

宇宙線望遠鏡による 極高エネルギー宇宙線の研究

東大 宇宙線研 得能久生

TA関連 平成26年度共同利用研究採択課題

整理 番号	課題名	研究代表者	合計額 (千円)
F11	宇宙線望遠鏡による極高エネルギー宇宙線の研究	佐川宏行	900
F12	TA地表粒子検出器による雷と関連する特異事象観測	奥田剛司	500
F13	小型電子線形加速器による空気シャワーエネルギーの絶対較正の研究	芝田達伸	700
F14	TA-EUSO64chマルチアノードPMTの較正とCRAYSとの比較	竹田成宏	500
F15	TALE実験用地表検出器の開発と性能試験	荻尾彰一	200
F16	最高エネルギー宇宙線の電波的観測の研究	池田大輔	700
F17	大気分子制動放射マイクロ波の検出と検出器開発	山本常夏	300
F18	TA実験サイトでの超高エネルギー宇宙線観測のための新型検出器の開発	野中敏幸	600
F19	紫外線撮像望遠鏡によるTAサイトでの空気シャワー蛍光光の観測	川崎賀也	400
F31	ARA検出器較正のためのビーム実験	吉田滋	400
計	10課題		5,200

ご支援ありがとうございます

- 宇宙線望遠鏡 (TA) 実験
- 最近の解析結果
 - 到来方向
 - 組成
 - エネルギースペクトル
- TA実験の拡張計画
- 関連観測、R&D
- ・まとめ

The Telescope Array Collaboration

R.U.Abbasi¹, M.Abe¹³, T.Abu-Zayyad¹, M.Allen¹, R.Anderson¹, R.Azuma², E.Barcikowski¹, J.W.Belz¹, D.R.Bergman¹, S.A.Blake¹, R.Cady¹, M.J.Chae³, B.G.Cheon⁴, J.Chiba⁵, M.Chikawa⁶, W.R.Cho⁷, T.Fujii⁸, M.Fukushima^{8,9}, T.Goto¹⁰, W.Hanlon¹, Y.Hayashi¹⁰, N.Hayashida¹¹, K.Hibino¹¹, K.Honda¹², D.Ikeda⁸, N.Inoue¹³, T.Ishii¹², R.Ishimori², H.Ito¹⁴, D.Ivanov¹, C.C.H.Jui¹, K.Kadota¹⁶, F.Kakimoto², O.Kalashev¹⁷, K.Kasahara¹⁸, H.Kawai¹⁹, S.Kawakami¹⁰, S.Kawana¹³, K.Kawata⁸, E.Kido⁸, H.B.Kim⁴, J.H.Kim¹, J.H.Kim²⁵, S.Kitamura², Y.Kitamura², V.Kuzmin¹⁷, Y.J.Kwon⁷, J.Lan¹, S.I.Lim³, J.P.Lundquist¹, K.Machida¹², K.Martens⁹, T.Matsuda²⁰, T.Matsuyama¹⁰, J.N.Matthews¹, M.Minamino¹⁰, K.Mukai¹², I.Myers¹, K.Nagasawa¹³, S.Nagataki¹⁴, T.Nakamura²¹, T.Nonaka⁸, A.Nozato⁶, S.Ogio¹⁰, J.Ogura², M.Ohnishi⁸, H.Ohoka⁸, K.Oki⁸, T.Okuda²², M.Ono¹⁴, A.Oshima¹⁰, S.Ozawa¹⁸, I.H.Park²³, M.S.Pshirkov²⁴, D.C.Rodriguez¹, G.Rubtsov¹⁷, D.Ryu²⁵, H.Sagawa⁸, N.Sakurai¹⁰, A.L.Sampson¹, S.R.Stratton^{1,15}, T.A.Stroman¹, T.Suzawa¹³, M.Takamura⁵, M.Takeda⁸, R.Takeishi⁸, A.Taketa²⁶, M.Takita⁸, Y.Tameda¹¹, H.Tanaka¹⁰, K.Tanaka²⁷, M.Tanaka²⁰, S.B.Thomas¹, G.B.Thomson¹, P.Tinyakov^{17,24}, I.Tkachev¹⁷, H.Tokuno², T.Tomida²⁸, S.Troitsky¹⁷, Y.Tsunesada², K.Tsutsumi², Y.Uchihori²⁹, S.Udo¹¹, F.Urban²⁴, G.Vasiloff¹, T.Wong¹, R.Yamane¹⁰, H.Yamaoka²⁰, K.Yamazaki¹⁰, J.Yang³, K.Yashiro⁵, Y.Yoneda¹⁰, S.Yoshida¹⁹, H.Yoshii³⁰, R.Zollinger¹, Z.Zundel¹

 ¹University of Utah, ²Tokyo Institute of Technology, ³Ewha Womans University, ⁴Hanyang University, ⁵Tokyo University of Science, ⁶Kinki University, ⁷Yonsei University, ⁸ICRR University of Tokyo, ⁹Kavli IPMU University of Tokyo, ¹⁰Osaka City University, ¹¹Kanagawa University, ¹²University of Yamanashi, ¹³Saitama University, ¹⁴Astrophysical Big Bang Laboratory, RIKEN, ¹⁵Rutgers University - The State University of New Jersey, ¹⁶Tokyo City University, ¹⁷INR of the Russian Academy of Sciences, ¹⁸Waseda University, ¹⁹Chiba University, ²⁰KEK, ²¹Kochi University, ²²Ritsumeikan University, ²³Sungkyunkwan University,
 ²⁴University Libre de Bruxelles, ²⁵Ulsan National Institute of Science and Technology, ²⁶Earthquake Research Institute University of Tokyo, ²⁷Hiroshima City University, ²⁸Advanced Science Institute, RIKEN, ²⁹National Institute of Radiological Science, ³⁰Ehime University

Distance North, [1200m]

地表粒子検出器

プラスチックシンチレータ2層

検出器間の時刻差 - 到来方向 粒子数の横方向分布 - エネルギー推定

空気シャワーのトラック

大気蛍光望遠鏡

撮像カメラ: 1m² (PMT256本) 球面鏡: 6.8 m² 日本担当: 南側 2つのサイト 2013年7月より 近郊の街から遠隔操作 視野中を横切る空気シャワーのトラック タイミング情報からジオメトリ決定

• 到来方向

空気シャワーの縦方向発達を再構成

- エネルギー
 - ・ X_{max}(粒子種情報)

2014年 査読付論文

アクセプト5, 査読中2

到来方向

- Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the northern sky measured with the surface detector of the Telescope Array Experiment
 - R.U. Abbasi et al., The Astrophysical Journal Letters, v790, (2014), article id. L21, 5 pp.
- A northern sky survey for point-like sources of EeV neutral particles with the Telescope Array Experiment
 - R.U. Abbasi et al., 査読中 (arXiv:1407.6145)
- Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 10¹⁹ eV at the Pierre Auger Observatory and the Telescope Array
 - A.Aab et al. (Auger & TA) The Astrophysical Journal, v794, (2014) article id. 172, 15 pp.
- Study of ultra-high energy cosmic ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode
 - R.U. Abbasi et al., Astroparticle physics in press doi:10.1016/j.astropartphys.2014.11.004
 - Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique
 - T. Abu-Zayyad et al. Astroparticle physics v61 (2015) 93-101
 - The hybrid energy spectrum of TA's Middle Drum detector and surface array
 - R.U. Abbasi et al., 査読中 (arXiv:1410.3151)
- Gain monitoring of telescope array photomultiplier cameras for the first 4 years of operation
 - B.K. Shin et al., Nuclear Instruments and Methods in Physics Research Section A 768 (2014) 96-103

組成

エネルギ-

スペクトル

技術論文

到来方向

- E>10¹⁸eV 点源探索など
- E>10¹⁹eV 全天の事象を使った異方性解析
- E>5.7x10¹⁹eV Hot Spot

全天の事象(E>10¹⁹eV)を使った 異方性解析

TA-Auger 合同解析

TA: 天頂角 55度まで E > 10¹⁹eV Auger: 天頂角 60度まで E > 8.5x10¹⁸eV 視野の重なっている領域の Flux は 等しいと仮定する

Significance map

有意な excess はみられない

A.Aab et al. (Auger & TA) The Astrophysical Journal, v794, (2014) article id. 172, 15 pp.

E>10¹⁹eV で到来方向は一様等方仮定に無矛盾

Hot Spot (5年間)

- エネルギー閾値: E> 5.7 x 10¹⁹eV
- 半径20度の円
- 400%の異方性 (観測事象数 /一様等方の場合の期待値 = 19 / 4.5)
- Pre-trial significance: 5.1σ
- Post-trial significance: 3.7x10⁻⁴ (3.4σ)
- ・ 異方性の兆候

R.U. Abbasi et al., The Astrophysical Journal Letters, v790, (2014), article id. L21, 5 pp. プレスリリース: 川田、佐川ほか

Hot Spot (6年間)

- エネルギー閾値: E> 5.7 x 10¹⁹eV
- 半径20度の円
- HotSpot 内事象数/全事象数: 19/72 (5年間) → 23/87 (6年間) 割合変わらず
- Pre-trial significance: 5.55σ
- Post-trial significance: 3.1x10⁻⁴ (4σ)
- 有意度増加 3.7 σ → 4 σ

到来方向(6年間) E> 5.7 x 10¹⁹eV

P. Tinyakov et al., UHECR2014

現在進行中の取組み

- TA Auger, Ice Cube 合同解析
 - 国際会議 UHECR 2014 (2010年 より隔年開催)のworking group として発足
 - 解析手法の確立に向けた議論が始まっている

UHECR そのほかの working group

- Anisotropy
 - TA-Auger
 - TA, Auger, Ice Cube 合同解析
 - 解析手法の確立に向けた議論が始まっている
- Energy Spectrum
 - High Energy
 - Low Energy
- Composition
- Multimessenger
- Hadronic Interactions
- UHECR 2014発表資料は以下のページにあります
 - <u>http://uhecr2014.telescopearray.org/schedule.html</u>

組成

- 大気蛍光望遠鏡による X_{max} 測定
 - Mono + 地表検出器のデータを使った測定
 - ・地表検出器からシャワーコア到来時刻 → X_{max}高精度化
 - Stereo
 - Mono
 - Mono+地表検出器(外部トリガーモード)

空気シャワー縦方向発達深さによる解析

Mono + 地表検出器情報

最大発達点: X_{max} 分布

(アップデートされた相互作用モデルを現在解析中)

R.U. Abbasi et al., Astroparticle physics in press doi:10.1016/j.astropartphys.2014.11.004

エネルギースペクトル

- ・ 地表検出器アレイ(TA最大の統計量)
- 大気蛍光望遠鏡
 - Mono
 - Stereo
 - Mono+地表検出器
 - Mono+地表検出器(外部トリガーモード)

エネルギースペクトル

モデル計算 Kalashev & Kido JETP accepted arXiv:1406.0735

拡張計画

- - TA x 4 (高統計)
- 超高エネルギー宇宙線起源遷移の解明

– TALE (TA Low Energy Extension)

TA x 4

GZK cut オフと矛盾のない結果

起源天体は近傍(~100Mpc) 到来方向は近傍天体分布の 非一様性を反映する期待大

事象数の飛躍的な増加によって <mark>異方性の兆候に対する結論を得る</mark> 微細構造が見え始める可能性 点源天体の探索

現在の地表検出器アレイ面積を4倍に 2.1 km spacing 500台 (日本、ロシアほか) 望遠鏡を2カ所に追加(米国)

今後建設2年、観測3年で、これまでの 観測と合わせて 現 TA の21年分 (発表済み6年分事象数の 3.5倍)

TALE(TA Low Energy Extension)

- ・ 銀河系内から銀河系外へと起源の遷移が 期待されるエネルギー領域まで エネルギー閾値を下げる 10¹⁸ eV → 10¹⁶eV
- 大気蛍光望遠鏡 北ステーション (米国など)
 高仰角 (2013年9月より全台稼働)
- 地表検出器(日本担当)
 - Spacing: 400m, 600m, 1200 m, 計103台
 - 400m:35台設置、16台稼働 (2013年4月)

TALE 望遠鏡による エネルギースペクトル

NICHE: Non Imaging Cherenkov observation

- エネルギー範囲: 10¹⁵—10¹⁸eV
- Spacing: 200m, 400m
- まず400m*,* <mark>15台設置予定</mark> (2015年)
- dX_{max}: +/-20g cm⁻²

- PMTで直接上空をみる
- チェレンコフ光波形の時間幅
 → X_{max}

(D.Bergman, Y.Tsunesada et al. UHECR2014)

関連観測、R&D

世界の共同試験施設としてのTAサイト

• ミュー粒子検出器

- TA地表検出器を改良したミュー粒子検出器など (宇宙線研 野中 F18)
- 北Auger水タンク (コロラド鉱山大ほか)
- Electron Light Source
 - TA独自の大気蛍光望遠鏡エネルギースケールの確立 (KEK 芝田 F13)
- 地表検出器アレイバースト事象
 - 雷との相関 9地点に VHFアンテナを設置し雷の測定 (New Mexico Techほか)
 - 雷との相関 5地点に定常的な検出器設置予定 (立命館 奥田 F12)
- 電波による空気シャワー検出 R&D
 - 電波エコー法 TARA (TA-RADAR) (宇宙線研 池田 F16)
 - 分子制動放射 (甲南大山本 F17), KIT, シカゴ大
 - ARA 検出器 (千葉大 吉田 F31)
- TA-EUSO (理研 川崎 F19), (宇宙線研 竹田 F14)
- 新規望遠鏡 FAST (シカゴ大ほか)
- Auger で開発されたFD用較正光源を使った試験 (KIT ほか)

発表会後の補足

- 発表会にて次ページ(p25)下図の1MIP ヒストグラムに関して西村先生より "この図はミュー粒子数の観測量とMCに矛盾がないことを表すのか?"
- という旨の質問を頂きました。
- それに対する正確な答え
 - この図はPMTゲインキャリブレーションの目的で製作しました。
 - 閾値と 1MIPのshape の一致度をみるために、実データの 1MIP peak 位置と
 MCの1MIP peak 位置をゲインをパラメータとしてフィットしています。
 - 現在、並行して Absolute キャリブレーションは進行中で、 フィットで得られたゲインと矛盾がないかどうかを確認します。
 - 今後、実際のシャワーイベントを観測することで、 空気シャワー中のミュー粒子数の観測量とMCによる値の比較を行います。

ミュー粒子検出器

目的

- MCシミュレーションと観測データの不一致の原因を探る など

- TA: 地表検出器のMCエネルギースケールを補正 E_{FD}=E_{SD} / 1.27
- Auger: ミュー粒子数の過剰 観測量は MC の およそ 1.8倍
- 現行TA地表検出器を基にしてミュー粒子検出
 - 2層のシンチレーターの間に 厚さ25mm 鉛
 - 2013年:稼働開始
 - 地表検出器の上に 厚さ 1.2m コンクリート
 - 2015年初旬:稼働開始予定
- Auger 水タンクをTAサイトで運用
 - Auger 水タンク (Auger North 用)
 - 2014年10月:1台目稼働開始

(T.Nonaka, R.Takeishi et al. UHECR2014)

MCデータで1MIP 分布をフィットしゲインを推定した

PMT出力波形

Electron light source

⁽T.Shibata et.al. JPS2014Mar)

現在TAで使用している発光効率モデルよりも発光効率が高いことを示唆 ELS による大気蛍光望遠鏡エネルギースケールの確立に向けて バックグラウンドなどの補正量に関する測定や解析が進行中 共同利用施設としても活躍 (さまざまな波長の電波による検出R&D)

まとめ

- TAは2008年から順調に観測を継続
- 観測結果
 - 到来方向は E>5.7 x 10¹⁹eV: 異方性の兆候 (Hot Spot)
 - 組成は陽子(軽原子核)モデルと consistent
 - エネルギースペクトルは銀河系外起源陽子モデルと consistent
 - 到来方向が近傍の系外天体分布の非一様性を反映する期待大
- 拡張計画
 - TA x 4: 高統計により、異方性の兆候に結論
 - TALE: 低エネルギー側に拡張し、宇宙線起源遷移の解明
- 世界の共同試験施設としてのTA観測サイト
 - 関連観測やR&D
 - ミュー粒子検出器
 - ・ 雷との相関
 - ・ 電波による空気シャワー検出などのR&D
 - など