それぞれの原因を知ることに繋がる。これについて、宇宙線を生成している星の周囲の現象を理解することも重要です。星の周りには磁場が存在し、その磁場を調査することは、磁場が生成されている星の現象を理解するためです。したがって、宇宙線を探ることは、宇宙の将来を理解するための重要な手段となります。
What’s a Cosmic Ray?

Cosmic rays are nuclei and elementary particles that are always falling very fast on Earth from the universe. Enormous numbers of cosmic rays are always passing through our bodies. Cosmic rays were discovered by Victor Hess, an Austrian physicist, in 1912. He went up to a high-altitude of 4000 m by a balloon, and found that the ionization rate of the atmosphere increases at the higher altitudes due to cosmic rays. After that, cosmic rays have been extensively and progressively studied, and mysteries in the Universe and the Nature are being revealed.

Cosmic rays come from the neighborhood of Earth and also from far galaxies. Galactic and extra-galactic cosmic-rays are considered to be accelerated at dynamical astrophysical objects, such as supernova remnants, neutron stars, and active galactic nuclei. After far-reaching long traveling, they plunge into the atmosphere and cause nuclear interactions with nuclei of oxygen and nitrogen in the air.

The extraterrestrial cosmic rays that come from outside Earth are conventionally called primary cosmic rays, and newly produced particles via the nuclear reactions are called secondary cosmic rays. The main components of secondary cosmic rays are muons, neutrinos, electrons, gamma-rays and neutrinos. While electrons and gamma-rays are absorbed into the air, muons and neutrinos can be observed even under the ground.

Why do we study cosmic rays? It is a lot of information, for instance on the origin of the forces working between substances and on the structure of the universe, hidden there. The former Minister of Education, Akito Arima, gave the following words to the Kamikawa group of this institute, “The cosmic-ray is a heavenly revelation.” There words show the essence of cosmic-rays. Cosmic-rays are exactly signs sent from the heaven, in which information on a wide range of problems from the micro-world connected with the rest of substance to the macro-world of the universe are packed.

In the histories of elementary particle physics and astrophysics, studies of cosmic-rays have had significant impact. Elementary particle physics, itself, was born from observations of cosmic-rays. Positrons, which are the antiparticles of the electron, the muon and the pion were discovered in cosmic-ray observations from the 1930’s to the 1940’s. Cosmic-rays provide natural experimental facilities beyond the human-made ones, thanks to the flux and/or high-energy in the past, and it is correct even at present in some cases. The discovery of neutrino-oscillation, which is beyond the standard model in particle physics, is fresh in our memory. Also, recent gamma-ray observations are revealing dynamical aspects of astrophysical objects, such as supernova remnants and active galactic nuclei. Furthermore, the origin of cosmic-rays and the highest energy of cosmic rays are big mysteries in physics.

There are various ways to study cosmic-rays, depending on the object to be investigated. Just as we will go to high mountains or caves even under the sea to hear the voice of the heavens. To investigate the primary cosmic rays directly, we have to go to as high an altitude as possible, by climbing high mountains, launching balloons, etc. When an ultra-high-energy primary cosmic-ray enters the atmosphere, electrons, gamma-rays and muons in the secondary particles fall on a wide area of the surface like a shower. We call such a phenomenon an air shower. To investigate air-showers in a specified way, we sometimes go to a wide basin with clean air. As it is difficult to select neutrinos and high-energy muons in the “background cosmic rays, we go underground, where the background can not reach.

The gravitational waves possibly coming from the universe are included in the research projects. A gravitational wave is a distortion of space, propagating in the universe with the velocity of light, which is caused when a massive object is put into motion. This is one of the problems not verified yet among Einstein’s predictions. To find very small distortions of space, we must maximize the detector sensitivity. Therefore, an experiment must be conducted at a very calm place without trembles or vibrations. By adding the study of gravitational waves, the most uninvestigated elementary particle, the graviton, will be illustrated, and a clarification of the mysteries of substance and universe will be greatly progressed.

The research activities at the Institute for the Cosmic Ray Research cover all of those species of cosmic-rays mentioned so far. This institute, as a unique institute in the world is devoted only to cosmic-rays, allows research to respond to such hopes.
スーパーカミオカグループ
Super-Kamiokande Group

研究目的と装置

スーパーカミオカグループは、福島県田村町の期間外施設から平成20年9月に実験を開始しました。実験の目的は、大気中で大規模に集中的に発生する高エネルギー粒子の性質を研究することです。新技術の開発を行い、研究者がより効率的に実験を行うことが必要です。

実験装置は、水素を含む水素球を用いた装置です。水素粒子は、光を吸収して原子を生成し、そのエネルギーを放射するために発生します。スーパーカミオカ装置は、これらの水素粒子を検出するために使用されます。

実験装置は、さまざまな要因を考慮して設計されています。例えば、装置のビーム径は、300メートルであることが求められています。また、ビームの強度は、10^{19}粒子/秒であり、これを実現するための技術が必要です。

スーパーカミオカグループは、これまでに数々の業績を上げています。特に、大気中で発生する高エネルギー粒子の性質を研究するための装置を設計し、実験を進めてきました。今後も、さらにこの研究を推進し、地球科学の分野での進歩を期待しています。
T2K実験

T2K Experiment

T2K実験

T2K実験

T2K実験

T2K実験

T2K実験

T2K実験

T2K実験

T2K実験

The T2K experiment established the method of the accelerator-based long baseline neutrino oscillation experiment and successfully confirmed the neutrino oscillation phenomena. Moreover, several experiments have measured 2 out of 3 neutrino mixing angles and 2 mass differences using accelerator, atmospheric, solar and reactor neutrinos. However, only one mixing angle, θ13, has not been measured and only has been bound to be small. The experimental sensitivity of θ13 measurement is still limited by statistics and there is a chance to measure the value with much more intense neutrino beam. Furthermore, θ13 is large enough, it may be possible to search for the CP violation in the leptonic sector and to measure the CP phase δ, which is one of the last parameters of the neutrino oscillation. Therefore, several next-generation experiments, which utilize high intensity neutrino beams, have been planned for the further investigation of the neutrino oscillations. The Tokai to Kamioka long baseline neutrino oscillation experiment (T2K) is one of the new generation experiments.

The intense neutrino beam is produced by using a new high intensity proton synchrotron accelerator at the J-PARC site in Tokai village. As a far detector to study neutrino oscillation phenomena, the T2K experiment utilizes Super-Kamiokande(SK), which is located at 250 km from the beam production target.

In designing the neutrino beam line for T2K, the concept of off-axis beam (Long Baseline Neutrino Oscillation Experiment BNL E989 proposal, 1999) is introduced. With this method, it is possible to produce low energy neutrino beam with narrow energy spread efficiently from the high energy proton beam. Also, it is possible to tune the peak energy by changing the direction of the beam direction. Based on this concept, the direction of the neutrino beam is intentionally shifted from the direction of the SK detector by a few degrees and also the direction of the beam is selectable. The initial peak position of the neutrino beam energy is adjusted to ~660MeV by setting the off-axis angle to ~25° to maximize the neutrino oscillation effects at the SK detector. The generated neutrino beam is primarily νμ with a small contamination of νe, which is estimated to be ~4% at the flux peak.

The T2K neutrino beam is expected to be almost two orders of magnitude more intense compared to the K2K neutrino beam.

As described, one of the main motivations of this experiment is to measure the neutrino oscillation parameter θ13, which is only known to be small (sin22θ13 = 0.1) by the previous experiments. It is of great interest to know the value of the remaining θ13 or how close to zero θ13 is. The T2K experiment tries to measure θ13 using the electron neutrino appearance channel and there is a possibility to be the first experiment to observe the neutrino oscillation signature with the appearance channel.

Figure 1 shows T2K’s expected sensitivity to θ13 as a function of δ23. The shaded region is the excluded region by the CHOOZ experiment. As shown in this figure, the T2K experiment has more than one order of magnitude better sensitivity compared to the current best limit.

Another major purpose of this experiment is precise measurements of θ13 and δ23. Owing to the high statistics, the precision of these parameters are expected to be almost one order of magnitude better than before.

So far, sin223θ13 is known to be very large and consistent with unity from the SK, K2K and the MINOS experiments. If sin223θ13 = 1, it may suggest an underlying new symmetry.

The construction of the beamline facility for the T2K experiment was completed and the commissioning run has been started in April 2009. The neutrino detectors at the Tskai site are in preparation and it will be ready in winter 2009. The electronics and DAQ system of SK detectors has been replaced in 2008 and ready for the beam and the physics run is expected to start in the winter of 2009.
研究目的と装置

●XMASS（エックスマス）グループは、低エネルギー太陽ニュートリノ、暗黒物探査、核融合実験に力を入れる研究グループです。

●研究動向
 1. XMASSグループの観察対象は、低エネルギー太陽ニュートリノ、暗黒物探査、核融合実験に力を入れる研究グループです。

研究の現況

- XMASSグループの観察対象は、低エネルギー太陽ニュートリノ、暗黒物探査、核融合実験に力を入れる研究グループです。
- このプロジェクトは、現在のところは一部の実験グループに留まっていますが、今後ますますの実現に向けて努力を続けています。
- これらの研究の目的は、現在のところは一部の実験グループに留まっていますが、今後ますますの実現に向けて努力を続けています。
- これらの研究の目的は、現在のところは一部の実験グループに留まっていますが、今後ますますの実現に向けて努力を続けています。

Fig. 1 XMASSグループの観察対象は、低エネルギー太陽ニュートリノ、暗黒物探査、核融合実験に力を入れる研究グループです。

XMASS Experiment

The goals for XMASS project are to detect low energy solar neutron, dark matter particle and neutrino less double beta decay. XMASS derives from

- XMASS detector for Weakly Interacting Massive Particles (WIMP) is being developed.
- The best detection limit was achieved by using a liquid xenon (Xe) detector in the LXe experiment.
- The neutrinoless double beta decay is detected by using a liquid xenon (Xe) detector in the LXe experiment.

The advantages to use LXe detector are follows: 1. high light yield, 2. scalability of the size up to tens of mass and 3. easy purification of the radiator to reduce the internal background by using several methods in the different phases of xenon. Especially, there is no problem of background due to the like in the organic scintillator. These advantages lead to capability of the detection of low energy solar neutrino from pp/Be chains. The 1ton LXe detector has 10 events/day from pppchain and 5 events/day from Be. This high statistic of solar neutrino events enables us to do an accurate measurement of the mixing angle. And LXe detector can be used for the direct solar neutrino search, for example. 1ton LXe will achieve one order of magnitude better sensitivity than the current experiments and can explore deep inside the solar neutrinomass parameter region.
カンガルーグループ
Cangaroo Group

研究目的と装置

●体外からの発生する超高エネルギーガンマ線（エネルギー10^{19} eV程度）の観測を試みる。これにより、宇宙のエネルギー頂点が明らかになることが期待される。ガンマ線は、我々が観測できる唯一の宇宙線である。

研究の現況

●イオノスケールメートルのマツシコンを用いた望遠鏡の開発が進行中である。このシステムは、超新星発生の瞬間にガンマ線を観測することを目指している。

●超新星の確認に向けた超高エネルギーガンマ線の観測

研究の現況に向けた超高エネルギーガンマ線の観測

研究の現況に向けた超高エネルギーガンマ線の観測
高エネルギー宇宙線研究部門

AGASA/TAグループ

Akeno Giant Air Shower Array/Telescope Array

研究目的と装置

宇宙から地球に到達した高エネルギーの宇宙線は、大気中の原子核と衝突して多数の二次粒子を生じ、それがさらに衝突を繰り返すことで、最終的には10^13 eVのエネルギーよりも高いエネルギーを持つ原子核を生成する。この宇宙線の研究は、宇宙多様性の理解を深め、宇宙の物理的特性を理解するための重要な手がかりを提供する。

AGASA/TAグループの研究目的は、高エネルギー宇宙線の起源を解明することである。

AGASA/TAグループは、宇宙線が地球を通過する際に発生する高エネルギー宇宙線の観測を行い、その影響を解明するための観測を進めている。この観測は、粒子加速機器の評価と、宇宙線の起源を解明するための重要な手がかりを提供する。

研究の現況

AGASA/TAグループの観測は、大気中の原子核と宇宙線の衝突を観測することで、高エネルギー宇宙線の起源を解明するための重要な手がかりを提供する。

研究の成果は、宇宙線の起源を解明するための重要な手がかりを提供する。

AGASA/TAグループは、宇宙線の研究に携わる研究者グループであり、宇宙線の研究に携わる研究者グループである。

AGASA/TAグループは、宇宙線の研究に携わる研究者グループであり、宇宙線の研究に携わる研究者グループである。

AGASA/TAグループは、宇宙線の研究に携わる研究者グループであり、宇宙線の研究に携わる研究者グループである。
研究目的と装置

高エネルギー宇宙線研究部門

AGASA/TAグループ
Akeno Giant Air Shower Array/Telescope Array

宇宙から地球に到達した高エネルギーの宇宙線は、大気中の原子核と衝突して多数の二次粒子を生じ、それがさらに原子核と衝突して多数の二次粒子を生じ、これが再び原子核と衝突してさらに多数の二次粒子を生じ、というように無数に多くの二次粒子が生じ、宇宙線のエネルギーが増幅されていく過程を示している。これは高エネルギー宇宙線の起源を解明することになる。

AGASAは、放射性核が崩壊すると光を発する特殊なプラスチック・シンチレーターでできる装置で、観測データを取り、決定することに成功しました。山形大学や兵庫県立近大の高エネルギー宇宙線の研究に寄与することができます。宇宙線の検出に有効な放射性核は100万方と進歩しています。

AGASA/TAは、宇宙線エネルギーの研究を進めるために、新しく開発された観測装置であるAGASA/TAを用いて研究を進めてきた。AGASA/TAは、大気中にエネルギーを持つ電子と宇宙線を観測するための装置で、宇宙線のエネルギーを精度よく測定することができる。この観測装置は、地球の大気圏を通過して地球外の宇宙線を観測することができる。

研究の現況

高エネルギー宇宙線の観測を解明するため、平成21年度に、新たな観測装置AGASA/TA Telescope Array（TA）による観測が始まりました。TAはAGASAの約10倍の規模を有し、大気中の原子核と衝突して多数の二次粒子を生じ、これを通過してエネルギーを測定することができる。

宇宙線のエネルギーを測定するためには、大気中の不純物による影響を最小限に抑えることが重要です。AGASA/TAは、大気中の不純物が少ない地区で観測を行い、エネルギーを正確に測定することができるように工夫されています。

AGASA/TA Telescope Arrayは、大気中的不純物による影響を最小限に抑えることを追求している。層雲を通過してエネルギーを測定することができる。層雲の通過によるエネルギーの測定精度が向上し、宇宙線のエネルギーを測定することができる。

AGASA/TAの観測データは、宇宙線のエネルギー分布を解明し、宇宙線の起源を解明することができる。AGASA/TAの観測データは、宇宙線のエネルギーを測定することができる。AGASA/TAの観測データは、宇宙線のエネルギーを測定することができる。

AGASA/TA Telescope Arrayは、大気中の不純物による影響を最小限に抑えることを追求している。層雲を通過してエネルギーを測定することができる。層雲の通過によるエネルギーの測定精度が向上し、宇宙線のエネルギーを測定することができる。
チベットグループ
The Tibet AS - γ Collaboration

図略名と装置

チベットグループ

研究の現状

チベットグループは、チベットのAS - γ計測を進めてきている。

チベットグループ

チベッ
宇宙から地球に迫るガナメラ、焼け、ニュートリノなどの超新星バーストは、我々が人間として生きる世界に重大な影響を与えている。Ashra（All-sky Survey High Resolution Air-shower detector）は、この現象を観測し、科学的に理解することを目的に開発された装置である。Ashraは宇宙線観測で、特に高エネルギーニュートリノを観測する目的で開発された。

Ashra観測では、極南極のマウナケアに設置された約160ミリボールの120メートル立方体のレシーバーが使用されている。観測は、全夜間実施されている。

一方で、宇宙線は、我々の生活に直結する重要な資源であり、特にエネルギーの高エネルギー側については、観測技術の開発が不可欠である。今後も、宇宙線観測技術の進歩に期待している。

宇宙線の観測は、天体物理学の分野において重要な役割を果たしており、我々の日常で目にする自然現象の一部である。宇宙線は、太陽から地球に到達する間で、様々なエネルギーを含んでいる。

宇宙線の観測は、我々の生活に直結する重要な資源であり、特にエネルギーの高エネルギー側については、観測技術の進歩が不可欠である。今後も、宇宙線観測技術の進歩に期待している。

宇宙線の観測は、天体物理学の分野において重要な役割を果たしており、我々の日常で目にする自然現象の一部である。宇宙線は、太陽から地球に到達する間で、様々なエネルギーを含んでいる。
宇宙基礎物理研究所

重力波グループ

Gravitational Wave Group

研究目的

・アイシュタインの一般相対性理論によれば、質量を持つ物体の間の空間は歪んでおり、物体が運動するとその歪みが重力の波として伝わります。これが重力波です。重力波の検出は大変な意味を持っています。例えば、超新星発現やブラックホール形成などの強い重力場での一般相対性理論の検証は、唯一重力波によってのみ可能です。また、可視光、電磁波、ニュートリノと流れてきた宇宙線をはじめとする宇宙重力波が加われば、今度は観測不可能であった星の宇宙の情報が得られる可能性が出ています。しかし、重力波は検出が極めて難しく、間欠的しか見つかっていません。重力波の研究目的は、重力波を直接検出し、重力波を用いる宇宙学を開始することです。

・重力波は、二つの物質の距離が重力波によって変化することを利用して検出します。その変化は、地球間隔の距離が素子を示すある値、小さいものです。測定にはレーザー光による干渉計を用います。光を直流する2本の光に分け、遅れを求めて、それを求める電流、を測定することで、重力波を検出することが可能となります。浮動する物体が重力波を発生すると、その物体の位置が変化し、これにより、干渉計の読みが変化します。その変化は、重力波の波長を示すと、これは、重力波を検出するのに非常に重要です。

研究の現況

・私達は国立文教省と共同で完成した光路300メートルの干渉計（TA MA）を用いた観測で、3000時間以上を越えるデータを取得し、観測技術とデータ解析技術の経験を積み重ねました。

・私達は、重力波の観測を可能にするための技術開発のための基礎研究を行っています。重力波は、天体が、ひっくるまった形の天体状態が発することがないため、観測することが難しいです。しかし、観測することが可能になると、重力波の研究は大いに進化します。

・重力波の観測については、研究者数が増えてきています。重力波の観測は、月の回転の影響を軽減するため、観測データの解析が重要です。

・重力波の観測は、重力波の宇宙の情報取得に非常に重要です。重力波の観測は、宇宙の情報を取得するための重要な手段です。

Gravity

The gravitational wave group conducts R&D experiments of the large-scale cryogenic gravitational wave telescope (LCGT) project for the detection of gravitational waves predicted by Einstein. Nobody has succeeded to detect a wave form in real time so far. This type of detection has become one of the possible tests to prove Einstein’s theory of relativity. The gravitational wave telescope will be used in the future as a tool for observing the dynamic behavior of compact stars, such as neutron stars and black holes.

A gravitational wave should cause a relative change (strain) between two displaced points in proportion to their distance. Even if we take a 3 km baseline length, the effect is so tiny that extensive R&D is needed to detect it. We have developed a 20 m prototype Fabry-Perot interferometer, a 100 m delay-line interferometer, and a 300 m TAMA interferometer in collaboration with researchers of other research organizations in Japan.

Figure 2 shows the achieved sensitivities compared with the target one of LCGT. LCGT is designed to detect at the quantum limit a strain on the order of 5 × 10⁻²⁸ in terms of the metric perturbations at a frequency of around 140 Hz. This would enable the detection of coalescing binary neutron stars of 1.4 solar mass to 290Mpc (signal-to-noise ratio of 8) at its optimum configuration, for which one expects a few events per year, on average. To satisfy this objective, LCGT adopts a power-cycled Fabry-Perot Michelson interferometers with a resonant-sideband extraction scheme, the main mirrors of which are cooled down to cryogenic temperatures, 20 K, for reducing the thermal noise; they are located in a quiet underground site in Kamioka mine.

We have succeeded in operation of a 100 m cryogenic interferometer, CLIO, underground at Kamioka for practical tests of the cryogenic mirrors, which is one of the key technologies of LCGT (in Figure 3).

For detailed reference, please see http://www.ierc.u-tokyo.ac.jp/gr/gr.html
研究目的と装置
SDSS（スローンデジタルスカイサーベイ）グループは、米国・日本・ドイツの大学・研究機関に構成する国際協力研究で、史上最大規模の宇宙研究を作ることを目指しています。装置は、米国アリゾナ州に設置された直径2.5メートルの広視野専用望遠鏡（望遠鏡エリート）の他に、同時に15の天体画像を織る合計14種類のデジタルカメラが使用されており、600本の光ファイバーワイヤを用いた分光調査です。装置は世界最大の望遠鏡です。装置全体が世界最高の分解能を持っています。装置は、天体から観測データを取得し、その位置を明かすことで、天体の位置を特定することができる。同時に、デジタルカメラは、物理情報と、分光観測から天体の赤方寄り（視覚的に相当）と詳細な物理情報が得られます。

SDSSは100万個の観測エリアのデータを収集し、観測エリアの距離を10億光年におよび、迄今にまで観測が繰り返された数の1000倍となります。データ量のみならず精度も10〜20倍のものを目指しており、これにより観測データが、観測データの最も重要かつ精密な部分である、観測者による補正を行った観測データが得られる。これらの厳密な作業が天文学においては天体の位置と距離を精度的に把握するために不可欠です。

SDSSのデータは、その大小により重要性が異なるが、中心のデータは宇宙の大きな構造の精密な決定を可能にし、宇宙学の進展に重要な役割を果たしています。さらに近隣の銀河の形態を詳細に解析、銀河の形態と星系の形成やなびらの発生、星間物質の形成と進化などに寄与する研究として期待されています。

研究の現況
1998年5月のファーストライト、1999年の観測装置の調整を経て、2000年秋より本サーベイを開始した観測は2005年6月に終了しました。
SDSS-IIは、3年の観測期間が2008年7月まで行われました。SDSS IIIではこれまでの観測の改善に加えて、銀河系の中心の星のサーベイと超新星サーベイが行われました。銀河サーベイでは、4.123万平方キロメートルの観測データを37万天体の分光サーベイが、星のサーベイでは星のサーベイで3.240万平方キロメートルの観測データを37万5千個の星の分光データが得られました。超新星サーベイでは、約500個の超新星が観測されました。

SDSSの三次元宇宙地図は銀河の分布の精密な測定を可能にし、それによって、暗黒エネルギーと「何かの」暗黒物質の存在を確認しました。また、赤外観測が5を超えるQSOを多数発見し、宇宙初期のガスの電漿状態がある赤外観測で大きく変化していることを見出しました。その他の、重力レンズや近傍銀河の精度の高い研究も進めています。

SDSS
The Sloan Digital Sky Survey (SDSS) project is undertaking a photometric survey of half the northern sky and a follow-up spectroscopic survey of about one million galaxies and one hundred thousand quasars, while producing a catalogue and a detailed database of those objects. The catalogue and the database far exceed any existing ones in both size and accuracy, giving the potential for revolutionizing many aspects of astrophysical sciences.

The staff members of the ICR/SDSS group were engaged in constructing the observatory and the instruments for 1992-1999, together with American colleagues, and have privilege of advanced use of data from SDSS observations, which are now in a routine mode. The scientific objectives of the ICR/SDSS group are cosmology and related astrophysical phenomena, with prime emphasis on understanding the evolution of the Universe and galaxies; a key phrase would be "quantitative cosmology". The studies obviously not only make much use of the SDSS database (which has turned out to be inexhaustible), but also use other resources, occasionally by conducing observations at the Subaru Telescope, when needed.

A part of our work using SDSS is being carried out in collaboration with American and German SDSS team members.

Original survey (SDSS-I) and three year extension (SDSS-II) have finished July 2008. In the galaxy survey, 8,423 square degrees of sky have been imaged and 375 million objects have been observed spectroscopically. Milky Way survey, which started in SDSS-II, has finished with 3,240 square degrees of imaging and 237 thousand stellar spectra. Supernovae survey, which is also started in SDSS-II, has found about 500 new type Ia supernovae.
研究の現況

理論グループでは、様々な角度から素粒子宇宙に関する理論的研究を行っています。

素粒子の研究では、素粒子に働く力が重力となり、その力には、電磁力、弱い力、強い力、重力の4つがあることがわかりました。このうち電磁力と弱い力とは同じ力であると明示し続けられました。この現象は素粒子の標準模型を呼ばれ、現在まで高い精度で実験的に検証されています。その一方で、この構想は量子論的な不確定性を持つため、何らかの発見が必要であると考えられています。また、いくつかの実験結果もその必要性を示唆しています。その一つがニュートリノ誘導力を見事に予測するニュートリノの質量であり、もう一つが強い力を含む3つの力を統一する大統一理論の予測、すなわち3つの相相互作用の強さが高いエネルギーで一致することです。理論グループでは、標準模型を超える理論の提案の研究、およびその加速器、非加速器実験による検証をそれぞれのようにすばやいのかを研究していきます。中でも、今日多くの研究者が注目されているのが超対称性と呼ばれる時空の概念を変える新しい対称性を持つ構想で、この研究は理論グループの重要なテーマになっています。

理論グループでは、素粒子を超える標準の物理法則を研究する上で、宇宙の初期宇宙に関しては、宇宙の初期宇宙に関
神岡宇宙素粒子研究施設
Kamioka Observatory

研究内容
神岡山里に設置された世紀の最大の水球エンジン推進器でスパーキャリマクと呼ばれる巨大な水球エンジンを用いて、ニュートリノの顕在化に関する研究を行っています。平成19年に実施されたニュートリノ検証実験で、ニュートリノの検出を確認しました。平成18年度に水球エンジンの改修を行い、ニュートリノの検証を再検討しました。

所在地
住所：〒506-1205 長野県飯田市霧野町茂住46
電話：0575-88-2316
FAX：0575-88-2311

環境
・周辺温度：25℃から35℃
・湿度：30%から60%

研究装置
・水球エンジン：直径100m、高さ150m

交通
・飯田駅・上田駅
・飯田バス停
・飯田駅前バス停

アクセス
Tōyama Airport → Bus (40min) → Moroami Bus Stop → Walk (1min)
Tōyama Sta. → Bus (70min) → Moroami Bus Stop → Walk (1min)

Rečent Research
Kamioka Observatory is located in Kamioka Mine, Gunma Prefecture, Japan. The observatory was established in 1995 in order to operate Super-Kamiokande, a 50,000-ton water Cherenkov detector located 1,200 m underground (2700m, w.e.) in the Kamioka Mine. Super-Kamiokande discovered evidence for neutrino oscillations using atmospheric neutrinos in 1998. Also, solar and atmospheric neutrino data were published in 2001 by comparing results of the SNO experiment in Canada. In 2005, neutrino oscillations were confirmed using artificial neutrinos produced by a proton accelerator at KSK. There are also 100 m long laser interferometers in Kamioka Mine that are aiming to study gravitational waves and geophysics. Using the low-background environment in Kamioka Mine, dark matter searches are actively being investigated. An experiment is called XMASS, which is conducted in the section Neutrino and Astroparticle Experiment. Also, Kamioka Mine is used as a test site for the next generation of neutrino detectors. The laboratory is located in the Kamioka Observatory. The laboratory is located in the Kamioka Mine, Gunma Prefecture, Japan. The observatory was established in 1995 in order to operate Super-Kamiokande, a 50,000-ton water Cherenkov detector located 1,200 m underground (2700m, w.e.) in the Kamioka Mine. Super-Kamiokande discovered evidence for neutrino oscillations using atmospheric neutrinos in 1998. Also, solar and atmospheric neutrino data were published in 2001 by comparing results of the SNO experiment in Canada. In 2005, neutrino oscillations were confirmed using artificial neutrinos produced by a proton accelerator at KSK. There are also 100 m long laser interferometers in Kamioka Mine that are aiming to study gravitational waves and geophysics. Using the low-background environment in Kamioka Mine, dark matter searches are actively being prepared. One of the experiments is called XMASS, which is located in the section Neutrino and Astroparticle Experiment. Also, Kamioka Mine is used as a test site for the next generation of neutrino detectors. The laboratory is located in the Kamioka Observatory.
乗鞍観測所 Norikura Observatory

研究内容

乗鞍観測所は、2002年設立の山形大学大分野観測所が2009年に閉鎖され、その後、山形大学が運営を開始しました。乗鞍観測所は、2010年に設立され、現在も運営されています。研究内容は、宇宙射線研究、気象観測、環境観測、気候変動観測、そして宇宙科学観測に分類されます。

所在地
住所：山形県山形市山形観測所
電話番号：0236-35-1234
FAX番号：0236-35-1235

交通
自動車：山形市公式道路からJR山形線乗鞍駅の出口を出ます。JR山形線乗鞍駅から山形観測所へは、山形市交通局のバスを利用し、約30分で山形観測所に着きます。
バス：山形市交通局のバスを利用し、約30分で山形観測所に着きます。

Access
Naritasashi Sta. of JR Chuo Line → Tsui (G15411)

明野観測所 Akeno Observatory

研究内容

明野観測所は、10 m²のスペースを有する極光観測及び宇宙線観測を行っています。観測は、宇宙線の発進及び変動、宇宙線の発生等に関する研究を目的としています。観測者は、主に宇宙線科学の分野で活動しており、明野観測所は、研究活動に必要な環境を提供しています。

所在地
住所：Identity 5259, Akeno-shi, Nagano-shi, Japan
電話番号：0551-23-3001
FAX番号：0551-23-3003

交通
自動車：名古屋市交通局のバスを利用し、約30分で明野観測所に着きます。

Access
Naritasashi Sta. of JR Chuo Line → Tsui (G15411)
チャカルタヤ宇宙物理観測所は、南ショルビア国立サンアンドレス大学物理学院研究の隣接施設で、ラパス市郊外30kmのチャカルタヤ山（南緯16°21'、西経68°08'、標高5300m）頂上付近に設置する世界最高高度の宇宙線観測所として、昭和37年以来、日本・ボリビア共同研究施設として、日本・ブラジル共同実験が行われています。研究者は、空気シャワー観測装置は定期的に更新されているが、観測を続け、立地を生かした高エネルギーガンマ線の研究やエネルギー派生クトルの測定が行われています。観測結果は、エネルギーに対する粒子の多重発生現象の研究として、30年間収集され、『キャンドラス』と呼ばれる珍しい事例を発見しました。その後は、2010年代に「キャンドラス」の研究に次ぐ宇宙線の研究が行われ、観測結果は、空間シャワーの構造の研究や一次宇宙線の組成の研究が行われています。

チャカルタヤ

チャカルタヤ観測所は、ボリビアの首都ラパスの南50kmのチャカルタヤ山頂上に位置する世界最高高度の宇宙線観測所として、昭和37年以来、日本・ボリビア共同研究施設として、日本・ブラジル共同実験が行われています。観測結果は、空気シャワー観測装置は定期的に更新されているが、観測を続け、立地を生かした高エネルギーガンマ線の研究やエネルギー派生クトルの測定が行われています。観測結果は、エネルギーに対する粒子の多重発生現象の研究として、30年間収集され、『キャンドラス』と呼ばれる珍しい事例を発見しました。その後は、2010年代に「キャンドラス」の研究に次ぐ宇宙線の研究が行われ、観測結果は、空間シャワーの構造の研究や一次宇宙線の組成の研究が行われています。
東京大学宇宙線研究所は宇宙線の観測と研究を目的に1956年に設立されました。昭和56年に東京大学大学院理学系研究科宇宙線放射線研究専攻を開設し、宇宙線の研究を開始しました。昭和58年には宇宙線放射線研究専攻を設置し、宇宙線の研究をより一層進める目的で設立されました。

昭和58年には宇宙線放射線研究専攻が設置され、宇宙線の研究がより一層進める目的で設立されました。昭和59年には宇宙線放射線研究専攻が設置され、宇宙線の研究がより一層進める目的で設立されました。昭和59年には宇宙線放射線研究専攻が設置され、宇宙線の研究がより一層進める目的で設立されました。「宇宙線放射線研究専攻」の設立は、東京大学の宇宙線研究の発展を象徴しています。
昭和25年 1950
第4学年大学院において精密測理の講座（水深15m）を教授

昭和25年 1950
Asahi Hall was established. The University of Tokyo (Aug. 1).

昭和32年 1957
宇宙は潮汐観測法による潮汐観測を開始する（8月28日）

昭和32年 1957
The institute was the first in the world to use a seismograph for the observation of tsunamis. (Incident at a seismograph for the observation of tsunamis.)

昭和33年 1958
国民のための情報源になること、ニッポンの“予知”の観測再開する

昭和33年 1958
The national information source becomes available to the public.

昭和34年 1959
国際間の観測協力が促進される

昭和34年 1959
The international cooperation for observation is promoted.

昭和35年 1960
水銀の放射性測定のための放射性測定を開始する

昭和35年 1960
The determination of mercury's radioactivity.

昭和40年 1965
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

昭和40年 1965
Research on radiation and radioactive analysis begins.

昭和41年 1966
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

昭和41年 1966
Research on radiation and radioactive analysis begins.

昭和44年 1969
東京電力が放射性物質を漏洩し、環境汚染の問題が浮上する

昭和44年 1969
Tokyo Electric Power Company leaked radioactive substances, causing environmental pollution.

平成2年 1990
次世代のための新エネルギー・産業資源の研究開発（NEDO、インフラ、エネルギー三本柱の研究開発が開始される

平成2年 1990
Research on new energy and industrial resources begins (NEDO, infrastructure, energy triad research and development).

平成5年 1993
 nationally, to achieve a balance between energy supply and demand.

平成10年 1998
全国的にエネルギーの安定的な供給（NEDO、インフラ、エネルギー三本柱の研究開発が開始される

平成10年 1998
Research on energy supply and demand is balanced nationwide.

平成12年 1990
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成12年 1990
Research on radiation and radioactive analysis begins.

平成13年 1991
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成13年 1991
Research on radiation and radioactive analysis begins.

平成15年 1993
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成15年 1993
Research on radiation and radioactive analysis begins.

平成16年 1994
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成16年 1994
Research on radiation and radioactive analysis begins.

平成17年 1995
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成17年 1995
Research on radiation and radioactive analysis begins.

平成18年 1996
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成18年 1996
Research on radiation and radioactive analysis begins.

平成19年 1997
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成19年 1997
Research on radiation and radioactive analysis begins.

平成20年 1998
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成20年 1998
Research on radiation and radioactive analysis begins.

平成21年 1999
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成21年 1999
Research on radiation and radioactive analysis begins.

平成22年 2000
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成22年 2000
Research on radiation and radioactive analysis begins.

平成23年 2001
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成23年 2001
Research on radiation and radioactive analysis begins.

平成24年 2002
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成24年 2002
Research on radiation and radioactive analysis begins.

平成25年 2003
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成25年 2003
Research on radiation and radioactive analysis begins.

平成26年 2004
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成26年 2004
Research on radiation and radioactive analysis begins.

平成27年 2005
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成27年 2005
Research on radiation and radioactive analysis begins.

平成28年 2006
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成28年 2006
Research on radiation and radioactive analysis begins.

平成29年 2007
原子力エネルギー庁の放射能測定及び放射能分析に関する研究が開始される

平成29年 2007
Research on radiation and radioactive analysis begins.
Administration of ICRR Board of Councilors:
This is a board for discussing the joint use of ICRR, and is summoned to meet upon the director’s request for advice. This board is composed of the director and about 14 members. The member boards are selected from the following personnel: (1) the professors and associate professors of ICRR, en-
urnated by the Chancellor of the University of Tokyo, (2) the Dean of Department of Science and the Director of the Executive Office, The University of Tokyo, (3) the Director of National Astronomical Observatory, the Director of the Institute of Particle and Nuclear Physics, and the director of the Yukawa Institute for Theoretical Physics, Kyoto University and (4) those who have academic careers inside and outside of the university and who were en-
curated and entrusted by the Chancellor of The University of Tokyo.

Faculty council:
This is a board for deliberating important items of ICRR, such as the recommend-
ation of an incoming director to the Chancellor of The University of Tokyo and the appointment of staff members. The council is composed of those who have been full professors or associate professors of ICRR.

Advisory Committee:
This is a committee for drawing up schemes for operating the joint-use fac-
cilities and submitting them to the Faculty council. This committee is composed of about 14 researchers from inside and outside of ICRR (the number of inside researchers is almost equal to those from outside).

User’s Committee:
This committee is for having discussions to facilitate joint-use research and suggesting reporting to the Advisory Committee. This committee is composed of members selected from inside of ICRR, and outside members who have academic careers.
経費・施設

Research Budget・Facilities

<table>
<thead>
<tr>
<th>区分</th>
<th>平成16年度</th>
<th>平成17年度</th>
<th>平成18年度</th>
<th>平成19年度</th>
<th>平成20年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>人工物件</td>
<td>539,000</td>
<td>650,000</td>
<td>546,000</td>
<td>624,000</td>
<td>622,000</td>
</tr>
<tr>
<td>物件費</td>
<td>1,002,000</td>
<td>1,025,000</td>
<td>812,000</td>
<td>1,233,000</td>
<td>1,121,000</td>
</tr>
<tr>
<td>合 計</td>
<td>2,541,000</td>
<td>2,675,000</td>
<td>2,358,000</td>
<td>2,857,000</td>
<td>2,743,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>部門等の共同新設</td>
<td>0</td>
</tr>
<tr>
<td>部門等の共同研究</td>
<td>3</td>
<td>237,364</td>
<td>5</td>
<td>206,303</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>21,730</td>
<td>3</td>
<td>77,180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>訪問学者</td>
<td>2</td>
<td>50,416</td>
<td>3</td>
<td>5,200</td>
<td>2</td>
<td>2,000</td>
<td>0</td>
<td>10,930</td>
<td>1</td>
<td>3,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

科学研究費補助金

Grant-in-aid for Scientific Research

<table>
<thead>
<tr>
<th>研究者名</th>
<th>研究分野</th>
<th>資金額</th>
<th>件数</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>未知</td>
</tr>
</tbody>
</table>

外部資金等

External Funds etc

<table>
<thead>
<tr>
<th>Category</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>未知</td>
</tr>
</tbody>
</table>

共同利用研究・教育/国際交流

Joint-Use Research, Education/International Exchange

<table>
<thead>
<tr>
<th>Category</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
<th>件数</th>
<th>資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>未知</td>
</tr>
</tbody>
</table>
国際会議及び国際研究集会の開催

東京大学宇宙線研究所では、国際会議や国際研究集会をそれぞれ年1回程度開催しています。内外の著名な学者や新しい物理学の先端研究者を招いて最新の研究の紹介を聴く機会をもってもらうセミナー、月1回程度行っています。過去10年間に開催した国際会議及び国際研究集会は、以下のとおりです。

- 日本物理学会 年会「宇宙物理学」研究分野 年会（主催）
 1999年（平成11）3/8 日本物理学会会議（東京）
 2000年（平成12）3/6 日本物理学会会議（東京）
 2001年（平成13）3/5 日本物理学会会議（東京）
 2002年（平成14）3/6 日本物理学会会議（東京）

- ニュートリノ物理学の将来ワークショップ（主催）
 1999年（平成11）3/3 日本物理学会会議（東京）

- 第2回TAMA 東方微変動観測ワークショップ（主催）
 1999年（平成11）10/5 日本物理学会会議（東京）
 2000年（平成12）10/5 日本物理学会会議（東京）

- ダマスカス国际データ交換会（主催）
 2000年（平成12）5/29 日本物理学会会議（東京）

- 宇宙線物理研究所国際シンポジウム
 宇宙線物理学会
 宇宙線物理学会の発表
 2000年（平成12）10/22 日本物理学会会議（東京）

- アジア太平洋地域における科学の発展に関する国際会議（主催）
 2001年（平成13）10/1 日本物理学会会議（東京）

- ニュートリノ物理学の将来ワークショップ
 2000年（平成12）10/5 日本物理学会会議（東京）

- 第3回国際ワークショップ
 2003年（平成15）10/10 日本物理学会会議（東京）

- 第2回宇宙線研究国際会議
 2003年（平成15）10/20 日本物理学会会議（東京）

- 第4回ニュートリノ物理学の将来ワークショップ
 2004年（平成16）10/5 日本物理学会会議（東京）

- 第5回国際ワークショップ
 2005年（平成17）10/1 日本物理学会会議（東京）

- 第6回ニュートリノ物理学の将来ワークショップ
 2006年（平成18）10/5 日本物理学会会議（東京）

- 国際ワークショップ
 2007年（平成19）10/5 日本物理学会会議（東京）

- 国際ワークショップ
 2008年（平成20）10/5 日本物理学会会議（東京）

- 国際ワークショップ
 2009年（平成21）10/5 日本物理学会会議（東京）

International Conferences and International Workshops

ICRR holds international conferences and an international workshop about once a year. ICRR also conducts a monthly seminar in which renowned scholars and promising young researchers are invited, and discuss cutting-edge research. The international conferences and workshops held in the past decade are as follows (last digits show the numbers of participants):

Mar. 2, 1999 Symposium Celebrating the 50th Anniversary of the Science Council of Japan: Future Schemes in the Cosmic Ray Field in Japan, Auditorium of the Science Council of Japan (Tokyo) 120
Mar. 3-4, 1999 Workshop on the Future of Neutrino Physics, Tsukuba Auditorium of KEK (Tokyo) 75
Oct. 19-22, 1999 The 2nd Workshop on TAMA Gravitational Wave Detector (co-hosted), National Institute for Youth Education (Tokyo) 80
Feb. 8-9, 2000 Conference on Atmospheric Neutrino Flux, Tsukuba Auditorium of KEK (Tokyo) 112
Nov. 11-12, 2000 ICR International Symposium: Future of Cosmic Ray Physics, Keio University (Tokyo) 112
Nov. 13-17, 2000 Last Meeting on Gravitational Wave Detector in the Area of Asia-Oceania, Keio University (Tokyo) 112
Dec. 4-5, 2000 International Workshop on Low Energy Neutrino Detection, Tsukuba Conference Hall of the University of Tokyo (Tokyo) 112
Dec. 6-8, 2000 The 3rd International Workshop for Elucidating Neutrino Oscillation and its Origin, Tsukuba Conference Hall of the University of Tokyo (Tokyo) 94
Mar. 22-23, 2001 International Workshop on Highest Energy Cosmic Rays, Keio University of the University of Tokyo (Tokyo) 94
Jul. 13-14, 2001 2nd International Workshop on a Far Detector for the J-PARC Neutrino Beam, Keio University (Tokyo) 61
Oct. 2-5, 2002 Workshop on Next Generation Neutrino Decay and Neutrino Oscillation, Keio University (Tokyo) 102

42

43
柏キャンパス
Kashiwa Campus

論文

東京大学宇宙線研究では、研究所の内容や研究活動状況を広く公開するために、論文以外にも、研究所レポート（本報）、ICRR Annual Report, ICCRR Report, ICCRRニュースを発

論文以外の刊行物

ICRRもまた「宇宙線研究の要覧」を発行しています。ICRR Annual Report, ICCRR Report, ICCRR News, また、学会発表の内容をオンラインで公開しています。

Academic Papers

The outcomes of joint-use research are announced at academic conferences, etc. in Japan and overseas, and are also published as papers via Japanese and foreign academic journals. The plot shows the number of papers authored by ICRR members that were published in refereed journals, ICCRR Reports (in English), and proceedings of international conferences.

所定地

1-27-8532 千葉県柏市柏の里5-1-5

電話：04-7136-xxxx (ダイヤルイン)

交通

柏の里キャンパス駅からバス利用の場合

TX 柏の里キャンパス駅西口1番乗り場から東武バス「柏の里駅前新宿」「江戸川台駅」。「東大前」で下車

柏の里キャンパス駅から徒歩の場合

柏キャンパスは約2.5分

柏駅からバス利用の場合

JR 柏駅西口1番乗り場から東武バスで

柏キャンパス

「国立がんセンター」「江戸川台駅東口」「駅前」約25分

「柏の里駅前」「駅前新宿」約50分

駅近観光所の場合は、「東大前」で下車

入場無料

所在地は、東京都23区内の柏市柏の里5-1-5

アクセス

Kashiwa Campus sta.of Tobu Isesaki Line → Tobu bus for "Kashiwa Park Circular" or "Tobogawa Station," (about 10 min.)

25 min. walk from Kashiwa Campus sta.

Kashiwa sta. of JR Joban Line → Tobu Bus for "National Cancer Center" or "West Exit of Kashiwa Station, (about 10 min.) (The bus service is not frequent.)

5 min. by car from Joban Freeway "Kashiwa Exit"

About 3 min. by car from Route 16 (Entrance of Toyota Industrial Park)

東京大学柏キャンパスマップ

Map of Kashiwa Campus, University of Tokyo

東京大学柏キャンパス

University of Tokyo, Kashiwa Campus

Academic Papers

The outcomes of joint-use research are announced at academic conferences, etc. in Japan and overseas, and are also published as papers via Japanese and foreign academic journals. The plot shows the number of papers authored by ICRR members that were published in refereed journals, ICCRR Reports (in English), and proceedings of international conferences.

学术会議

東京大学宇宙線研究では、研究所の内容や研究活動状況を広く公開するために、論文以外にも、研究所レポート（本報）、ICRR Annual Report, ICCRR Report, ICCRR News, また、学会発表の内容をオンラインで公開しています。

所定地

1-27-8532 千葉県柏市柏の里5-1-5

電話：04-7136-xxxx (ダイヤルイン)

交通

柏の里キャンパス駅からバス利用の場合

TX 柏の里キャンパス駅西口1番乗り場から東武バス「柏の里駅前新宿」「江戸川台駅」。「東大前」で下車

柏の里キャンパス駅から徒歩の場合

柏キャンパスは約2.5分

柏駅からバス利用の場合

JR 柏駅西口1番乗り場から東武バスで

柏キャンパス

「国立がんセンター」「江戸川台駅東口」「駅前」約25分

「柏の里駅前」「駅前新宿」約50分

駅近観光所の場合は、「東大前」で下車

入場無料

所在地は、東京都23区内の柏市柏の里5-1-5

アクセス

Kashiwa Campus sta.of Tobu Isesaki Line → Tobu bus for "Kashiwa Park Circular" or "Tobogawa Station," (about 10 min.)

25 min. walk from Kashiwa Campus sta.

Kashiwa sta. of JR Joban Line → Tobu Bus for "National Cancer Center" or "West Exit of Kashiwa Station, (about 10 min.) (The bus service is not frequent.)

5 min. by car from Joban Freeway "Kashiwa Exit"

About 3 min. by car from Route 16 (Entrance of Toyota Industrial Park)