宇宙線研究所附属乗鞍観測所は今年8月に創立40周年を迎えた。これを記念して9月25日（土）、鈴鹿の乗鞍観光センター（長野県南安曇郡安曇村）で記念式典が行なわれた。式典には吉川総長、佐藤事務局長ら東大関係者、福島清光元安曇村村長ら地元関係者、長年にわたり観測所を利用させてきた共同利用研究者ら約100名が出席され、懇会のうちに終了した。発足当時に観測所で活躍された研究者も多数参加され、連絡所では懐かしさに夜遅く迄話しあいはずんだ。翌日26日（日）には雲一つない快晴のなか観測所の見学も行なわれた。

乗鞍観測所は昭和28年8月1日に全国の大学の共同利用の研究機関として東京大学に付置され、わが国の宇宙線研究の中心として、その発展に多大の貢献をしてきた。昭和51年、観測所の拡充改築により宇宙線研究所が発足すると同時に、乗鞍観測所はその附属施設となり、現在に至っている。厳しい環境の中今日まで大きな事故もなく、無事に維持運営できたのは、もちろん観測所職員や共同利用研究者の日頃の注意と努力によるが、これも地元関係者、コロナ観測所職員、その他多くの方々の暖かい支援と協力があってのことである。この紙面を借りて感謝申し上げます。

（乗鞍観測所長 渡田利典）
乗鞍観測所40周年に際して

神奈川大学長 三宅 三郎
（元宇宙線研究所所長）

大阪市大のグループは、この旧施設一
部を改築して、昭和
25年から実験を開始し、理研・名大・神
大のグループは、翌
年から、朝日新聞社
寄贈の朝日小屋で
実験を始めた。この
頃の実験は、道路は
悪く、山では生活諸
般のことは勿論、発電、実験と忙しく、暖房も石炭
を燃やすグループのストーブで、研究条件は頑る悪
かったが、皆若さに任せて克服していたのである。
また、実験の期間も、夏期のみに限っていた。

学術講演の原価特別委員会は、理論と原子核と
宇宙線で構成されていたが、各分野の研究推進のた
めに、共同利用研究所の横田を打っ出した。宇宙線研
究者は大きな大学に拠点を持たず、謂わば、弱小グ
ループの集合体なので、特に、乗鞍のような高山観
測所には最も適した制度であろうということになり、
昭和28年、京大の基礎物理研究所と共に、共同利
用研究所として、東大附設の宇宙線研究所が設置さ
れることとなった。また、この運命を支える下部組
織として、宇宙線研究所会議CRCが発足したのであ
がら、これには素粒子論グループの進歩的な意見が
多く取り入れられ、理論家も相当数参加していたので
ある。

新設された本邦最初の共同利用研は、その後幾
分増設されていながらも、現在の観測所の主屋の部分で、
大小2基の電磁石を備えた実験室や、発電、暖房設
備、食堂、寛容など、技術者やその他の職員を含め、
当時は人手が奇に豊かで、山上での実験は一
気に盛り上がり、一年を通じて研究が行われた。

しかし、問題がない訳ではなかった。冬期の積雪
中の登山や、無線通信連絡などは、その後の雪上車
や電話で改良されたが、内部に研究者のいない研究
所なので、運営委員会の約半数を占める他大学の委
員と、附属大学の大学自治の問題、施設・設備・研

朝日小屋一般初の観測所（昭25）
一次宇宙線の研究は依然として盛んであったが、
二次宇宙線の研究はエネルギー領域を百万倍程上げ
た空気シャワーの観測へと推移して行ったのである。
この頃、原子核研究所が設立され、地上での空気シャ
ワーの観測が始まり、エマルジョンを鉄板と乾板を
穂重ねた大面積チャンバー型へ、すべて大巾なエネ
ルギーアップの方向へ行った。

そして、再び観測所は多くの人達によって賑わっ
た。空気シャワー検出用のシンチレーター群が室戸
ケ原に点々と配置され、室内には大型蛻箱や、大面
積の放電箱も設置された。1次宇宙線観測装置の拡
大と相まって、第2の隆盛期を迎えたのである。

空気シャワー現象の全貌が明確に判明になった頃、
加速器はコライダー型になって、エネルギーもPeV
領域に入って来た。何事も直接測定の方が信頼に立
つ実験では、再びエネルギー領域を上げるか、宇宙
線特有の宇宙の問題や、発生源や一次線の種類など
への研究目的の転換が計られ、必ずしも高層でなく
とも良い実験もあるので山上での実験は減少したよ
うである。

現在の乗鞍観測所全景（標高2770m）
この間、昭和51年には、名称を宇宙線研究所に変更し、本部を東京田無に置き乗鞍観測所はその附属施設となり、その後の明野観測所や神岡観測所などを加え、7部の研究部門でできて全体としては宇宙線研究所は大きく発展した。

以上に筆者が乗鞍観測所の40年を顧みた概要であるが、研究結果については、記憶が定かでない点もあるので、不公正にならない様に省略した。興味のある方は原論文を見られたい。しかし、筆者の乗鞍についての鮮明な記憶は、ここに書いたようなものよりも、寧ろ、初期の登下山や、雑中行進や、地元の人との交際など、特に安佐村村長の福島さんに大変お世話になった。また、コロナ観測所の人達とも親交を深めた。だが、個人的な感傷は胸中に秘めておく方が良いようだ。

国際会議報告

第23回宇宙線国際会議
(1993年7月16日～30日)

1993年7月16日から30日までカナダのカルガリーで開催された。会議は「1. 宇宙線の起源」、「2. 高エネルギー現象」、「3. 太陽及び太陽周現象」の3つのセッションが平行しておこなわれたが、以下はセッション1「宇宙線の起源」の一部、超高エネルギーガンマ線と粒子線についての報告である。

1. 超高エネルギーガンマ線の観測

木舟正

望遠観音という言葉があって巨視的にみるという意味だろう。超高エネルギーガンマ線の現象を手短かに誤りなく報告するのは容易ではない。しかし、風にゆらぐ本一本の木のような本が読むことができるようになる。宇宙線のスペクトル、組成のセッショ－ではRapporateur Talkが従来TeVを境にして二つに分かれてきたが、PeVで区切られた。この変更の直接の理由は知らないが、飛殻体による直接測定がTeVを越えてPeVに迫っている現実を反映しているのだろう。超高エネルギーガンマ線の観測も似たような曲里角に立っている。

100TeVから数100TeV以上のエネルギー領域において、CASAアレイなど空気シャワーブレーカを利用して観測からはCrab、Cyg X-3やその他の天体からの信号の高さは報告されていなかった。GeV程度以下のガンマ線は明るくない天体、X線源などが超高エネルギー領域で意外に強いガンマ線を発生しているかも知れないという1980年代の期待は、すぐなくとも現在の測定感度内では、非常に見込みが薄い状況となっている。しかし、各グループは過去のヒステリシスを背負って観測を続けているので、相変わらず多数にわたる天体についての観測が報告されている。状況が一見非常に不透明である一因となっている。

しかしながら全体としての傾向は、GeVの領域で知られているガンマ線源“EGRET天体”について興味が絞られる方向に今後ますます傾斜していくであろう。そのような天体の代表的な例がガンマ線パルス

\[\Phi = \frac{3.7 \times 10^{-15}}{E/5} \] \[\Phi = 2 \times 10^{-14} \]

Whippleの新しいスペクトル

ガンマ線エネルギー（eV）

Crabからのガンマ線エネルギースペクトル

- 4 -
サーである。WhippleグループがCrabについての解
析結果を変更し、今までより弱くスペクトルより急に
なってしまった。図はこの様子を示すCrabからのガ
ンマ線のエネルギースペクトルである。高いほうが
古いスペクトルで、フランスのデータがこれと一致
していて、すなわちの上限値がその延長上にある。低
い方の直線と斜線で示した領域がWhippleの新しい
強度であり、結果で示されるわれたCANGAROO
のデータは約6TeVのところでむろしこの新しい
スペクトルに良くあっている。Whippleの新しいガ
ンマ線強度が正しくとると10TeVから100TeV以
上の高エネルギー領域での検出はさらに悲観的にな
った。Gemingaからのパルス成分については、ダ
ラム、タタ研究所、EASTOPなどのグループが周期
解析に基づいた信号を示唆する結果を提出した。さ
し、Whippleの“DC Excess”の観測結果はこれ
らのパルス成分の強度を下回っている。 Crab程度の
強度の信号検出の見通しは悲観的である。昨年
EGRETにより発見された新しいガンマ線パルサー
PSR1706-44についてCANGAROOグループが肯定
的な結果を報告した。

約60個程度以上の銀河系内点源がEGRETで検出
されているようだ。また、既に発表されている20余
個の活動銀河Blazar以外に、高銀河領域の定められ
ていないガンマ線源や、銀河の南極のまわりのガン
マ線源など、Blazarとは異なった種類の銀河系外ガ
ンマ線天体が存在しているらしい。数百GeV以上の
領域ではMarkarian 421以外の天体から超高エネルギー
ガンマ線は検出されていない。しかし、観測時
間や天体までの距離などを考慮してみるとまだ探索
が不十分であることが分かる。

従来までの宇宙線研究に最も強く関係しているの
は、超新星残骸やその近傍で加速された陽子が巨大
分子雲との衝突で放出するガンマ線の検出である。加
速領域の陽子は“逃げ出し”の因子をスペクトル
に含まないと考えられるから、ガンマ線も硬いエネ
ルギースペクトルを持っている公算が高い。
EGRETのガンマ線源がこのような天体を多く含ん
dっているだろうことはγOphieicusの例から考えても
非常にもっともらしい。CASAやCANGAROOの予
備的な話し、HEGRAの計画の話しはあったが本格
的な探求はこれからである。

これらの数多い観測対象のうち、どの天体が1
TeV領域にまで延びるガンマ線を放出しているか、
天体をどのように選択するか、今後のチェレンコフ
望遠鏡の観測計画の立年に各グループのここから
の楽しみである。

多くの解釈型チェレンコフ望遠鏡が最近建設され
た。一方、WhippleのCrabの新しいスペクトル、そ
の理由となった解析方法の変更はチェレンコフ像
の解析方法が単純ではないことを意味している。
Gemingaについても相同の方向の夜光の跡がCrabより
強く、この効果をいかに修正するかについて検討中
であるようだ。これらの点を克服するために、光電
子増倍管カメラの分解能の良さが重要であることは
自明であろう。最近、いくつか建設された解釈型チェ
レンコフ望遠鏡の中で、結果を提出したのはCANGAROO
グループのみであったことは、われわれが高分解能のカメラを使用していることに決して無縁
ではない証である。会議に先立つワークショップで
は大口径望遠鏡と高分解能カメラによる100GeVガ
ンマ線の観測の実現が議論された。

（空気シャワー部）

手島 政広

2. 空気シャワー領域宇宙線

今回の宇宙線国際会議で最も重要な物理成果は、
Fly’s Eyeの化学組成の研究とJACEEのエネルギ
ースペクトルであろう。また、トピックスとしてFly’s
Eyeの最高エネルギー宇宙線の報告が話題をさらっ
た。

ユカ大のFly’s Eyeグループは、観測された空気
シャワーのシャワー最大発達の大気深さX_max分布
から、宇宙線化学組成について重要な結果を見を

— 5 —
子核は大きなX_{max}をしめるので、X_{max}の平均値は平均化学組成を示すことになる。図に示されるように、データはエネルギーと伴に宇宙線の化学組成が重い原子核から軽い原子核に遷移していることを示している。

彼らによるもう一つの重要な報告は、$3 \times 10^{19} \text{eV}$という最高エネルギーの宇宙線がFly's Eye Iにより観測されたことである。このエネルギーは宇宙背景放射と相互作用による宇宙線エネルギースペクトルのカットオフの位置を越えている。このイベントを真面前に解釈しようとする重大な困難が生ずる。つまり、宇宙背景放射との相互作用により$3 \times 10^{19} \text{eV}$の宇宙線は30Mpc以遠からは飛来できない。さらに、このようなエネルギーの宇宙線は銀河磁場および銀河間空間の磁場によってほどよく曲げられるものではなく飛来するはずである。このイベントの到達方向の周囲は10°で実験で30Mpcの領域に我々は宇宙線源を見出せばよい。しかし、答えはNOである。このイベントの到達方向はanti galactic centerの方向を含んでおり、さほど立派な天体は存在しない。

ロシアのYakutskグループも非常にエネルギーの高い空気シャワーイベントを観測しており、そのイベントの推定エネルギーは$2 \times 10^{19} \text{eV}$～$10^{21} \text{eV}$である。エネルギーの不確定性はシャワー中のミューロンが異常に多く、電子成分からエネルギーを推定するかミューボンからエネルギーを推定するかによる。面白いことに、今まで知られている宇宙線でも最もエネルギーの高いこの二つのイベントの到達方向は10°しか離れていない。この開き角は、シャワー到達方向の決定精度の範囲内であり、同一の源からこれらのイベントが到達したと考えても矛盾はない。このようなことが偶然に起ころう確率は10^{-2}である。

最高エネルギー領域の宇宙線エネルギースペクトルについては、AGASA、Fly’s Eye、Yakutsk、Haverah Parkとほぼ一致を示しており、エネルギースケールをそれぞれ10％～30％の範囲内で動かせば、非常に良い一致を示す。3°から宇宙背景放射との相互作用によりカットオフはそれぞれのグループでは統計的に十分な結果を得ていないが、すべてのグループの結果を足しあわせると、10^{19}eV以上の宇宙線として期待されるイベント数は22であるが、実際に観測されているのは7イベントしか存在しない。カットオフの存在を示唆している。

AGASA、Fly’s Eye、Yakutsk、Haverah Parkの各グループのデータは最高エネルギー領域の宇宙線の到達方向は非常に等方的であり、10^{17}eV～10^{18}eV領域で統計的に有意な異方性は観測されていない。R. ClayおよびM. Giliorらのsimulation計算と比較すると、宇宙線陽子が我々の銀河内で生成され広られますとするとモデルに立ったとき期待される異方性的強度より小さな上限値が与えられており、銀河内起源の陽子が主な成分であるとするモデルと矛盾する。10^{17}eV～10^{19}eVでは重い原子核が主成分であるのか、又は我々が想像しているよりも銀河磁場がかなり拡がっている領域まで存在するかもしれない。

knee領域に関する研究も多く発表された。最も注目を集めたのはJACEEの化学組成別のエネルギースペクトルである。彼らの結果は10^{16}eV以上の領域で、陽子のスペクトルが急激に落ち込み、重い原子核のスペクトルがフラットになっており、宇宙線の平均質量が10^{17}eV以上で急激に重くなっていることを示している。ロシアのパルーン実験もJACEEの陽子のエネルギースペクトルを良く再現する結果を報告していた。

EAS-TOPおよびMACROのコインシデンスイベントを使っての解析では、μモーダル（マオモーグル）によるミューロンマルチプレシディーの
測定から化学組成がknee領域で軽くなるとするモデルが良い一致を示すことをPhys. Rev.に発表していたが、今回はS.M.によるミューオンマルチプルシティーの分布を示し、既に発表している結果を確認した（やはり軽い化学組成が期待される）。

BASJEグループによる空気シャワーレーティングの発表のカーブからJACEEが得ている化学組成の外振と矛盾しない結果（徐々に重くなってゆく平均化学組成）が得ている。この化学組成は仮定し、knee領域でのエネルギースペクトルを発表した。

JACEEの結果が示しているように10^4 eV〜10^5 eVで重い宇宙線が主になり、新しい宇宙線コンポネットが顕著に示しているとすると非常に興味深いことである。またFly's Eyeの結果が示しているように10^9 eV〜10^10 eV領域で重い宇宙線が主であるとすると、二つの観測結果は相補的にみられるがそれぞれが観測しているものが同一の起源であると考えるのは、早とちりであるだろう。さらに、10^9 eV以上では5個のコンポネットである銀河系外の成分が主体になっていることを多くのデータは示唆している。これらの結果が正しければ、宇宙線研究の大きな進歩であるといえよう。今後これらの結果の証拠が得られれば、

（空気シャワー部）

最高エネルギー領域宇宙線観測技術ワークショップ

(1993年9月27日〜30日)

永野元彦

9月27日から30日まで、原子核研究所講堂にて上記テーマの国際ワークショップを宇宙線研究所主催で開催した。このワークショップは昨年4月にパリ、本年1月に隠のアデレード、8月にカナダのカナダリーと開催され、今回は第4回目である。このワークショップは昨年4月にパリ、本年1月に隠のアデレード、8月にカナダのカナダリーと開催され、今回が第4回目であり外国人17名、日本人50名の参加があり盛況であった。このエネルギー領域の宇宙線観測方法としては、大別して明野のAGASAのように地上に検出器を展開する方式とユーフラのFly's Eyeのように光学的手法による方式がある。アデレードではCronin等が推進している5,000km²の地平アレイ方式が検討されたので、今回是光学的手法による技術的問題点を重点に検討を重ねた。

最初の講演予定者であったCronin氏が急病になったため、多少推薦に変更があったが、幸い病気も一日で回復され、予定のプログラムは全て実施でき、今後の方針についても理解を深めることができた。会議の内容はポリシーミュージックに出版されるので、ここでは2、3の話題を述べる。

これまでの全世界の観測面積を総合すれば、10^4 eVからのエネルギースペクトルの長さからの10^9 eV以上の宇宙線は20例以上期待されるのに、数例しか報告されていないことから、宇宙線のエネルギーユアーチ（Y）とFly's Eye（F）で観測された最高エネルギー宇宙線（〜3×10^8 eV）の到達方向。上図は銀河系を軸から、下図は銀河系からみた模式図。それぞれの方向決定誤差を考慮するとほぼ同方向。
一致し、しかも銀河面に近い。その方向にはめはしい活動的天体が存在せず、銀河面方向は星間得多いため、観測が注目されている。ヤクーツクの座標は1990年のアルガリシコンで初めて公表されたが、一例のものであり、かつ特別な事象なので、あまり注目されなかった。カリーでFly’s Eyeグループが発表した事象で二例となり、改めてヤクーツクの事象にも間心が高まっている。今回この事象の詳細が発表されたが、アルメの中心に落ちた極めて大きな事象であり、かつ天頂角が60°にもかかわらず、観測された粒子の殆どが2 GeV以上のミューオンという特異な事象である。このことは相互作用モデルを下からのエネルギーの延長と仮定すると、親が陽子と考えにくい。このとびは1.6×10^{20} eVの事象は何ものか、数1000kmを超える有効面積を持つ装置の建設は緊急の課題としてもきた。

提案されている宇宙線望遠鏡計画では、「最高エネルギー宇宙線」と、「Sub-GeVガンマ線」の両者の観測を中心課題として検討されてきた。今回この望遠鏡は「PeV領域での化学組成観測」にも有効であることが、Sommersのシミュレーションによって示された。また一次ガンマ線が1000倍以上の類度で存在する一次陽子の中から識別できるなら、「TeV領域での電子の観測」にも有効であることが、西村によることでコメントされた。これらについても今後の勢力的に検討を進める必要があるだろう。

またDawsonは空気シャワーアレイと光学的観測のHybrid Detectorを提出してきたが、その有効性をシミュレーションで示した。空気シャワーアレイのものは、最高エネルギー宇宙線の化学組成解明には不十分であることが、新しくこの研究分野に参加してきた人材にもこれまでのワークショップの積み重ねで理解されたといえる。Hybridに近なもの、それぞれの規模をどうするのが最善か、総額が一定なら光学的観測の規模を大きくする方が得策か、その最適化は次のワークショップの課題となるだろう。

今後は光学的観測の技術的手法についてのワークショップがあり、年にわたり経験を蓄積してきたFly’s Eyeグループからは7名の出席があり、高分解能Fly’s Eye（HiRes）に向けて開発されてきた技術が発表された。一部棉木で得られたデータは極めて印象的であり、1995－96年の完成が待たれる。日本はこの手法については後発であり、学ぶところが多かったが、宇宙線望遠鏡計画は、極めて広いエネルギー領域で、多くの研究課題の解決が期待されるこ
ICRR—Report

(2) ICRR—Report—300—93-12
“Formation of Bioorganic Compounds in Planetary Atmosphere by Cosmic Radiation”
K. Kobayashi, T. Kaneko, T. Saito and T. Oshima

(3) ICRR—Report—301—93-13
“Reheating During Hierarchical Clustering in the Universe Dominated by the Cold Dark Matter”
M. Fukugita and M. Kawasaki

(4) ICRR—Report—302—93-14
“Čerenkov Imaging Telescope for Very High Energy Gamma-Ray Astronomy: The Present 3.8m Telescope of CANGAROO and a Plan of 10m Telescope”

(1) Calibration and Operational Conditions of 3.8m Telescope of CANGAROO

T. Kifune et al.

(2) A Plan of Čerenkov Imaging Telescope of 10m Diameter (Next Stage of CANGAROO 3.8m Telescope)
T. Kifune and T. Tanimori

(5) ICRR—Report—303—93-15
“Supernova Real-Time Monitor System in Kamiokande”
Y. Oyama, M. Yamada, T. Ishida, T. Yamaguchi and H. Yokoyama

(6) ICRR—Report—304—93-16
Y. Totsuka

ICRR—報告

(4) ICRR—報告—108—93-4
“神岡実験推進部 平成4年度共同利用研究成果報告書”

宇宙線研究所共同利用運営委員会委員名簿

<table>
<thead>
<tr>
<th>所属・官職</th>
<th>氏名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京大学宇宙線研究所</td>
<td>休息</td>
<td>荒船 次郎</td>
</tr>
<tr>
<td>東京工業大学理学部</td>
<td>教授</td>
<td>永井 秋樹</td>
</tr>
<tr>
<td>東京大学理学部</td>
<td>教授</td>
<td>佐藤 勝彦</td>
</tr>
<tr>
<td>京都大学理学部</td>
<td>教授</td>
<td>小山 勝一</td>
</tr>
<tr>
<td>甲南大学理学部</td>
<td>教授</td>
<td>山本 隆昭</td>
</tr>
<tr>
<td>高エネルギー物理研究所</td>
<td>教授</td>
<td>高橋 史彦</td>
</tr>
<tr>
<td>理化学研究所</td>
<td>主任研究员</td>
<td>松岡 勝</td>
</tr>
<tr>
<td>宇都宮大学教育学部</td>
<td>教授</td>
<td>太田 周</td>
</tr>
<tr>
<td>名古屋大学太陽地球環境研究所</td>
<td>教授</td>
<td>村木 俊三</td>
</tr>
<tr>
<td>東北大学理学部</td>
<td>教授</td>
<td>古村 太彦</td>
</tr>
<tr>
<td>東京大学宇宙線研究所</td>
<td>助教授</td>
<td>黒田 和明</td>
</tr>
<tr>
<td>東京大学宇宙線研究所</td>
<td>教授</td>
<td>戸塚 洋</td>
</tr>
<tr>
<td>東京大学宇宙線研究所</td>
<td>教授</td>
<td>永野 元彦</td>
</tr>
<tr>
<td>東京大学宇宙線研究所</td>
<td>教授</td>
<td>山越 和雄</td>
</tr>
<tr>
<td>東京大学宇宙線研究所</td>
<td>教授</td>
<td>滝田 利典</td>
</tr>
</tbody>
</table>

任期 5.9.16～7.9.15 〇新任

—9—
公開講演会開催される

宇宙線研究所では、宇宙線研究分野での最近の活動を地域社会に広く紹介することを目的として、10月23日（土）田無キャンパスにおいて、「時を越えた宇宙からのかたちかけ」を主題とする一般講演会を開催した。講演は、西村純平宇宙科学研究所所長、井上一宇宙科学研究所所長、川崎雅裕宇宙線研究所 numberOfRowsInSection"##57890"##57890

宇宙線研究所第二回技術研修会（平成５年度）について

平成５年度の技術研修会は、「宇宙線研究と計測システムⅠ」の課題のもととなる、宇宙線研究所各部で配属されている技術系職員が、宇宙線研究所で実施されている研究について理解を深め、より広い視野で技術的活動の向上に資することを目的としています。技術としては、各研究プロジェクトで進ばれている計測システムを中心に学び、教員、実習、見学を含め以下のプログラムで実施されています。

（技術系職員研修委員会）

<table>
<thead>
<tr>
<th>項目</th>
<th>需要</th>
<th>時間</th>
<th>日程</th>
</tr>
</thead>
<tbody>
<tr>
<td>宇宙の生成と進化</td>
<td>坂内</td>
<td>11/9/21</td>
<td></td>
</tr>
<tr>
<td>星野実験と計測システム</td>
<td>星野</td>
<td>9/10/15</td>
<td></td>
</tr>
<tr>
<td>星野実験と計測</td>
<td>星野</td>
<td>9/11/15</td>
<td></td>
</tr>
<tr>
<td>スーパー宇宙実験と計測システム</td>
<td>宇野</td>
<td>9/12/15</td>
<td></td>
</tr>
<tr>
<td>超高電流ネットワーク（U）</td>
<td>林</td>
<td>9/10/15</td>
<td></td>
</tr>
<tr>
<td>省ファイバーによる電磁場（波長と特性）</td>
<td>高橋</td>
<td>9/11/15</td>
<td></td>
</tr>
<tr>
<td>光ファイバー製作工程現象</td>
<td>佐藤</td>
<td>9/12/15</td>
<td></td>
</tr>
<tr>
<td>DUAMAND実験と計測システム</td>
<td>大橋</td>
<td>9/13/15</td>
<td></td>
</tr>
<tr>
<td>チベットパーキン実験と計測システム</td>
<td>田中</td>
<td>9/13/15</td>
<td></td>
</tr>
</tbody>
</table>

No.19 1994年1月10日

東京大学宇宙線研究所
〒188 東京都千代田区明治プラザ3-2-1
TEL (0434) 69-9592又は69-2150
編集委員 永野、朽田