平成26年度 東京大学宇宙線研究所 共同利用研究成果発表会

IceCube実験によるニュートリノ観測 atmospheric v_µ spectrum analysis

IceCube neutrino observatory

- 3D cosmic ray detector
 - Completed Dec 2010 at SouthPole, 2835m
 - IceTop: Surface array of ice tank
 - IceCube Array: In-ice array of DOMs
 - DeepCore: Infill array for lowE extension
 - IceCube measures
 - Cosmic ray showers from above
 - Neutrinos from all directions
 - v_{μ} -induced μ from below
 - all flavors starting inside detector

Digital Optical Modules

- 86 in-ice strings
- 60 DOMs per string
- 125m inter-string spacing
 17m DOM spacing

Atmospheric Neutrino Flux

- Conventional v_{μ} and v_{e}
 - Important background to evaluate prompt ν and astrophysical ν
 - From π and K decay Shape of spectrum depends on π to K ratio
 - Several IceCube works at past Still large systematic uncertainties left
 - For complete understanding, combined analysis with low energy experiment, like Super-K, is strongly required

This analysis will determine v_{μ} spectrum from first year of completed IceCube 86 string data

Atmospheric CR μ and ν_{μ} flux simulation

CR

 ν_{μ}

CORSIKA

NuGen

 ν_{μ}

- Input CR spectrum : E_{cr}^{-2}
- 5 component (P, He, N, Al, Fe)
- Weight: Polygonato
- Zenith angle: 0 90 deg

Neutrinos with NuGen (neutrino generator)

- Input ν_{μ} spectrum : E_{ν}^{-2}
- Weight: Honda, GaisserH3a, +Enberg
- Zenith angle: 0-360 deg

ICRR computer facility is used to improve our background simulations

u_{μ} Event Selection

Level-1 data (>2kHz)

require typical Trigger Condition (recording > 8 channels in 5 μ sec) by the DOMs passed Coincidence Condition (one of nearby DOMs has record in $\pm 1 \mu$ sec)

Level-2 data (~40Hz)

- min quality of first angular reconstruction
- down-going events with small charges (CR muon dominates) are rejected.
- high back ground muon (>99.9%)

Level-3 data (~2mHz)

- good angular reconstruction (σ <5deg)
- up-going event only
- low back ground muon (~1%)

Event distribution, Level 3 data

* Burnsample = 10% statistics data

- 5823 burn sample events remained after cuts
- Good data/MC agreement
- Primary energy range: 100GeV-20TeV (99% events) Median ~ 800GeV

Reconstructed muon energy vs zenith angle distribution

Likelihood fit analysis

- 2D distribution of reconstructed muon energy and zenith angle for fitting
- Physics parameter
 - $1+\alpha$, Deviation from reference conventional flux (Honda+H3a model)
 - $-\Delta\gamma$, Change in spectrum slope
 - $R_{K/\pi}$, ratio of spectrum weighted moments to produce K and π (baseline $R_{K/\pi}$ = 0.149)
- Nuisance parameter
 - $-\epsilon$, DOM efficiency
- Minimizer (ROOT Minuit2)

Preliminary Fit Result

Summary

- v_{μ} sample has been selected from the first year of the completed IceCube data
- Applied preliminary likelihood fit analysis
 - Flux normalization : $1.07 \pm 0.18 \times (Honda+H3a)$
 - Spectrum index : +0.07 \pm 0.04 flatter
 - $R_{K/\pi}$: +11±42% from baseline
- Next...
 - Joint analysis with Super-K
 - Super-K reported their spectrum (at Neutrino2014)
 - High statistical Super-K result at low energy
 -> reduce systematic uncertainty at high energy end
 - Wide energy range coverage -> good $R_{K/\pi}$ determination
 - Use DeepCore trigger
 - Extend energy (E_{v}^{min} : 100GeV->10GeV)
 - Makes overlap with Super-K energy range
 - ν_e spectrum
 - Analysis of cascade events is on-going

Back up

K/pi ratio

$$\Phi_{\nu} = \Phi_N(E_{\nu}) \left(\frac{A_{\pi\mu}}{1 + B_{\pi\mu} \cos^2 \theta E_{\nu} / \epsilon_{\pi}} + \frac{A_{K\mu}}{1 + B_{K\mu} \cos^2 \theta E_{\nu} / \epsilon_K} \right)$$

 $A_{\pi\nu} = BR_{\pi\nu} \frac{(1-r_{\pi})^{\gamma}}{\gamma+1} \qquad B_{\pi\nu}$

$$\sigma_{\pi\nu} = \frac{\gamma+2}{\gamma+1} \frac{1}{1-r_{\pi}} \frac{\Lambda_{\pi} - \Lambda_{N}}{\Lambda_{\pi} \ln(\Lambda_{\pi}/\Lambda_{N})}$$

Ratio of Z-factor

$$R_{K/\pi} = \frac{Z_{NK}}{Z_{N\pi}} = \frac{0.0118}{0.079} = 0.149 \pm 0.060$$

Constraint

The sum $Z_{NK} + Z_{N\pi}$ is kept constant to its nominal value 0.0908

DOM Efficiency

NuGen Data Set	DOM Efficiency
10602	0.99 (baseline)
10437	0.891 (-10%)
10561	0.9405 (-5%)
10562	1.0395 (+5%)
10438	1.089 (+10%)

Produce simulation data sets with different DOM efficiency

Likelihood Function

Fit spectrum

$$\Phi_{\nu} = (1+\alpha) \left(\frac{E_{\nu}}{E_{\nu}^{med}}\right)^{\Delta\gamma} W_{K/\pi} \Phi_{\nu}^{model}$$

Flux Change from
$$R_{K/\pi}$$

$$W_{K/\pi} = \frac{\Phi_{\nu}(R_{K/\pi})}{\Phi_{\nu}^0(R_{K/\pi} = 1)}$$

Reference model spectrum $\Phi_{
u}^{model}$: Honda+GaisserH3a

Poisson probability

$$\begin{split} P(n_i | \mu_i(\theta_r, \theta_s)) &= \prod_i \frac{\mu_i^{n_i}}{n_i!} e^{-\mu_i} \prod_j \exp\left(-\frac{1}{2} \frac{(\theta_{s_j} - \theta_{s0_j})^2}{\sigma_{\theta_{s_j}}^2}\right) \\ n_i \text{: observed count at i-th bin } \theta_r \text{: physics parameters} \\ \mu_i \text{: expected count at i-th bin } \theta_s \text{: nuisance parameters} \end{split}$$

Negative log likelihood function to minimize

$$\mathcal{L}(\theta_r, \theta_s) = -2\ln P = 2\sum_i \left[\mu_i - n_i \ln \mu_i + \ln n_i!\right] + \sum_j \frac{(\theta_{s_j} - \theta_{s0_j})^2}{\sigma_{\theta_{s_j}}^2}$$